
Automated Driving Toolbox™
User’s Guide

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Automated Driving Toolbox™ User’s Guide
© COPYRIGHT 2017–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2017 Online only New for Version 1.0 (Release 2017a)
September 2017 Online only Revised for Version 1.1 (Release 2017b)
March 2018 Online only Revised for Version 1.2 (Release 2018a)
September 2018 Online only Revised for Version 1.3 (Release 2018b)
March 2019 Online only Revised for Version 2.0 (Release 2019a)
September 2019 Online only Revised for Version 3.0 (Release 2019b)
March 2020 Online only Revised for Version 3.1 (Release 2020a)
September 2020 Online only Revised for Version 3.2 (Release 2020b)
March 2021 Online only Revised for Version 3.3 (Release 2021a)
September 2021 Online only Revised for Version 3.4 (Release 2021b)
March 2022 Online only Revised for Version 3.5 (Release 2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Sensor Configuration and Coordinate System Transformations
1

Coordinate Systems in Automated Driving Toolbox 1-2
World Coordinate System . 1-2
Vehicle Coordinate System . 1-2
Sensor Coordinate System . 1-4
Spatial Coordinate System . 1-6
Pattern Coordinate System . 1-6

Calibrate a Monocular Camera . 1-8
Estimate Intrinsic Parameters . 1-8
Place Checkerboard for Extrinsic Parameter Estimation 1-8
Estimate Extrinsic Parameters . 1-11
Configure Camera Using Intrinsic and Extrinsic Parameters 1-11

Ground Truth Labeling and Verification
2

Get Started with the Ground Truth Labeler . 2-2

Load Ground Truth Signals to Label . 2-4
Load Timestamps . 2-4
Open Ground Truth Labeler App . 2-4
Load Signals from Data Sources . 2-4
Configure Signal Display . 2-7

Label Ground Truth for Multiple Signals . 2-9
Create Label Definitions . 2-9
Label Video Using Automation . 2-13
Label Point Cloud Sequence Using Automation . 2-15
Label with Sublabels and Attributes Manually . 2-19
Label Scene Manually . 2-19
View Label Summary . 2-20
Save App Session . 2-20

Export and Explore Ground Truth Labels for Multiple Signals 2-21

Sources vs. Signals in Ground Truth Labeling . 2-28

Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler 2-30
Label Definitions . 2-30
Frame Navigation and Time Interval Settings . 2-30
Labeling Window . 2-30

iii

Contents

Cuboid Resizing and Moving . 2-31
Polyline Drawing . 2-32
Polygon Drawing . 2-32
Zooming, Panning, and Rotating . 2-33
App Sessions . 2-34

Control Playback of Signal Frames for Labeling 2-35
Signal Frames . 2-35
Main Signal . 2-35
Change Main Signal . 2-36
Display All Timestamps . 2-36
Specify Timestamps . 2-37
Frame Display and Automation . 2-37

Label Lidar Point Clouds for Object Detection . 2-38
Set Up Lidar Point Cloud Labeling . 2-38
Zoom, Pan, and Rotate Frame . 2-39
Hide Ground . 2-39
Label Cuboid . 2-40
Modify Cuboid Label . 2-42
Apply Cuboids to Multiple Frames . 2-43
Configure Display . 2-44

Create Class for Loading Custom Ground Truth Data Sources 2-45
Custom Class Folder . 2-45
Class Definition . 2-45
Class Properties . 2-45
Method to Customize Load Panel . 2-46
Methods to Get Load Panel Data and Load Data Source 2-47
Method to Read Frames . 2-49
Use Predefined Data Source Classes . 2-50

Tracking and Sensor Fusion
3

Visualize Sensor Data and Tracks in Bird's-Eye Scope 3-2
Open Model and Scope . 3-2
Find Signals . 3-2
Run Simulation . 3-6
Organize Signal Groups (Optional) . 3-8
Update Model and Rerun Simulation . 3-8
Save and Close Model . 3-8

Linear Kalman Filters . 3-11
Motion Model . 3-11
Measurement Models . 3-12
Filter Loop . 3-12
Built-In Motion Models in trackingKF . 3-14
Example: Estimate 2-D Target States Using trackingKF 3-15

Extended Kalman Filters . 3-19
State Update Model . 3-19

iv Contents

Measurement Model . 3-20
Extended Kalman Filter Loop . 3-20
Predefined Extended Kalman Filter Functions . 3-21
Example: Estimate 2-D Target States with Angle and Range Measurements

Using trackingEKF . 3-22

Planning, Mapping, and Control
4

Display Data on OpenStreetMap Basemap . 4-2

Read and Visualize HERE HD Live Map Data . 4-7
Enter Credentials . 4-7
Configure Reader to Search Specific Catalog . 4-8
Create Reader for Specific Map Tiles . 4-8
Read Map Layer Data . 4-11
Visualize Map Layer Data . 4-12

HERE HD Live Map Layers . 4-15
Road Centerline Model . 4-16
HD Lane Model . 4-17
HD Localization Model . 4-18

Rotations, Orientations, and Quaternions for Automated Driving 4-19
Quaternion Format . 4-19
Quaternion Creation . 4-19
Quaternion Math . 4-21
Extract Quaternions from Transformation Matrix 4-23

Control Vehicle Velocity . 4-26

Velocity Profile of Straight Path . 4-28

Velocity Profile of Path with Curve and Direction Change 4-32

Plan Path Using A-Star Path Planners . 4-36

Cuboid Driving Scenario Simulation
5

Create Driving Scenario Interactively and Generate Synthetic Sensor Data
. 5-2

Create Driving Scenario . 5-2
Add a Road . 5-2
Add Lanes . 5-3
Add Barriers . 5-4
Add Vehicles . 5-5
Add a Pedestrian . 5-7
Add Sensors . 5-8

v

Generate Synthetic Sensor Data . 5-13
Save Scenario . 5-14

Keyboard Shortcuts and Mouse Actions for Driving Scenario Designer
. 5-16

Canvas Operations . 5-16
Road Operations . 5-16
Actor Operations . 5-16
Preview Actor Times of Arrival . 5-19
Barrier Placement Operations . 5-20
Sensor Operations . 5-20
File Operations . 5-21

Prebuilt Driving Scenarios in Driving Scenario Designer 5-22
Choose a Prebuilt Scenario . 5-22
Modify Scenario . 5-41
Generate Synthetic Sensor Data . 5-41
Save Scenario . 5-42

Euro NCAP Driving Scenarios in Driving Scenario Designer 5-44
Choose a Euro NCAP Scenario . 5-44
Modify Scenario . 5-62
Generate Synthetic Detections . 5-62
Save Scenario . 5-63

Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer
. 5-65

Choose 3D Simulation Scenario . 5-65
Modify Scenario . 5-68
Save Scenario . 5-68
Recreate Scenario in Simulink for 3D Environment 5-68

Create Reverse Motion Driving Scenarios Interactively 5-70
Three-Point Turn Scenario . 5-70
Add Road . 5-70
Add Vehicle . 5-72
Add Trajectory . 5-73
Run Simulation . 5-76
Adjust Trajectory Using Specified Yaw Values . 5-77

Generate INS Sensor Measurements from Interactive Driving Scenario
. 5-80

Import Road Network . 5-80
Add Actor and Trajectory . 5-82
Smooth the Trajectory . 5-84
Add INS Sensor . 5-85
Simulate Scenario . 5-86
Export to MATLAB and Explore Sensor Data . 5-87
Export Scenario and Sensor to a Simulink Model 5-87

Import ASAM OpenDRIVE Roads into Driving Scenario 5-89
Import ASAM OpenDRIVE File . 5-89
Inspect Roads . 5-91
Add Actors and Sensors to Scenario . 5-93
Generate Synthetic Detections . 5-95

vi Contents

Save Scenario . 5-96

Export Driving Scenario to ASAM OpenDRIVE File 5-98
Load Scenario File . 5-98
Export to ASAM OpenDRIVE . 5-99
Inspect Exported Scenario . 5-100
Limitations . 5-101

Import HERE HD Live Map Roads into Driving Scenario 5-104
Set Up HERE HDLM Credentials . 5-104
Specify Geographic Coordinates . 5-104
Select Region Containing Roads . 5-106
Select Roads to Import . 5-107
Import Roads . 5-109
Compare Imported Roads Against Map Data . 5-110
Save Scenario . 5-110

Import OpenStreetMap Data into Driving Scenario 5-111
Select OpenStreetMap File . 5-111
Select Roads to Import . 5-112
Import Roads . 5-113
Compare Imported Roads Against Map Data . 5-114
Save Scenario . 5-115

Import Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) into Driving
Scenario . 5-117

Set Up Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Credentials . . 5-117
Specify Geographic Coordinates . 5-117
Select Region Containing Roads . 5-119
Select Roads to Import . 5-120
Import Roads . 5-122
Compare Imported Roads Against Map Data . 5-123
Save Scenario . 5-123

Create Driving Scenario Variations Programmatically 5-125

Generate Sensor Blocks Using Driving Scenario Designer 5-131

Test Open-Loop ADAS Algorithm Using Driving Scenario 5-140

Test Closed-Loop ADAS Algorithm Using Driving Scenario 5-146

Automate Control of Intelligent Vehicles by Using Stateflow Charts . . 5-151

Simulate INS Block . 5-155

Generate INS Measurements from Driving Scenario in Simulink 5-157

Create Roads with Multiple Lane Specifications Using Driving Scenario
Designer . 5-159

Open Driving Scenario Designer . 5-159
Add Road . 5-160
Define Multiple Lane Specifications . 5-160
Next Steps . 5-162

vii

Export Driving Scenario to ASAM OpenSCENARIO File 5-164
Load Scenario File . 5-164
Export to ASAM OpenSCENARIO . 5-165
ASAM OpenSCENARIO Representations . 5-168
Limitations . 5-171

3D Simulation – User's Guide
6

Unreal Engine Simulation for Automated Driving 6-2
Unreal Engine Simulation Blocks . 6-2
Algorithm Testing and Visualization . 6-5

Unreal Engine Simulation Environment Requirements and Limitations
. 6-7

Software Requirements . 6-7
Minimum Hardware Requirements . 6-7
Limitations . 6-7

How Unreal Engine Simulation for Automated Driving Works 6-9
Communication with 3D Simulation Environment 6-9
Block Execution Order . 6-9

Coordinate Systems for Unreal Engine Simulation in Automated Driving
Toolbox . 6-11

World Coordinate System . 6-11
Vehicle Coordinate System . 6-13

Choose a Sensor for Unreal Engine Simulation . 6-17

Simulate Simple Driving Scenario and Sensor in Unreal Engine
Environment . 6-21

Depth and Semantic Segmentation Visualization Using Unreal Engine
Simulation . 6-30

Visualize Sensor Data from Unreal Engine Simulation Environment . . . 6-36

Customize Unreal Engine Scenes for Automated Driving 6-44

Install Support Package for Customizing Scenes 6-45
Verify Software and Hardware Requirements . 6-45
Install Support Package . 6-45
Set Up Scene Customization Using Support Package 6-45

Migrate Projects Developed Using Prior Support Packages 6-49

Customize Scenes Using Simulink and Unreal Editor 6-50
Open Unreal Editor from Simulink . 6-50
Reparent Actor Blueprint . 6-51
Create or Modify Scenes in Unreal Editor . 6-52
Run Simulation . 6-54

viii Contents

Package Custom Scenes into Executable . 6-57
Package Scene into Executable Using Unreal Editor 6-57
Simulate Scene from Executable in Simulink . 6-59

Apply Labels to Unreal Scene Elements for Semantic Segmentation and
Object Detection . 6-60

Create Top-Down Map of Unreal Engine Scene . 6-66
Capture Screenshot . 6-66
Convert Screenshot to Map . 6-67

Place Cameras on Actors in the Unreal Editor . 6-69
Place Camera on Static Actor . 6-69
Place Camera on Vehicle in Custom Project . 6-72

Build Light in Unreal Editor . 6-80
Use AutoVrtlEnv Project Lighting in Custom Scene 6-80

Create Empty Project in Unreal Engine . 6-82

Prepare Custom Vehicle Mesh for the Unreal Editor 6-84
Step 1: Setup Bone Hierarchy . 6-84
Step 2: Assign Materials . 6-85
Step 3: Export Mesh and Armature . 6-85
Step 4: Import Mesh to Unreal Editor . 6-86
Step 5: Set Block Parameters . 6-86

RoadRunner Scenario Scenario Simulation
7

Overview of Simulating RoadRunner Scenarios with MATLAB and
Simulink . 7-2

Author RoadRunner Actor Using Simulink or MATLAB System Objects . . . 7-2
Associate Actor Behavior in RoadRunner Scenario 7-4
Publish Actor Behavior . 7-7
Tune Actor Parameters . 7-8
Simulate Scenario in RoadRunner . 7-13
Control Scenario Simulation Using MATLAB . 7-14
Inspect Simulation Results Using Data Logging 7-15

Simulate RoadRunner Scenarios with Actors Modeled in Simulink 7-16
Author RoadRunner Actor Using Simulink . 7-16
Associate Actor Behavior in RoadRunner and Simulate Scenario 7-16

Simulate RoadRunner Scenarios with Actors Modeled in MATLAB 7-20
Build Custom MATLAB System Object Behavior 7-20
Associate Actor Behavior in RoadRunner . 7-22

Publish Actor Behavior as Proto File or Package 7-24
Generate Behavior Proto File for Simulink or MATLAB System Object

Behavior . 7-24
Generate Package from Simulink Model or MATLAB System Object 7-26

ix

Featured Examples
8

Configure Monocular Fisheye Camera . 8-5

Annotate Video Using Detections in Vehicle Coordinates 8-11

Read Data From ADTF DAT Files . 8-19

Read Sensor Messages from IDC file . 8-25

Automate Ground Truth Labeling Across Multiple Signals 8-26

Automate Ground Truth Labeling of Lane Boundaries 8-46

Automate Ground Truth Labeling for Semantic Segmentation 8-58

Automate Attributes of Labeled Objects . 8-68

Evaluate Lane Boundary Detections Against Ground Truth Data 8-82

Evaluate and Visualize Lane Boundary Detections Against Ground Truth
. 8-94

Visual Perception Using Monocular Camera . 8-107

Create 360° Bird's-Eye-View Image Around a Vehicle 8-129

Perception-Based Parking Spot Detection Using Unreal Engine
Simulation . 8-148

Train a Deep Learning Vehicle Detector . 8-162

Ground Plane and Obstacle Detection Using Lidar 8-172

Build Map and Localize Using Segment Matching 8-181

Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal
Engine Simulation . 8-199

Code Generation for Tracking and Sensor Fusion 8-211

Forward Collision Warning Using Sensor Fusion 8-218

Adaptive Cruise Control with Sensor Fusion . 8-231

Forward Collision Warning Application with CAN FD and TCP/IP 8-249

Multiple Object Tracking Tutorial . 8-255

Track Multiple Vehicles Using a Camera . 8-261

Track Vehicles Using Lidar: From Point Cloud to Track List 8-268

x Contents

Sensor Fusion Using Synthetic Radar and Vision Data 8-286

Sensor Fusion Using Synthetic Radar and Vision Data in Simulink . . . 8-295

Autonomous Emergency Braking with Sensor Fusion 8-303

Visualize Sensor Coverage, Detections, and Tracks 8-319

Extended Object Tracking of Highway Vehicles with Radar and Camera
. 8-327

Track-to-Track Fusion for Automotive Safety Applications 8-347

Track-to-Track Fusion for Automotive Safety Applications in Simulink 8-360

Visual-Inertial Odometry Using Synthetic Data 8-364

Lane Following Control with Sensor Fusion and Lane Detection 8-373

Track-Level Fusion of Radar and Lidar Data . 8-384

Track-Level Fusion of Radar and Lidar Data in Simulink 8-404

Track Vehicles Using Lidar Data in Simulink . 8-414

Grid-Based Tracking in Urban Environments Using Multiple Lidars . . 8-422

Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker
. 8-436

Generate Code for a Track Fuser with Heterogeneous Source Tracks . 8-444

Highway Vehicle Tracking with Multipath Radar Reflections 8-454

Extended Object Tracking of Highway Vehicles with Radar and Camera in
Simulink . 8-465

Grid-based Tracking in Urban Environments Using Multiple Lidars in
Simulink . 8-479

Object Tracking and Motion Planning Using Frenet Reference Path . . 8-484

Asynchronous Sensor Fusion and Tracking with Retrodiction 8-495

Extended Target Tracking with Multipath Radar Reflections in Simulink
. 8-498

Processor-in-the-Loop Verification of JPDA Tracker for Automotive
Applications . 8-508

Scenario Generation from Recorded Vehicle Data 8-518

Generate Lane Information from Recorded Data 8-533

xi

Improve Ego Vehicle Localization . 8-541

Lane Keeping Assist with Lane Detection . 8-563

Model Radar Sensor Detections . 8-581

Model Vision Sensor Detections . 8-597

Radar Signal Simulation and Processing for Automated Driving 8-615

Simulate Radar Ghosts Due to Multipath Return 8-627

Create Driving Scenario Programmatically . 8-644

Create Actor and Vehicle Trajectories Programmatically 8-663

Define Road Layouts Programmatically . 8-674

Simulate Vehicle Parking Maneuver in Driving Scenario 8-688

Automated Parking Valet . 8-696

Automated Parking Valet in Simulink . 8-724

Visualize Automated Parking Valet Using Cuboid Simulation 8-731

Highway Trajectory Planning Using Frenet Reference Path 8-744

Motion Planning in Urban Environments Using Dynamic Occupancy Grid
Map . 8-758

Code Generation for Path Planning and Vehicle Control 8-772

Use HERE HD Live Map Data to Verify Lane Configurations 8-781

Localization Correction Using Traffic Sign Data from HERE HD Maps 8-795

Build a Map from Lidar Data . 8-807

Build a Map from Lidar Data Using SLAM . 8-827

Create Occupancy Grid Using Monocular Camera and Semantic
Segmentation . 8-843

Lateral Control Tutorial . 8-858

Highway Lane Change . 8-867

Visual Localization in a Parking Lot . 8-879

Design Lane Marker Detector Using Unreal Engine Simulation
Environment . 8-885

Select Waypoints for Unreal Engine Simulation 8-894

xii Contents

Visualize Automated Parking Valet Using Unreal Engine Simulation . 8-904

Simulate Vision and Radar Sensors in Unreal Engine Environment . . . 8-916

Highway Lane Following . 8-922

Automate Testing for Highway Lane Following . 8-938

Traffic Light Negotiation . 8-948

Design Lidar SLAM Algorithm Using Unreal Engine Simulation
Environment . 8-962

Lidar Localization with Unreal Engine Simulation 8-972

Develop Visual SLAM Algorithm Using Unreal Engine Simulation 8-983

Automatic Scenario Generation . 8-997

Automatic Scenario Variant Generation for Testing AEB Systems . . . 8-1011

Generate Scenario from Recorded GPS and Lidar Data 8-1034

Highway Lane Following with RoadRunner Scene 8-1049

Export Multiple Scenes Using MATLAB . 8-1063

Convert Scenes Between Formats Using MATLAB Functions 8-1066

Simulate a RoadRunner Scenario Using MATLAB Functions 8-1068

Traffic Light Negotiation with Unreal Engine Visualization 8-1074

Generate Code for Lane Marker Detector . 8-1085

Highway Lane Following with Intelligent Vehicles 8-1103

Forward Vehicle Sensor Fusion . 8-1121

Generate Code for Vision Vehicle Detector . 8-1129

Automate Testing for Lane Marker Detector . 8-1145

Generate Code for Highway Lane Following Controller 8-1156

Automate Testing for Highway Lane Following Controls and Sensor
Fusion . 8-1168

Generate Code for Highway Lane Change Planner 8-1180

Surround Vehicle Sensor Fusion . 8-1202

Build Occupancy Map from 3-D Lidar Data using SLAM 8-1211

xiii

Automate Testing for Vision Vehicle Detector 8-1232

Automate Testing for Forward Vehicle Sensor Fusion 8-1243

Automate Testing for Highway Lane Following Controller 8-1254

Automate Testing for Highway Lane Change . 8-1267

Visualize Logged Data from Unreal Engine Simulation 8-1277

Automate Real-Time Testing for Highway Lane Following Controller 8-1289

Generate C++ Message Interfaces for Lane Following Controls and
Sensor Fusion . 8-1311

Automate Testing for Autonomous Emergency Braking 8-1322

Autonomous Emergency Braking with Vehicle Variants 8-1331

Automate Real-Time Testing for Forward Vehicle Sensor Fusion 8-1344

Highway Lane Change Planner and Controller 8-1361

Intersection Movement Assist Using Vehicle-to-Vehicle Communication
. 8-1372

Traffic Light Negotiation Using Vehicle-to-Everything Communication
. 8-1384

Trajectory Follower with RoadRunner Scenario 8-1396

Speed Action Follower with RoadRunner Scenario 8-1410

Highway Lane Change Planner with RoadRunner Scenario 8-1421

xiv Contents

Sensor Configuration and Coordinate
System Transformations

• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Calibrate a Monocular Camera” on page 1-8

1

Coordinate Systems in Automated Driving Toolbox
Automated Driving Toolbox uses these coordinate systems:

• World: A fixed universal coordinate system in which all vehicles and their sensors are placed.
• Vehicle: Anchored to the ego vehicle. Typically, the vehicle coordinate system is placed on the

ground right below the midpoint of the rear axle.
• Sensor: Specific to a particular sensor, such as a camera or a radar.
• Spatial: Specific to an image captured by a camera. Locations in spatial coordinates are

expressed in units of pixels.
• Pattern: A checkerboard pattern coordinate system, typically used to calibrate camera sensors.

These coordinate systems apply across Automated Driving Toolbox functionality, from perception to
control to driving scenario simulation. For information on specific differences and implementation
details in the 3D simulation environment using the Unreal Engine® from Epic Games®, see
“Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox” on page 6-11.

World Coordinate System
All vehicles, sensors, and their related coordinate systems are placed in the world coordinate system.
A world coordinate system is important in global path planning, localization, mapping, and driving
scenario simulation. Automated Driving Toolbox uses the right-handed Cartesian world coordinate
system defined in ISO 8855, where the Z-axis points up from the ground. Units are in meters.

Vehicle Coordinate System
The vehicle coordinate system (XV, YV, ZV) used by Automated Driving Toolbox is anchored to the ego
vehicle. The term ego vehicle refers to the vehicle that contains the sensors that perceive the
environment around the vehicle.

• The XV axis points forward from the vehicle.
• The YV axis points to the left, as viewed when facing forward.
• The ZV axis points up from the ground to maintain the right-handed coordinate system.

The vehicle coordinate system follows the ISO 8855 convention for rotation. Each axis is positive in
the clockwise direction, when looking in the positive direction of that axis.

1 Sensor Configuration and Coordinate System Transformations

1-2

In most Automated Driving Toolbox functionality, such as cuboid driving scenario simulations and
visual perception algorithms, the origin of the vehicle coordinate system is on the ground, below the
midpoint of the rear axle. In 3D driving scenario simulations, the origin is on ground, below the
longitudinal and lateral center of the vehicle. For more details, see “Coordinate Systems for Unreal
Engine Simulation in Automated Driving Toolbox” on page 6-11.

Locations in the vehicle coordinate system are expressed in world units, typically meters.

Values returned by individual sensors are transformed into the vehicle coordinate system so that they
can be placed in a unified frame of reference.

For global path planning, localization, mapping, and driving scenario simulation, the state of the
vehicle can be described using the pose of the vehicle. The steering angle of the vehicle is positive in
the counterclockwise direction.

 Coordinate Systems in Automated Driving Toolbox

1-3

Sensor Coordinate System
An automated driving system can contain sensors located anywhere on or in the vehicle. The location
of each sensor contains an origin of its coordinate system. A camera is one type of sensor used often
in an automated driving system. Points represented in a camera coordinate system are described with
the origin located at the optical center of the camera.

The yaw, pitch, and roll angles of sensors follow an ISO convention. These angles have positive
clockwise directions when looking in the positive direction of the Z-, Y-, and X-axes, respectively.

1 Sensor Configuration and Coordinate System Transformations

1-4

 Coordinate Systems in Automated Driving Toolbox

1-5

Spatial Coordinate System
Spatial coordinates enable you to specify a location in an image with greater granularity than pixel
coordinates. In the pixel coordinate system, a pixel is treated as a discrete unit, uniquely identified by
an integer row and column pair, such as (3,4). In the spatial coordinate system, locations in an image
are represented in terms of partial pixels, such as (3.3,4.7).

For more information on the spatial coordinate system, see “Spatial Coordinates”.

Pattern Coordinate System
To estimate the parameters of a monocular camera sensor, a common technique is to calibrate the
camera using multiple images of a calibration pattern, such as a checkerboard. In the pattern
coordinate system, (XP, YP), the XP-axis points to the right and the YP-axis points down. The
checkerboard origin is the bottom-right corner of the top-left square of the checkerboard.

Each checkerboard corner represents another point in the coordinate system. For example, the
corner to the right of the origin is (1,0) and the corner below the origin is (0,1). For more information
on calibrating a camera by using a checkerboard pattern, see “Calibrate a Monocular Camera” on
page 1-8.

See Also

More About
• “Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox” on page 6-

11
• “Coordinate Systems in Vehicle Dynamics Blockset” (Vehicle Dynamics Blockset)
• “Coordinate Systems”

1 Sensor Configuration and Coordinate System Transformations

1-6

• “Image Coordinate Systems”
• “Calibrate a Monocular Camera” on page 1-8

 Coordinate Systems in Automated Driving Toolbox

1-7

Calibrate a Monocular Camera
A monocular camera is a common type of vision sensor used in automated driving applications. When
mounted on an ego vehicle, this camera can detect objects, detect lane boundaries, and track objects
through a scene.

Before you can use the camera, you must calibrate it. Camera calibration is the process of estimating
the intrinsic and extrinsic parameters of a camera using images of a calibration pattern, such as a
checkerboard. After you estimate the intrinsic and extrinsic parameters, you can use them to
configure a model of a monocular camera.

Estimate Intrinsic Parameters
The intrinsic parameters of a camera are the properties of the camera, such as its focal length and
optical center. To estimate these parameters for a monocular camera, use Computer Vision Toolbox™
functions and images of a checkerboard pattern.

• If the camera has a standard lens, use the estimateCameraParameters function.
• If the camera has a fisheye lens, use the estimateFisheyeParameters function.

Alternatively, to better visualize the results, use the Camera Calibrator app. For information on
setting up the camera, preparing the checkerboard pattern, and calibration techniques, see “Using
the Single Camera Calibrator App”.

Place Checkerboard for Extrinsic Parameter Estimation
For a monocular camera mounted on a vehicle, the extrinsic parameters define the mounting position
of that camera. These parameters include the rotation angles of the camera with respect to the
vehicle coordinate system, and the height of the camera above the ground.

Before you can estimate the extrinsic parameters, you must capture an image of a checkerboard
pattern from the camera. Use the same checkerboard pattern that you used to estimate the intrinsic
parameters.

The checkerboard uses a pattern-centric coordinate system (XP, YP), where the XP-axis points to the
right and the YP-axis points down. The checkerboard origin is the bottom-right corner of the top-left
square of the checkerboard.

1 Sensor Configuration and Coordinate System Transformations

1-8

When placing the checkerboard pattern in relation to the vehicle, the XP- and YP-axes must align with
the XV- and YV-axes of the vehicle. In the vehicle coordinate system, the XV-axis points forward from
the vehicle and the YV-axis points to the left, as viewed when facing forward. The origin is on the road
surface, directly below the camera center (the focal point of the camera).

The orientation of the pattern can be either horizontal or vertical.

Horizontal Orientation

In the horizontal orientation, the checkerboard pattern is either on the ground or parallel to the
ground. You can place the pattern in front of the vehicle, in back of the vehicle, or on the left or right
side of the vehicle.

 Calibrate a Monocular Camera

1-9

Vertical Orientation

In the vertical orientation, the checkerboard pattern is perpendicular to the ground. You can place
the pattern in front of the vehicle, in back of the vehicle, or on the left of right side of the vehicle.

1 Sensor Configuration and Coordinate System Transformations

1-10

Estimate Extrinsic Parameters
After placing the checkerboard in the location you want, capture an image of it using the monocular
camera. Then, use the estimateMonoCameraParameters function to estimate the extrinsic
parameters. To use this function, you must specify the following:

• The intrinsic parameters of the camera
• The key points detected in the image, in this case the corners of the checkerboard squares
• The world points of the checkerboard
• The height of the checkerboard pattern's origin above the ground

For example, for image I and intrinsic parameters intrinsics, the following code estimates the
extrinsic parameters. By default, estimateMonoCameraParameters assumes that the camera is
facing forward and that the checkerboard pattern has a horizontal orientation.

[imagePoints,boardSize] = detectCheckerboardPoints(I);
squareSize = 0.029; % Square size in meters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
patternOriginHeight = 0; % Pattern is on ground
[pitch,yaw,roll,height] = estimateMonoCameraParameters(intrinsics, ...
 imagePoints,worldPoints,patternOriginHeight);

To increase estimation accuracy of these parameters, capture multiple images and average the values
of the image points.

Configure Camera Using Intrinsic and Extrinsic Parameters
Once you have the estimated intrinsic and extrinsic parameters, you can use the monoCamera object
to configure a model of the camera. The following sample code shows how to configure the camera
using parameters intrinsics, height, pitch, yaw, and roll:

 Calibrate a Monocular Camera

1-11

monoCam = monoCamera(intrinsics,height,'Pitch',pitch,'Yaw',yaw,'Roll',roll);

See Also
Apps
Camera Calibrator

Functions
estimateFisheyeParameters | estimateCameraParameters |
estimateMonoCameraParameters | detectCheckerboardPoints |
generateCheckerboardPoints

Objects
monoCamera

Related Examples
• “Create 360° Bird's-Eye-View Image Around a Vehicle” on page 8-129

More About
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Configure Monocular Fisheye Camera” on page 8-5
• “Using the Single Camera Calibrator App”
• “Fisheye Calibration Basics”

1 Sensor Configuration and Coordinate System Transformations

1-12

Ground Truth Labeling and Verification

• “Get Started with the Ground Truth Labeler” on page 2-2
• “Load Ground Truth Signals to Label” on page 2-4
• “Label Ground Truth for Multiple Signals” on page 2-9
• “Export and Explore Ground Truth Labels for Multiple Signals” on page 2-21
• “Sources vs. Signals in Ground Truth Labeling” on page 2-28
• “Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler” on page 2-30
• “Control Playback of Signal Frames for Labeling” on page 2-35
• “Label Lidar Point Clouds for Object Detection” on page 2-38
• “Create Class for Loading Custom Ground Truth Data Sources” on page 2-45

2

Get Started with the Ground Truth Labeler
The Ground Truth Labeler app enables you to interactively label ground truth data in a video,
image sequence, or lidar point cloud. Using the app, you can simultaneously label multiple signals,
such as data obtained from camera and lidar sensors mounted on a vehicle.

This example walks you through the multisignal ground truth labeling workflow in these steps.

1 “Load Ground Truth Signals to Label” on page 2-4 — Load multiple signals into the app and
configure the display of those signals.

2 “Label Ground Truth for Multiple Signals” on page 2-9 — Create label definitions and label the
signals by using automation algorithms.

3 “Export and Explore Ground Truth Labels for Multiple Signals” on page 2-21 — Export the
labels from the app and explore the data.

2 Ground Truth Labeling and Verification

2-2

You can use these exported labels, along with the associated signal frames, as training data for deep
learning applications.

See Also

More About
• “Choose an App to Label Ground Truth Data”

 Get Started with the Ground Truth Labeler

2-3

Load Ground Truth Signals to Label
The Ground Truth Labeler app provides options for labeling two types of signals.

• Image signals are image-based. You can load these signals from sources such as videos or image
sequences.

• Point cloud signals are lidar-based. You can load these signals from sources such as a sequence of
point cloud files.

In this example, you load a video and a point cloud sequence into the app. These signals are taken
from a camera sensor and a lidar sensor mounted to a vehicle. The signals represent the same driving
scene.

Load Timestamps
Load the timestamps for the point cloud sequence. The timestamps are a duration vector that is in
the same folder as the sequence. To load the timestamps, you must temporarily add this folder to the
MATLAB® search path.

pcSeqFolder = fullfile(toolboxdir('driving'),'drivingdata','lidarSequence');
addpath(pcSeqFolder)
load timestamps.mat
rmpath(pcSeqFolder)

The app also provides an option to specify timestamps for video sources. The video used in this
example does not have a separate timestamps file, so when you load the video, you can read the
timestamps directly from the video source.

Open Ground Truth Labeler App
To open the Ground Truth Labeler app, at the MATLAB command prompt, enter this command.

groundTruthLabeler

The app opens to an empty session.

Alternatively, you can open the app from the Apps tab, under Automotive.

Load Signals from Data Sources
The Ground Truth Labeler app enables you to load signals from multiple types of data sources. In
the app, a data source is a file or folder containing one or more signals to label.

• For the video, the data source is an MP4 file that contains a single video.
• For the point cloud sequence, the data source is a folder containing a sequence of point cloud data

(PCD) files. Together, these files represent a single point cloud sequence.

Other data sources, such as rosbags, can contain multiple signals that you can load. For more details
on the relationship between sources and signals, see “Sources vs. Signals in Ground Truth Labeling”
on page 2-28.

2 Ground Truth Labeling and Verification

2-4

Load Video

Load the video into the app.

1 On the app toolstrip, click Import > Add Signals.

The Add/Remove Signal dialog box opens with the Source Type parameter set to Video and the
Timestamps parameter set to From File.

2 In the File Name parameter, browse for this video file. <matlabroot> is the full path to your
MATLAB installation folder, as returned by the matlabroot function.

<matlabroot>\toolbox\driving\drivingdata\01_city_c2s_fcw_10s.mp4
3 Click Add Source. The video loads into the app, and the app reads the timestamps directly from

the video. The source table displays the information about the video data source.

Load Point Cloud Sequence

Load the point cloud sequence into the app.

1 With the Add/Remove Signal dialog box still open and the video loaded, set the Source Type
parameter to Point Cloud Sequence. The dialog box displays new options specific to loading
point cloud sequences.

2 In the Folder Name parameter, browse for the lidarSequence folder, which contains the
sequence of point cloud data (PCD) files to load.

<matlabroot>\toolbox\driving\drivingdata\lidarSequence
3 Set the Timestamps parameter to From Workspace. In the Import From Workspace dialog box,

select the timestamps variable that you loaded for the point cloud sequence. Click OK.

 Load Ground Truth Signals to Label

2-5

4 Click Add Source. The point cloud sequence loads into the app, and the app reads the
timestamps from the timestamps variable. The source table displays the information about the
data source for the point cloud sequence.

Verify Information About Loaded Signals

The table at the bottom of the Add/Remove Signal dialog box displays information about the loaded
signals. Verify that the table displays this information for the loaded signals.

• The Signal Name column displays the signal names generated by the app. For the video, the
signal name is the file name of the data source with the prefix video_ and with no file extension.
For the point cloud sequence, the signal name is the name of the source folder.

• The Source column displays the full file paths to the signal data sources.
• The Signal Type column displays the type of each signal. The video is of type Image. The point

cloud sequence is of type Point Cloud.
• The Time Range column displays the duration of the signals based on the loaded timestamp data.

Both signals are approximately 10 seconds long.

For the point cloud sequence, if you left Timestamps set to Use Default, then the Time Range
value for the sequence ranges from 0 to 33 seconds. This range is based on the 34 PCD files in the
folder. By default, the app sets the timestamps of a point cloud sequence to a duration vector from
0 to the number of valid point cloud files minus 1. Units are in seconds. If this issue occurs, in the
table, select the check box for the point cloud sequence row. Then, click Delete Selected, load the
signal again, and verify the signal information again.

After verifying that the signals loaded correctly, click OK. The app loads the signals and opens to the
first frame of the last signal added, which for this example is the point cloud sequence.

2 Ground Truth Labeling and Verification

2-6

Configure Signal Display
When you first load the signals, the app displays only one signal at a time. To display the signals side-
by-side, first, on the Label tab of the app toolstrip, click Display Grid. Then, move the pointer to
select a 1-by-2 grid and click the grid.

The video and point cloud sequence display side-by-side.

 Load Ground Truth Signals to Label

2-7

To view the video and point cloud sequence together, in the slider below the signals, click the Play

button . The video plays more smoothly than the point cloud sequence because the video has
more frames over approximately the same amount of time and therefore a higher frame rate.

By default, the app plays all frames from the signal with the highest frame rate. This signal is called
the main signal. For all other signals, the app displays the frame that is time-aligned with the
currently displaying frame of the main signal. To configure which signal is the main signal, use the
options in the Playback Control Settings dialog box. To open this dialog box, below the slider, click the

clock settings button . For more details about using these options to control the display of signal
frames, see “Control Playback of Signal Frames for Labeling” on page 2-35.

After loading the signal and viewing the frames, you can now create label definitions and label the
data, as described in “Label Ground Truth for Multiple Signals” on page 2-9.

See Also

More About
• “Sources vs. Signals in Ground Truth Labeling” on page 2-28
• “Control Playback of Signal Frames for Labeling” on page 2-35

2 Ground Truth Labeling and Verification

2-8

Label Ground Truth for Multiple Signals
After loading the video and lidar point cloud sequence signals into the Ground Truth Labeler app,
as described in the “Load Ground Truth Signals to Label” on page 2-4 procedure, create label
definitions and label the signal frames. In this example, you label only a portion of the signals for
illustrative purposes.

Create Label Definitions
Label definitions contain the information about the labels that you mark on the signals. You can
create label definitions interactively within the app or programmatically by using a
labelDefinitionCreatorMultisignal object. In this example, you create label definitions in the
app.

Create ROI Label

An ROI label is a label that corresponds to a region of interest (ROI) in a signal frame. You can define
these ROI label types.

• Rectangle/Cuboid — Draw bounding box labels around objects, such as vehicles. In image
signals, you draw labels of this type as 2-D rectangular bounding boxes. In point cloud signals, you
draw labels of this type as 3-D cuboid bounding boxes.

• Projected cuboid — Draw 3-D bounding box labels around objects in an image, such as
vehicles.

• Line — Draw linear ROIs to label lines, such as lane boundaries.
• Pixel label — Draw pixels to label various classes, such as road or sky, for semantic

segmentation. For more information about pixel labeling, see “Label Pixels for Semantic
Segmentation”

• Polygon — Draw polygon labels around objects. You can label distinct instances of the same
class. For more information on drawing polygon ROI labels for instance and semantic
segmentation networks, see “Label Objects Using Polygons”

For more details about these ROI label definitions, see “ROI Labels, Sublabels, and Attributes”.

Create an ROI label definition for labeling cars in the signal frames.

1 On the ROI Labels pane in the left pane, click Label.
2 Create a Rectangle/Cuboid label named car.
3 From the Group list, select New Group and name the group Vehicles. Adding labels to groups

is optional.
4 Click OK. The Vehicles group name appears on the ROI Labels tab with the label car under it.

 Label Ground Truth for Multiple Signals

2-9

The car label is drawn differently on each signal. On the video, car is drawn as a 2-D rectangular
bounding box of type Rectangle. On the point cloud sequence, car is drawn as a 3-D cuboid
bounding box of type Cuboid.

Create ROI Sublabel

A sublabel is a type of ROI label that corresponds to a parent ROI label. Each sublabel must belong
to, or be a child of, a label definition that is in the ROI Labels tab. For example, in a driving scene, a
vehicle label can have sublabels for headlights, license plates, or wheels. For more details about
sublabels, see “ROI Labels, Sublabels, and Attributes”.

Create an ROI sublabel definition for labeling the brake lights of the labeled cars.

1 Select the parent label of the sublabel. On the ROI Labels tab in the left pane, click the car label
to select it.

2 Click Sublabel.
3 Create a Rectangle sublabel named brakeLight. Cuboid sublabels are not supported, so this

sublabel applies only for the video signal. Click OK.

The brakeLight sublabel appears in the ROI Labels tab under the car label. The sublabel and
parent label have the same color.

Create ROI Attribute

An ROI attribute specifies additional information about an ROI label or sublabel. For example, in a
driving scene, attributes can include the type or color of a vehicle. You can define ROI attributes of
these types.

• Numeric Value — Specify a numeric scalar attribute, such as the number of doors on a labeled
vehicle.

• String — Specify a string scalar attribute, such as the color of a vehicle.
• Logical — Specify a logical true or false attribute, such as whether a vehicle is in motion.
• List — Specify a drop-down list attribute of predefined strings, such as make or model of a

vehicle.

For more details about these attribute types, see “ROI Labels, Sublabels, and Attributes”.

Create an attribute to describe whether a labeled brake light is on or off.

1 On the ROI Labels tab in the left pane, select the brakeLight sublabel and click Attribute.

2 Ground Truth Labeling and Verification

2-10

2 In the Attribute Name box, type isOn. Set the attribute type to Logical. Leave Default Value
set to Empty and optionally provide a description. Click OK. You can hover over the information
icon that appears next to the attribute field to display the added description.

3 In the ROI Labels tab, expand the brakeLight sublabel definition. The Attribute box for this
sublabel now contains the isOn attribute.

Create Scene Label

A scene label defines additional information across all signals in a scene. Use scene labels to describe
conditions, such as lighting and weather, or events, such as lane changes.

Create a scene label to apply to the signal frames.

1 In the left pane of the app, select the Scene Labels tab.
2 Click Define new scene label, and in the Label Name box, enter a scene label named

daytime.
3 Change the color of the label definition to light blue to reflect the nature of the scene label.

Under the Color parameter, click the color preview and select the standard light blue colors.
Then, click OK to close the color selection window.

 Label Ground Truth for Multiple Signals

2-11

4 Leave the Group parameter set to the default of None and click OK. The Scene Labels pane
shows the scene label definition.

Verify Label Definitions

Verify that your label definitions have this setup.

1 The ROI Labels tab contains a Vehicles group with a car label of type Rectangle/Cuboid.
2 The car label contains a sublabel named brakeLight.
3 The brakeLight sublabel contains an attribute named isOn.
4 The Scene Labels tab contains a light blue scene label named daytime.

2 Ground Truth Labeling and Verification

2-12

To edit or delete a label definition, right-click that label definition and select the appropriate edit or
delete option. To save these label definitions to a MAT-file for use in future labeling sessions, on the
Label tab of the app toolstrip, first select Export. Then, in the Label Definitions section, select To
File.

In future labeling sessions, if you need to reorder label definitions or move them to different groups,
you can drag and drop them in the label definition panes.

Label Video Using Automation
Use the car label to label one of the cars in a portion of the video. To assist with the labeling process,
use one of the built-in label automation algorithms.

1 Select the time range to label. Specify an interval from 8 to 10 seconds, during which the car in
front is close to the ego vehicle. In the text boxes below the video, enter these times in this order:

a In the Current box, type 8.
b In the Start Time box, type 8 so that the slider is at the start of the time range.
c In the End Time box, type 10.

The range slider and text boxes are set to this 8–10 second interval. The red flags indicate the
start and end of the interval.

The app displays signal frames from only this interval, and automation algorithms apply to only
this interval. To expand the time range to fill the entire playback section, click Zoom In Time
Range.

2 Select the label that you want to automate. In the ROI Labels tab, click the car label.
3 Select the automation algorithm to use. From the app toolstrip, select Select Algorithm >

Temporal Interpolator. This algorithm estimates rectangle ROIs between image frames by
interpolating the ROI locations across the time range.

4 Select the signal that you want to automate. From the app toolstrip, click Select Signals. Then,
in the Select Signals window, select only the video signal and click OK. This algorithm supports
labeling of only one signal at a time, and the point cloud signal uses a different automation
algorithm.

5 Click Automate. The app prompts you to confirm that you want to label only a portion of the
video. Click Yes. An automation session for the video opens. The right pane of the automation
session displays the algorithm instructions.

 Label Ground Truth for Multiple Signals

2-13

6 At the start of the time range, click and drag to draw a car label around the car in the center of
the frame. For this algorithm, you can draw only one label per frame. Labeling the other car
would require a separate automation session.

2 Ground Truth Labeling and Verification

2-14

By default, the car label appears only when you move your pointer over it. To always display
labels, on the app toolstrip, set Show ROI Labels to Always.

7 Drag the slider to the last frame and draw a car label around the same car in this frame.
Optionally, to improve automation results, label the car in intermediate frames.

8 Click Run. The automation algorithm applies the car label to the intermediate frames. Drag the
slider to view the results. If necessary, manually adjust the labels to improve their accuracy.

9 When you are satisfied with the results, click Accept to close the session and apply the labels to
this portion of the video.

Label Point Cloud Sequence Using Automation
Use the same car label definition from the previous procedure to label a car in the point cloud
sequence. To assist with the labeling process, use a built-in label automation algorithm designed for
point cloud labeling. In this example, you label the ego vehicle, which is easier to see in the lidar
point cloud sequence than the front car.

1 At the bottom of the app, verify that the time range is still set to 8 to 10 seconds.
2 In the labeling window, click the point cloud sequence to select it.
3 In the ROI Labels tab, click the car label definition.
4 On the Label tab of the app toolstrip, select Select Algorithm > Point Cloud Temporal

Interpolator. This algorithm estimates cuboid ROIs between point cloud frames by interpolating
the ROI locations across the time range.

 Label Ground Truth for Multiple Signals

2-15

5 Click Select Signals, select only the point cloud signal, and click OK.
6 Click Automate. The app prompts you to confirm that you want to label only a portion of the

point cloud sequence. Click Yes. An automation session for the point cloud sequence opens. The
right pane of the automation session displays the algorithm instructions.

7 At the start of the time range, draw a car label around the ego vehicle.

a
Zoom in on the car, using either the scroll wheel or the Zoom In button at the top-right

corner of the frame. You can also use the Pan button to center the car in the frame.

b On the ROI Labels tab in the left pane, click the car label. Drag the gray preview cuboid
until it highlights the ego vehicle.

2 Ground Truth Labeling and Verification

2-16

c Click the signal frame to create the label. The label snaps to the highlighted portion of the
point cloud.

d Adjust the cuboid label until it fully encloses the car. To resize the cuboid, click and drag one
of the cuboid faces. To move the cuboid, hold Shift and click and drag one of the cuboid
faces.

 Label Ground Truth for Multiple Signals

2-17

e Use projected view to adjust the cuboid label in top-view, side-view and front-view
simultaneously. Under Lidar tab in the app toolstrip, select the Projected View option from
the Camera View section, to enable this view.

For additional tips and techniques for labeling point clouds, see “Label Lidar Point Clouds for
Object Detection” on page 2-38.

8 Click the cuboid and press Ctrl+C to copy it. Then, drag the slider to the last frame and press
Ctrl+V to paste the cuboid into the new frame at the same position. Optionally, to improve
automation results, manually adjust the position of the copied label.

9 Click Run. The automation algorithm applies the car label to the intermediate frames. Drag the
slider to view the results. If necessary, manually adjust the labels to improve their accuracy.

2 Ground Truth Labeling and Verification

2-18

10 When you are satisfied with the results, click Accept to close the session and apply the labels to
this portion of the point cloud sequence.

Label with Sublabels and Attributes Manually
Manually label one frame of the video with the brakeLight sublabel and its isOn attribute. Lidar
point cloud signals do not support sublabels and attributes, so you cannot label the point cloud
sequence.

1 At the bottom of the app, verify that the time range is still set to 8 to 10 seconds. If necessary,
drag the slider to the first frame of the time range.

2 In the ROI Labels tab, click the brakeLight sublabel definition to select it.
3 Hide the point cloud sequence. On the Label tab of the app toolstrip, under Show/Hide Signals,

clear the check mark for the lidar point cloud sequence. Hiding a signal only hides the display.
The app maintains the labels for hidden signals, and you can still export them.

4 Expand the video signal to fill the entire labeling window.
5 In the video frame, select the drawn car label. The label turns yellow. You must select the car

label (parent ROI) before you can add a sublabel to it.
6 Draw brakeLight sublabels for the car. Optionally, set Show ROI Labels to Always so that you

can confirm the association between the car label and its sublabels.

7 On the video frame, select one of the brakeLight sublabels. Then, on the Attributes and
Sublabels pane, set the isOn attribute to True. Repeat this step for the other sublabel.

For more details about working with sublabels and attributes, see “Use Sublabels and Attributes to
Label Ground Truth Data”.

Label Scene Manually
Apply the daytime scene label to the entire scene.

 Label Ground Truth for Multiple Signals

2-19

1 Expand the time range back to the entire duration of all signals. If you zoomed in on the time
range, first click Zoom Out Time Interval. Then, drag the red flags to the start and end of the
range slider.

2 In the left pane of the app, select the Scene Labels tab.
3 Select the daytime scene label definition.
4 Above the label definition, click Time Interval. Then, click Add Label. A check mark appears for

the daytime scene label indicating that the label now applies to all frames in the time range.

View Label Summary
With all labels, sublabels, and attributes applied to at least one frame of a signal, you can now
optionally view a visual summary of the ground truth labels. On the app toolstrip, click View Label
Summary. For more details, see “View Summary of Ground Truth Labels”.

Save App Session
On the app toolstrip, select Save Session and save a MAT-file of the app session. The saved session
includes the data source, label definitions, and labeled ground truth. It also includes your session
preferences, such as the layout of the app.

You can now either close the app session or continue to the “Export and Explore Ground Truth Labels
for Multiple Signals” on page 2-21 step, where you export the labels.

See Also

More About
• “Label Lidar Point Clouds for Object Detection” on page 2-38
• “Label Pixels for Semantic Segmentation”
• “Label Objects Using Polygons”
• “Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler” on page 2-30
• “View Summary of Ground Truth Labels”

2 Ground Truth Labeling and Verification

2-20

Export and Explore Ground Truth Labels for Multiple Signals
After labeling the signals by following the “Label Ground Truth for Multiple Signals” on page 2-9
procedure, export the labels and explore how they are stored.

Setup

Open the Ground Truth Labeler app session containing the labeled signals. You can open the
session from the MATLAB® command line. For example, if you saved the session to a MAT-file named
groundTruthLabelingSession, enter this command.

groundTruthLabeler groundTruthLabelingSession.mat

On the app toolstrip, select Export > To Workspace. In the export to workspace window, use the
default export variable name, gTruth, and click OK. The app exports a groundTruthMultisignal
object, gTruth, to the MATLAB® workspace. This object contains the ground truth labels captured
from the app session.

If you did not export a groundTruthMultisignal object to the workspace, load a predefined object
from the variable gTruth. The function used to load this object is attached to this example as a
supporting file. If you are using your own object, data such as label positions can differ from the data
shown in this example.

if (~exist('gTruth','var'))
 gTruth = helperLoadGTruthGetStarted;
end

Display the properties of the groundTruthMultisignal object, gTruth. The object contains
information about the signal data sources, label definitions, and ROI and scene labels. This
information is stored in separate properties of the object.

gTruth

gTruth =

 groundTruthMultisignal with properties:

 DataSource: [1x2 vision.labeler.loading.MultiSignalSource]
 LabelDefinitions: [3x7 table]
 ROILabelData: [1x1 vision.labeler.labeldata.ROILabelData]
 SceneLabelData: [1x1 vision.labeler.labeldata.SceneLabelData]

In this example, you examine the contents of each property to learn how the object stores ground
truth labels.

Data Sources

The DataSource property contains information about the data sources. This property contains two
MultiSignalSource objects: one for the video source and one for the point cloud sequence source.
Display the contents of the DataSource property.

gTruth.DataSource

ans =

 Export and Explore Ground Truth Labels for Multiple Signals

2-21

 1x2 heterogeneous MultiSignalSource (VideoSource, PointCloudSequenceSource) array with properties:

 SourceName
 SourceParams
 SignalName
 SignalType
 Timestamp
 NumSignals

The information stored in these objects includes the paths to the data sources, the names of the
signals that they contain, and the timestamps for those signals. Display the signal names for the data
sources.

gTruth.DataSource.SignalName

ans =

 "video_01_city_c2s_fcw_10s"

ans =

 "lidarSequence"

Label Definitions

The LabelDefinitions property contains a table of information about the label definitions. Display
the label definitions table. Each row contains information about an ROI or scene label definition. The
car label definition has two rows: one for when the label is drawn as a rectangle on Image signals
and one for when the label is drawn as a cuboid on PointCloud signals.

gTruth.LabelDefinitions

ans =

 3x7 table

 Name SignalType LabelType Group Description LabelColor Hierarchy
 ___________ __________ _________ ____________ ___________ ________________________ ____________

 {'car' } Image Rectangle {'Vehicles'} {0x0 char} {[0.5862 0.8276 0.3103]} {1x1 struct}
 {'car' } PointCloud Cuboid {'Vehicles'} {0x0 char} {[0.5862 0.8276 0.3103]} {1x1 struct}
 {'daytime'} Time Scene {'None' } {0x0 char} {[0.0588 1 1]} {0x0 double}

The Hierarchy column stores information about the sublabel and attribute definitions of a parent
ROI label. Display the sublabel and attribute information for the car label when it is drawn as a
rectangle. This label contains one sublabel, brakeLight, and no attributes.

gTruth.LabelDefinitions.Hierarchy{1}

ans =

2 Ground Truth Labeling and Verification

2-22

 struct with fields:

 brakeLight: [1x1 struct]
 Type: Rectangle
 Description: ''

Display information about the brakeLight sublabel for the parent car label. The sublabel contains
one attribute, isOn. Sublabels cannot have their own sublabels.

gTruth.LabelDefinitions.Hierarchy{1}.brakeLight

ans =

 struct with fields:

 Type: Rectangle
 Description: ''
 LabelColor: [0.5862 0.8276 0.3103]
 isOn: [1x1 struct]

Display information about the isOn attribute for the brakeLight sublabel. This attribute has no
default value, so the DefaultValue field is empty.

gTruth.LabelDefinitions.Hierarchy{1}.brakeLight.isOn

ans =

 struct with fields:

 DefaultValue: []
 Description: ''

ROI Label Data

The ROILlabelData property contains an ROILabelData object with properties that contain ROI
label data for each signal. The names of the properties match the names of the signals. Display the
object property names.

gTruth.ROILabelData

ans =

 ROILabelData with properties:

 video_01_city_c2s_fcw_10s: [204x1 timetable]
 lidarSequence: [34x1 timetable]

Each property contains a timetable of ROI labels drawn at each signal timestamp, with one column
per label. View a portion the video and the lidar point cloud sequence timetables. Set a time interval
from 8 to 8.5 seconds. This time interval corresponds to the start of the time interval labeled in the

 Export and Explore Ground Truth Labels for Multiple Signals

2-23

“Label Ground Truth for Multiple Signals” on page 2-9 procedure. The video timetable contains more
rows than the point cloud sequence timetable because the video contains more label frames.

timeInterval = timerange(seconds(8),seconds(8.5));
videoLabels = gTruth.ROILabelData.video_01_city_c2s_fcw_10s(timeInterval,:)
lidarLabels = gTruth.ROILabelData.lidarSequence(timeInterval,:)

videoLabels =

 10x1 timetable

 Time car
 ________ ____________

 8 sec {1x1 struct}
 8.05 sec {1x1 struct}
 8.1 sec {1x1 struct}
 8.15 sec {1x1 struct}
 8.2 sec {1x1 struct}
 8.25 sec {1x1 struct}
 8.3 sec {1x1 struct}
 8.35 sec {1x1 struct}
 8.4 sec {1x1 struct}
 8.45 sec {1x1 struct}

lidarLabels =

 2x1 timetable

 Time car
 __________ ____________

 8.0495 sec {1x1 struct}
 8.3497 sec {1x1 struct}

View the rectangle car labels for the first video frame in the time interval. The label data is stored in
a structure.

videoLabels.car{1}

ans =

 struct with fields:

 Position: [296 203 203 144]
 brakeLight: [1x2 struct]

The Position field stores the positions of the car labels. This frame contains only one car label, so
in this case, Position contains only one rectangle bounding box. The bounding box position is of the
form [x y w h], where:

• x and y specify the upper-left corner of the rectangle.

2 Ground Truth Labeling and Verification

2-24

• w specifies the width of the rectangle, which is the length of the rectangle along the x-axis.
• h specifies the height of the rectangle, which is the length of the rectangle along the y-axis.

The car label also contains two brakeLight sublabels at this frame. View the brakeLight
sublabels. The sublabels are stored in a structure array, with one structure per sublabel drawn on the
frame.

videoLabels.car{1}.brakeLight

ans =

 1x2 struct array with fields:

 Position
 isOn

View the bounding box positions for the sublabels.

videoLabels.car{1}.brakeLight.Position

ans =

 304 245 50 46

ans =

 435 243 54 51

View the values for the isOn attribute in each sublabel. For both sublabels, this attribute is set to
logical 1 (true).

videoLabels.car{1}.brakeLight.isOn

ans =

 logical

 1

ans =

 logical

 1

Now view the cuboid car labels for the first point cloud sequence frame in the time interval. Point
cloud sequences do not support sublabels or attributes. Instead of storing cuboid labels in the
Position field of a structure, cuboid bounding box positions are stored in an M-by-9 matrix, where M
is the number of cuboid labels. Because this frame contains only one cuboid label, in this case M is 1.

 Export and Explore Ground Truth Labels for Multiple Signals

2-25

lidarLabels.car{1}

ans =

 struct with fields:

 Position: [-1.1559 -0.7944 1.2012 12.6196 5.9278 3.0010 0 0 0]
 brakeLight: []

The 1-by-9 bounding box position is of the form [xctr, yctr, zctr, xlen, ylen, zlen,
xrot, yrot, zrot], where:

• xctr, yctr, and zctr specify the center of the cuboid.
• xlen, ylen, and zlen specify the length of the cuboid along the x-, y-, and z-axis, respectively,

before rotation has been applied.
• xrot, yrot, and zrot specify the rotation angles for the cuboid along the x-, y-, and z-axis,

respectively. These angles are clockwise-positive when looking in the forward direction of their
corresponding axes.

This figure shows how these values specify the position of a cuboid.

Scene Label Data

The SceneLabelData property contains a SceneLabelData object with properties that contain
scene label data across all signals. The names of the properties match the names of the scene labels.
Display the object property names.

gTruth.SceneLabelData

ans =

 SceneLabelData with properties:

2 Ground Truth Labeling and Verification

2-26

 daytime: [0 sec 10.15 sec]

The daytime label applies to the entire time interval, which is approximately 10 seconds.

Use Ground Truth Labels

The labels shown in this example are for illustrative purposes only. For your own labeling, after you
export the labels, you can use them as training data for object detectors. To gather label data from
the groundTruthMultisignal object for training, use the gatherLabelData function.

To share labeled ground truth data, share the ground truth MAT-file containing the
groundTruthMultisignal object, not the MAT-file containing the app session. For more details, see
“Share and Store Labeled Ground Truth Data”.

See Also
groundTruthMultisignal | gatherLabelData | SceneLabelData | ROILabelData

More About
• “Share and Store Labeled Ground Truth Data”
• “How Labeler Apps Store Exported Pixel Labels”

 Export and Explore Ground Truth Labels for Multiple Signals

2-27

Sources vs. Signals in Ground Truth Labeling
In the Ground Truth Labeler app, a source is the file or folder containing the data that you want to
load. A signal is the data from that source that you want to label. A source can contain one or more
signals.

In many cases, a source contains only one signal. Consider an AVI video file. The source is the AVI file
and the signal is the video that you load from that file. Other sources that have only one signal
include Velodyne® packet capture (PCAP) files and folders that contain image or point cloud
sequences.

Sources such as rosbags can contain multiple signals. Consider a rosbag named cal_loop.bag. The
rosbag contains data obtained from four sensors mounted on a vehicle. The source is the rosbag file.
The signals in the rosbag are sensor_msgs topics that correspond to the data from the four sensors.
The topics have these names.

• /center_camera/image_color — Image sequence obtained from the center camera
• /left_camera/image_color — Image sequence obtained from the left camera
• /right_camera/image_color — Image sequence obtained from the right camera
• /velodyne_points — Point cloud sequence obtained from a Velodyne lidar sensor

This diagram depicts the relationship between the source and each of its four signals.

2 Ground Truth Labeling and Verification

2-28

See Also
groundTruthMultisignal | vision.labeler.loading.MultiSignalSource

More About
• “Load Ground Truth Signals to Label” on page 2-4

 Sources vs. Signals in Ground Truth Labeling

2-29

Keyboard Shortcuts and Mouse Actions for Ground Truth
Labeler

Note On Macintosh platforms, use the Command (⌘) key instead of Ctrl.

Label Definitions
Task Action
Navigate through ROI labels and their groups in
the ROI Label Definition pane.

Up or Down arrow

Navigate through scene labels and their groups
in the Scene Label Definition pane,

Hold Alt and press the up arrow or down arrow

Reorder labels within a group or move labels
between groups

Click and drag labels

Reorder groups Click and drag groups

Frame Navigation and Time Interval Settings
Navigate between frames and change the time range of the signal. These controls are located in the
bottom pane of the app.

Task Action
Go to the next frame Right arrow
Go to the previous frame Left arrow
Go to the last frame • PC: End

• Mac: Hold Fn and press the right arrow
Go to the first frame • PC: Home

• Mac: Hold Fn and press the left arrow
Navigate through time range boxes and frame
navigation buttons

Tab

Commit time interval settings Press Enter within the active time interval box
(Start Time, Current, or End Time)

Labeling Window
Perform labeling actions, such as adding, moving, and deleting regions of interest (ROIs). The ROIs
can be pixel labels or non-pixel ROI labels that include line, rectangle, cuboid, and projected cuboid.

Task Action
Undo labeling action Ctrl+Z
Redo labeling action Ctrl+Y
Select all non-pixel ROIs Ctrl+A

2 Ground Truth Labeling and Verification

2-30

Task Action
Select specific non-pixel ROIs Hold Ctrl and click the ROIs you want to select
Cut selected non-pixel ROIs Ctrl+X
Copy selected non-pixel ROIs to clipboard Ctrl+C
Paste copied non-pixel ROIs

• If a sublabel was copied, both the sublabel
and its parent label are pasted.

• If a parent label was copied, only the parent
label is pasted, not its sublabels.

For more details, see “Use Sublabels and
Attributes to Label Ground Truth Data”.

Ctrl+V

Switch between selected non-pixel ROI labels.

You can switch between labels only of the same
type. For example, if you select a rectangle ROI,
you can switch only between other rectangle
ROIs.

Tab or Shift+Tab

Move a drawn non-pixel ROI label Hold Ctrl and press the up, down, left or right
arrows

Resize a rectangle ROI uniformly across all
dimensions

Ctrl+Plus (+) or Ctrl+Minus (-)

Delete selected non-pixel ROIs Delete
Copy all pixel ROIs Ctrl+Shift+C
Cut all pixel ROIs Ctrl+Shift+X
Paste copied or cut pixel ROIs Ctrl+Shift+V
Delete all pixel ROIs Ctrl+Shift+Delete
Fill all or all remaining pixels Shift+click

Cuboid Resizing and Moving
Draw cuboids to label lidar point clouds. For examples on how to use these shortcuts to label lidar
point clouds efficiently, see “Label Lidar Point Clouds for Object Detection” on page 2-38.

Note To enable these shortcuts, you must first click within the point cloud frame to select it.

Task Action
Resize a cuboid uniformly across all dimensions
before applying it to the point cloud

Hold A and move the scroll wheel up to increase
size or down to decrease size

Resize a cuboid along only the x-dimension before
applying it to the point cloud

Hold X and move the scroll wheel up to increase
size or down to decrease size

 Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler

2-31

Task Action
Resize a cuboid along only the y-dimension before
applying it to the point cloud

Hold Y and move the scroll wheel up to increase
size or down to decrease size

Resize a cuboid along only the z-dimension before
applying it to the point cloud

Hold Z and move the scroll wheel up to increase
size or down to decrease size

Resize a cuboid after applying it to the point
cloud

Click and drag one of the cuboid faces

Move a cuboid Hold Shift and click and drag one of the cuboid
faces

The cuboid is translated along the dimension of
the selected face.

Move multiple cuboids simultaneously Follow these steps:

1 Hold Ctrl and click the cuboids that you
want to move.

2 Hold Shift and click and drag a face of one
of the selected cuboids.

The cuboids are translated along the dimension
of the selected face.

Polyline Drawing
Draw ROI line labels on a frame. ROI line labels are polylines, meaning that they are composed of one
or more line segments.

Task Action
Commit a polyline to the frame, excluding the
currently active line segment

Press Enter or right-click while drawing the
polyline

Commit a polyline to the frame, including the
currently active line segment

Double-click while drawing the polyline

A new line segment is committed at the point
where you double-click.

Delete the previously created line segment in a
polyline

Backspace

Cancel drawing and delete the entire polyline Escape

Polygon Drawing
Draw polygons to label pixels on a frame.

2 Ground Truth Labeling and Verification

2-32

Task Action
Commit a polygon to the frame, excluding the
currently active line segment

Press Enter or right-click while drawing the
polygon

The polygon closes up by forming a line between
the previously committed point and the first point
in the polygon.

Commit a polygon to the frame, including the
currently active line segment

Double-click while drawing polygon

The polygon closes up by forming a line between
the point where you double-clicked and the first
point in the polygon.

Remove the previously created line segment from
a polygon

Backspace

Cancel drawing and delete the entire polygon Escape

Zooming, Panning, and Rotating
Task Action
Zoom in or out of an image frame Move the scroll wheel up to zoom in or down to

zoom out

If the frame is in pan mode, then zooming is not
supported. To enable zooming, in the upper-right
corner of the frame, either click the Pan button to
disable panning or click one of the zoom buttons.

Zoom in on specific section of an image frame In the upper-right corner of the frame, click the
Zoom In button and then click and drag within
the frame to draw a box around the section that
you want to zoom in on

Zooming in on a specific section of a point cloud
is not supported.

Pan across an image frame Press the up, down, left, or right arrows
Zoom in on or out of a point cloud frame In the top-left corner of the display, click the

Zoom In or Zoom Out button. Then, move the
scroll wheel up (zoom in) or down (zoom out).
Alternatively, move the cursor up or right (zoom
in) or down or left (zoom out).

Zooming in and out is supported in all modes
(pan, zoom, and rotate).

Pan across a point cloud frame Hold Shift and press the up, down, left, or right
arrows

Rotate a point cloud frame Hold R and click and drag the point cloud frame

Note Only yaw rotation is allowed.

 Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler

2-33

App Sessions
Task Action
Save current session Ctrl+S

See Also
Ground Truth Labeler

More About
• “Get Started with the Ground Truth Labeler” on page 2-2

2 Ground Truth Labeling and Verification

2-34

Control Playback of Signal Frames for Labeling
The Ground Truth Labeler app enables you to label multiple image or lidar point cloud signals
simultaneously. When playing the signals or navigating between frames, you can control which
frames display for each signal by changing the frame rate at which the signals display.

Signal Frames
The signals that you label are composed of frames. Each frame has a discrete timestamp associated
with it, but the app treats each frame as a duration of [t0, t1), where:

• t0 is the timestamp of the current frame.
• t1 is the timestamp of the next frame.

When you label a frame that displays in the app, the label applies to the duration of that frame.

The intervals between frames are units of time, such as seconds. This time range is the frame rate of
the signal. Specify the timestamps for a signal as a duration vector. Each timestamp corresponds to
the start of a frame.

Main Signal
When you load multiple signals into a new app session, by default, the app designates the signal with
the highest frame rate as the main signal. When you play back signals or navigate between frames,
the app displays all frames from the main signal.

In the app, you can label signals only from within the time range of the main signal. When you view a
frame from the main signal, the app displays the frames from all other signals that are at that
timestamp. In this scenario, when navigating between frames, frames from signals with lower frame
rates are sometimes repeated.

Consider an app session containing two signals: a video, v, and a lidar point cloud sequence, pc.

• The video has a frame rate of 4 frames per second, with a 0.25-second duration per frame. This
signal is the main signal.

• The point cloud sequence has a frame rate of 2.5 frames per second, with a 0.4-second duration
per frame.

This figure shows the frames that display over the first second in this scenario.

 Control Playback of Signal Frames for Labeling

2-35

At time 0, the app displays the initial frame for each signal: v1 for the video and pc1 for the point
cloud sequence. When you click the Next Frame button, the time skips to 0.25 seconds.

• For the video, the app displays the next frame, v2.
• For the point cloud sequence, the app displays pc1 again.

The app repeats the point cloud frame because the next point cloud frame, pc2, does not start until
0.4 seconds. To display this frame, you must either set the Current Time parameter to 0.4 seconds
or click the Next Frame button again to navigate to a time of 0.5 seconds.

Keep the signal with the highest frame rate as the main signal when you want to display and label all
frames for all signals.

Change Main Signal
After loading signals, you can change the main signal from the Playback Control Settings dialog box.

To open this dialog box, below the slider, click the clock settings button . Then, select Main
signal and change the main signal to a different signal loaded into the app. When you change the
main signal to a signal with a lower frame rate, frames from signals with higher frame rates are
sometimes skipped.

Consider the app session described in the previous section, except with the point cloud sequence as
the main signal.

When you skip from pc2 to pc3, the app skips over v3 entirely. You can see v3 only if you set Current
Time to a time in the range [0.5, 0.75).

Designate the signal with the lowest frame rate as the main signal when you want to label signals
only at synchronized times.

Changing the main signal after you begin labeling can affect existing scene labels. For example,
suppose you apply a scene label to the entire time range of the main signal. If you change the main
signal, the time range changes. If the new main signal has a longer duration, then the scene label no
longer applies to the entire time range.

If you load a new signal into an app session that has a higher frame rate than the existing signals, the
app does not automatically designate the new signal as the main signal. The app chooses a main
signal only the first time you load signals into a session. To designate the new signal as the main
signal, select that signal from the Main signal list in the Playback Control Settings dialog box.

Display All Timestamps
In the Playback Control Settings dialog box, you can select All timestamps to display all signals.
Choose this option to verify and visualize the loaded frames. Do not select this option for labeling.

2 Ground Truth Labeling and Verification

2-36

When you display all timestamps, the navigation between frames is uneven and the frames of multiple
signals are repeated.

Consider the app session described in the previous sections, except with all timestamps displaying.
This figure shows the frames that display.

Specify Timestamps
You can specify your own timestamp vector and use those timestamps as the ones that the app uses to
navigate between frames. In the Playback Control Settings dialog box, select Timestamps from
workspace, click the From Workspace button, and specify a duration vector from the MATLAB
workspace.

Frame Display and Automation
When you select multiple signals for automation, by default, the app displays all timestamps for the
signals in the automation session. To configure the automation session to play back signal frames

based on a main signal, click the clock settings button and select Main signal. You can select a
main signal only from among the signals that you selected for automation. This main signal selection
applies only for the duration of the automation session. When you exit the automation session, the
main signal changes back to the main signal that applies to the entire labeling session.

See Also
duration | groundTruthMultisignal

More About
• “Load Ground Truth Signals to Label” on page 2-4

 Control Playback of Signal Frames for Labeling

2-37

Label Lidar Point Clouds for Object Detection
The Ground Truth Labeler app enables you to label point cloud data obtained from lidar sensors. To
label point clouds, you use cuboids, which are 3-D bounding boxes that you draw around the points in
a point cloud. You can use cuboid labels to create ground truth data for training object detectors.

This example walks you through labeling lidar point cloud data by using cuboids.

Set Up Lidar Point Cloud Labeling
Load a point cloud sequence into the app and define a cuboid label.

1 Open the Ground Truth Labeler app. At the MATLAB command prompt, enter this command.

groundTruthLabeler
2 On the app toolstrip, select Import > Add Signals.
3 In the Add/Remove Signal dialog box, set Source Type to Point Cloud Sequence.
4 In the Folder Name parameter, browse for the lidarSequence folder, which contains the point

cloud sequence. matlabroot is the full path to your MATLAB installation folder, as returned by
the matlabroot function.

matlabroot\toolbox\driving\drivingdata\lidarSequence
5 Click Add Source to load the point cloud sequence, using the default timestamps. Then, click

OK to close the Add/Remove Signal dialog box. The app displays the first point cloud in the
sequence.

6 In the ROI Labels pane on the left side of the app, click Label.
7 Create a Rectangle/Cuboid label named car. Click OK.

This figure shows the Ground Truth Labeler app setup after following these steps.

2 Ground Truth Labeling and Verification

2-38

Zoom, Pan, and Rotate Frame
The zoom, pan, and 3-D rotation options help you locate and label objects of interest in a point cloud.
Use these tools to zoom in and center on the ego vehicle in the first point cloud frame. The ego
vehicle is located at the origin of the point cloud.

1
In the upper-right corner of the frame, click the Zoom In button .

2 Click the ego vehicle until you are zoomed in enough to see the points that make it up.

Optionally, you can use the Pan button or Rotate 3D button to help you view more of the ego
vehicle points. To view additional options for viewing or rotating the point cloud, click the Rotate 3D
button and then right-click the point cloud frame. The options provided are the same options provided
with the pcshow function.

Hide Ground
The point cloud data includes points from the ground, which can make it more difficult to isolate the
ego vehicle points. The app provides an option to hide the ground by using the
segmentGroundFromLidarData function.

Hide the ground points from the point cloud. On the app toolstrip, on the Lidar tab, click Hide
Ground. This setting applies to all frames in the point cloud.

 Label Lidar Point Clouds for Object Detection

2-39

This option only hides the ground from the display. It does not remove ground data from the point
cloud. If you label a section of the point cloud containing hidden ground points, when you export the
ground truth labels, those ground points are a part of that label.

To configure the ground hiding algorithm, click Ground Settings and adjust the options in the Hide
Ground dialog box.

Label Cuboid
Label the ego vehicle by using a cuboid label.

1 In the ROI Labels pane on the left, click the car label.
2 Select the lidar point sequence frame by clicking the lidarSequence tab.

Note To enable the labeling keyboard shortcuts, you must first select the signal frame.
3 Move the pointer over the ego vehicle until the gray preview cuboid encloses the ego vehicle

points. The points enclosed in the preview cuboid highlight in yellow.

To resize the preview cuboid, hold the A key and move the mouse scroll wheel up or down.

2 Ground Truth Labeling and Verification

2-40

Optionally, to resize the preview cuboid in only the x-, y-, or z-direction, move the scroll wheel up
and down while holding the X, Y, or Z key, respectively.

4 Click the signal frame to draw the cuboid. Because the Shrink to Fit option is selected by
default on the app toolstrip, the cuboid shrinks to fit the points within it.

For more control over the labeling of point clouds, on the app toolstrip, click Snap to Cluster. When
you label with this option selected, the cuboid snaps to the nearest point cloud cluster by using the
segmentLidarData function. To configure point cloud clustering, click Cluster Settings and adjust
the options in the dialog box. To view point cloud clusters as you navigate between frames, select
View Clusters in this dialog box. During playback of a signal, the visualization of point cloud clusters
is disabled.

 Label Lidar Point Clouds for Object Detection

2-41

Modify Cuboid Label
After drawing a cuboid label, you can resize or move the cuboid to make the label more accurate. For
example, in the previous procedure, the Shrink to Fit option shrinks the cuboid label to fit the
detected ego vehicle points. The actual ego vehicle is slightly larger than this cuboid. Expand the size
of this cuboid until it more accurately reflects the size of the ego vehicle.

1 To enable the point cloud labeling keyboard shortcuts, verify that the lidarSequence tab is
selected.

2 In the signal frame, click the drawn cuboid label. Drag the faces to expand the cuboid.

3 Move the cuboid until it is centered on the ego vehicle. Hold Shift and drag the faces of the
cuboid.

2 Ground Truth Labeling and Verification

2-42

4 Use projected view to adjust the cuboid label in top-view, side-view and front-view
simultaneously. Under Lidar tab in the toolstrip, select the Projected View option from the
Camera View section, to enable this view.

Apply Cuboids to Multiple Frames
When labeling objects between frames, you can copy cuboid labels and paste them to other frames.

1 Select the cuboid for the ego vehicle and press Ctrl+C to copy it.
2

At the bottom of the app, click the Next Frame button to navigate to the next frame.

 Label Lidar Point Clouds for Object Detection

2-43

3 Press Ctrl+V to paste the cuboid onto the frame.

You can also use an automation algorithm to apply a label to multiple frames. The app provides a
built-in temporal interpolation algorithm for labeling point clouds in intermediate frames. For an
example that shows that how to apply this automation algorithm, see “Label Ground Truth for
Multiple Signals” on page 2-9.

Configure Display
The app provides additional options for configuring the display of signal frames.

Change Colormap

For additional control over the point cloud display, on the Lidar tab, you can change the colormap
options. You can also change the colormap values by changing the Colormap Value parameter,
which has these options:

• Z Height — Colormap values increase along the z-axis. Select this option when finding objects
that are above the ground, such as traffic signs.

• Radial Distance — Colormap values increase away from the point cloud origin. Select this
option when finding objects that are far from the origin.

Change Views

On the Lidar tab of the app toolstrip, the Camera View section contains options for changing the
perspective from which you view the point cloud. These views are centered at the point cloud origin,
which is the assumed position of the ego vehicle.

You can select from these views:

• Bird's Eye View — View the point cloud from directly above the ego vehicle.
• Chase View — View the point cloud from a few meters behind the ego vehicle.
• Ego View — View the point cloud from inside the ego vehicle.
• Projected View — View the point cloud with cuboid label from top-view, side-view and front-view

simultaneously.

These views assume that the vehicle is traveling along the positive x-direction of the point cloud. If
the vehicle is traveling in a different direction, set the appropriate option in the Ego Direction
parameter.

Use these views when verifying your point cloud labels. Avoid using these views while labeling.
Instead, use the default view and locate objects to label by using the pan, zoom, and rotation options.

See Also

More About
• “Get Started with the Ground Truth Labeler” on page 2-2
• “Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler” on page 2-30

2 Ground Truth Labeling and Verification

2-44

Create Class for Loading Custom Ground Truth Data Sources
In the Ground Truth Labeler app, you can label signals from image and point cloud data sources.
These sources include videos, image sequences, point cloud sequences, Velodyne packet capture
(PCAP) files, and rosbags. To load data sources that the app does not natively support, you can create
a class to load that source into the app.

This example shows how to use one of the predefined data source classes that load signals from data
sources into the Ground Truth Labeler app: the
vision.labeler.loading.PointCloudSequenceSource class. The app uses this specific class
to load sequences of point cloud data (PCD) or polygon (PLY) files from a folder.

To get started, open the vision.labeler.loading.PointCloudSequenceSource class. Use the
properties and methods described for this class to help you write your own custom class.

edit vision.labeler.loading.PointCloudSequenceSource

Custom Class Folder
The Ground Truth Labeler app recognizes data source classes only if those files are in a +vision/
+labeler/+loading folder that is on the MATLAB search path.

The vision.labeler.loading.PointCloudSequenceSource class and other predefined data
source classes are stored in this folder.

matlabroot\toolbox\vision\vision\+vision\+labeler\+loading

In this path, matlabroot is the root of your MATLAB folder.

Save the data source classes that you create to this folder. Alternatively, create your own +vision/
+labeler/+loading folder, add it to the MATLAB search path, and save your class to this folder.

Class Definition
Data source classes must inherit from the vision.labeler.loading.MultiSignalSource class.
View the class definition for the vision.labeler.loading.PointCloudSequenceSource class.

classdef PointCloudSequenceSource < vision.labeler.loading.MultiSignalSource

When you load a point cloud sequence signal into the Ground Truth Labeler app, the app creates an
instance of the class, that is, a PointCloudSequenceSource object. After labeling this signal in the
app, when you export the labels, the exported groundTruthMultisignal object stores this
PointCloudSequenceSource object in its DataSource property.

When defining your data source class, replace PointCloudSequenceSource with the name of your
custom data source class.

Class Properties
Data source classes must define these abstract, constant properties.

• Name — A string scalar specifying the type of the data source

 Create Class for Loading Custom Ground Truth Data Sources

2-45

• Description — A string scalar describing the class

In the Ground Truth Labeler app, when you load signals from the Add/Remove Signal dialog box,
the Name string appears as an option in the Source Type parameter. This figure shows the Name
string for the vision.labeler.loading.PointCloudSequenceSource class.

The Description string does not appear in the dialog box. However, both the Name and
Description strings are stored as read-only properties in instances of this class.

This code shows the Name and Property strings for the
vision.labeler.loading.PointCloudSequenceSource class.

 properties (Constant)
 Name = "Point Cloud Sequence"

 Description = "A PointCloud sequence reader"
 end

When defining your data source class, define the Name and Description property values to match
the name and description of your custom data source. You can also define any additional private
properties that are specific to loading your data source. The source-specific properties for the
vision.labeler.loading.PointCloudSequenceSource class are not shown in this example,
but you can view them in the class file.

Method to Customize Load Panel
In data source classes, the customizeLoadPanel method controls the display of the panel for
loading signals in the Add/Remove Signal dialog box of the app. This panel is a Panel object created
by using the uipanel function. The panel contains the parameters and controls needed to load
signals from data sources.

This figure shows the loading panel for the
vision.labeler.loading.PointCloudSequenceSource class. In the Source Type list, when
you select Point Cloud Sequence, the app calls the customizeLoadPanel method and loads the
panel for point cloud sequences.

2 Ground Truth Labeling and Verification

2-46

This code shows the customizeLoadPanel method for the
vision.labeler.loading.PointCloudSequenceSource class. It uses the computePositions
method to calculate the position values where the UI components such as text, buttons and
parameters must be placed. The addUIComponents method then defines the panel by adding the UI
components accordingly. For complete implementation of these methods, refer to the code for the
vision.labeler.loading.PointCloudSequenceSource class.

 function customizeLoadPanel(this, panel)
 this.Panel = panel;

 computePositions(this);

 addUIComponents(this);
 end

When developing this method or other data source methods, you can use the static method
loadPanelChecker to preview the display and functionality of the loading dialog box for your
custom data source. This method does not require you to have an app session open to use it. For
example, use the loadPanelChecker method with the
vision.labeler.loading.PointCloudSequence class.

vision.labeler.loading.PointCloudSequenceSource.loadPanelChecker

Methods to Get Load Panel Data and Load Data Source
In the Add/Remove Signal dialog box, after you browse for a signal, set the necessary parameters,
and click Add Source, the app calls these two methods in succession.

• getLoadPanelData — Get the data entered into the panel.
• loadSource — Load the data into the app.

This figure shows the relationship between these methods and the Add Source button when loading
a point cloud sequence signal by using the
vision.labeler.loading.PointCloudSequenceSource class.

 Create Class for Loading Custom Ground Truth Data Sources

2-47

When defining a custom data source, you must define the getLoadPanelData method, which
returns these outputs.

• sourceName — The name of the data source
• sourceParams — A structure containing fields with information required to load the data source

This code shows the getLoadPanelData method for the
vision.labeler.loading.PointCloudSequenceSource class. This method sets sourceName to
the name entered in the Folder Name parameter of the dialog box and sourceParams to an empty
structure. If the Timestamps parameter is set to From Workspace and has timestamps loaded, then
the app populates this structure with those timestamps.

 function [sourceName, sourceParams] = getLoadPanelData(this)
 sourceParams = struct();

 if isUIFigureBased(this)
 sourceName = string(this.FolderPathBox.Value);
 else
 sourceName = string(this.FolderPathBox.String);
 end
 end

You must also define the loadSource method in your custom data class. This method must take the
sourceName and sourceParams returned from the getLoadPanelData method as inputs. This
method must also populate these properties, which are stored in the instance of the data source
object that the app creates.

• SignalName — String identifiers for each signal in a data source
• SignalType — An array of vision.labeler.loading.SignalType enumerations defining the

type of each signal in the data source
• Timestamp — A vector or cell array of timestamps for each signal in the data source
• SourceName — The name of the data source
• SourceParams — A structure containing fields with information required to load the data source

This code shows the loadSource method for the
vision.labeler.loading.PointCloudSequenceSource class. This method performs these
actions.

2 Ground Truth Labeling and Verification

2-48

1 Check that the point cloud sequence has the correct extension and save the information required
for reading the point clouds into a fileDatastore object.

2 Set the Timestamp property of the data source object.

• If timestamps are loaded from a workspace variable (Timestamps = From workspace), then
the method sets Timestamp to the timestamps stored in the sourceParams input.

• If timestamps are derived from the point cloud sequence itself (Timestamps = Use
Default), then the method sets Timestamp to a duration vector of seconds, with one
second per point cloud.

3 Validate the loaded point cloud sequence.
4 Set the SignalName property to the name of the data source folder.
5 Set the SignalType property to the PointCloud signal type.
6 Set the SourceName and SourceParams properties to the sourceName and sourceParams

outputs, respectively.

 function loadSource(this, sourceName, sourceParams)

 % Load file
 ext = {'.pcd', '.ply'};
 this.Pcds = fileDatastore(sourceName,'ReadFcn', @pcread, 'FileExtensions', ext);

 % Populate timestamps

 if isempty(this.Timestamp)
 if isfield(sourceParams, 'Timestamps')
 setTimestamps(this, sourceParams.Timestamps);
 else
 this.Timestamp = {seconds(0:1:numel(this.Pcds.Files)-1)'};
 end
 else
 if ~iscell(this.Timestamp)
 this.Timestamp = {this.Timestamp};
 end
 end

 import vision.internal.labeler.validation.*
 checkPointCloudSequenceAndTimestampsAgreement(this.Pcds,this.Timestamp{1});

 % Populate signal names and types
 [~, folderName, ~] = fileparts(sourceName);

 this.SignalName = makeValidName(this, string(folderName), "pointcloudSequence_");
 this.SignalType = vision.labeler.loading.SignalType.PointCloud;

 this.SourceName = sourceName;
 this.SourceParams = sourceParams;
 end

Method to Read Frames
The last required method that you must define is the readFrame method. This method reads a frame
from a signal stored in the data source. The app calls this method each time you navigate to a new
frame. The index to a particular timestamp in the Timestamp property is passed to this method.

 Create Class for Loading Custom Ground Truth Data Sources

2-49

This code shows the readFrame method for the
vision.labeler.loading.PointCloudSequenceSource class. The method reads frames from
the point cloud sequence by using the pcread function.

 function frame = readFrame(this, signalName, index)
 if ~strcmpi(signalName, this.SignalName)
 frame = [];
 else
 frame = pcread(this.Pcds.Files{index});
 end
 end

You can also define any additional private properties that are specific to loading your data source.
The source-specific methods for the vision.labeler.loading.PointCloudSequenceSource
class are not shown in this example but you can view them in the class file.

Use Predefined Data Source Classes
This example showed how to use the vision.labeler.loading.PointCloudSequenceSource
class to help you create your own custom class. This table shows the complete list of data source
classes that you can use as starting points for your own class.

Class Data Source Loaded by Class Command to View Class
Source Code

vision.labeler.loading.V
ideoSource

Video file edit vision.labeler.loading.VideoSource

vision.labeler.loading.I
mageSequenceSource

Image sequence folder edit vision.labeler.loading.ImageSequenceSource

vision.labeler.loading.V
elodyneLidarSource

Velodyne packet capture (PCAP)
file

edit vision.labeler.loading.VelodyneLidarSource

vision.labeler.loading.R
osbagSource

Rosbag file edit vision.labeler.loading.RosbagSource

vision.labeler.loading.P
ointCloudSequenceSource

Point cloud sequence folder edit vision.labeler.loading.PointCloudSequenceSource

vision.labeler.loading.C
ustomImageSource

Custom image format edit vision.labeler.loading.CustomImageSource

See Also
Apps
Ground Truth Labeler

Classes
vision.labeler.loading.MultiSignalSource

Objects
groundTruthMultisignal

2 Ground Truth Labeling and Verification

2-50

Tracking and Sensor Fusion

• “Visualize Sensor Data and Tracks in Bird's-Eye Scope” on page 3-2
• “Linear Kalman Filters” on page 3-11
• “Extended Kalman Filters” on page 3-19

3

Visualize Sensor Data and Tracks in Bird's-Eye Scope
The Bird's-Eye Scope visualizes signals from your Simulink model that represent aspects of a
driving scenario. Using the scope, you can analyze:

• Sensor coverages of vision, radar, and lidar sensors
• Sensor detections of actors and lane boundaries
• Tracks of moving objects in the scenario

This example shows you how to display these signals on the scope and analyze the signals during
simulation.

Open Model and Scope
Open a model containing signals for sensor detections and tracks. This model is used in the “Sensor
Fusion Using Synthetic Radar and Vision Data in Simulink” on page 8-295 example. Also add the file
folder of the model to the MATLAB search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))
open_system('SyntheticDataSimulinkExample')

Open the scope from the Simulink toolstrip. Under Review Results, click Bird's-Eye Scope.

Find Signals
When you first open the Bird's-Eye Scope, the scope canvas is blank and displays no signals. To find
signals from the opened model that the scope can display, on the scope toolstrip, click Find Signals.
The scope updates the block diagram and automatically finds the signals in the model.

3 Tracking and Sensor Fusion

3-2

The left pane lists all the signals that the scope found. These signals are grouped based on their
sources within the model.

Signal Group Description Signal Sources
Ground Truth Road boundaries, lane markings

and barriers in the scenario

You cannot modify this group or
any of its signals.

To inspect large road networks,
use the World Coordinates
View window. See “Vehicle and
World Coordinate Views”.

• Scenario Reader block

 Visualize Sensor Data and Tracks in Bird's-Eye Scope

3-3

Signal Group Description Signal Sources
Actors Actors in the scenario, including

the ego vehicle

You cannot modify this group or
any of its signals or subgroups.

To view actors that are located
away from the ego vehicle, use
the World Coordinates View
window. See “Vehicle and World
Coordinate Views”.

• Scenario Reader block
• Vision Detection Generator,

Driving Radar Data
Generator, and Lidar Point
Cloud Generator blocks (for
actor profile information
only, such as the length,
width, and height of actors)

• If actor profile
information is not set or
is inconsistent between
blocks, the scope sets the
actor profiles to the
default actor profile
values for each block.

• The profile of the ego
vehicle is always set to
the default profile for
each block.

Sensor Coverage Coverage areas of vision, radar,
and lidar sensors, sorted into
Vision, Radar, and Lidar
subgroups

You can modify signals in this
group.

You can rename or delete
subgroups but not the top-level
Sensor Coverage group. You
can also add subgroups and
move signals between
subgroups. If you delete a
subgroup, its signals move to
the top-level Sensor Coverage
group.

• Vision Detection Generator
block

• Simulation 3D Vision
Detection Generator block

• Driving Radar Data
Generator block

• Simulation 3D Probabilistic
Radar block

• Lidar Point Cloud Generator
block

• Simulation 3D Lidar block

3 Tracking and Sensor Fusion

3-4

Signal Group Description Signal Sources
Detections Detections obtained from vision,

radar, and lidar sensors, sorted
into Vision, Radar, and Lidar
subgroups

You can modify signals in this
group.

You can rename or delete
subgroups but not the top-level
Detections group. You can also
add subgroups and move signals
between subgroups. If you
delete a subgroup, its signals
move to the top-level
Detections group.

• Vision Detection Generator
block

• Simulation 3D Vision
Detection Generator block

• Driving Radar Data
Generator block

• Lidar Point Cloud Generator
block

• Simulation 3D Probabilistic
Radar block

• Simulation 3D Lidar block

Tracks Tracks of objects in the scenario

You can modify signals in this
group.

You can rename or delete
subgroups but not the top-level
Tracks group. You can also add
subgroups to this group and
move signals into them. If you
delete a subgroup, its signals
move to the top-level Tracks
group.

• Multi-Object Tracker block
• Tracker blocks in Sensor

Fusion and Tracking
Toolbox™

The Bird's-Eye Scope displays
tracks in ego vehicle
coordinates. Tracks in any other
coordinate system will appear
as offset in the scope.

 Visualize Sensor Data and Tracks in Bird's-Eye Scope

3-5

Signal Group Description Signal Sources
Other Applicable Signals Signals that the scope cannot

automatically group, such as
ones that combine information
from multiple sensors

You can modify signals in this
group but you cannot add
subgroups.

Signals in this group do not
display during simulation.

• Blocks that combine or
cluster signals (such as the
Detection Concatenation
block)

• Vehicle To World and World
To Vehicle blocks

• Any blocks that create
nonvirtual Simulink buses
containing actor poses

For details on the actor pose
information required when
creating these buses, see the
Actors output port of the
Scenario Reader block.

• Any blocks that create
nonvirtual Simulink buses
containing detections

For details on the detection
information required when
creating these buses, see the
Object Detections and
Lane Detections output
ports of the Vision Detection
Generator block.

• Any blocks that create
nonvirtual Simulink buses
containing tracks

For details on the track
information required when
creating these buses, see the
Confirmed Tracks output
port of the Multi-Object
Tracker block.

Before simulation but after clicking Find Signals, the scope canvas displays all Ground Truth
signals except for non-ego actors and all Sensor Coverage signals. The non-ego actors and the
signals under Detections and Tracks do not display until you simulate the model. The signals in
Other Applicable Signals do not display during simulation. If you want the scope to display specific
signals, move them into the appropriate group before simulation. If an appropriate group does not
exist, create one.

Run Simulation
Simulate the model from within the Bird's-Eye Scope by clicking Run. The scope canvas displays
the detections and tracks. To display the legend, on the scope toolstrip, click Legend.

3 Tracking and Sensor Fusion

3-6

During simulation, you can perform these actions:

• Inspect detections, tracks, sensor coverage areas, and ego vehicle behavior. The default view
displays the simulation in vehicle coordinates and is centered on the ego vehicle. To view the
wider area around the ego vehicle, or to view other parts of the scenario, on the scope toolstrip,
click World Coordinates. The World Coordinates View window displays the entire scenario,
with the ego vehicle circled. This circle is not a sensor coverage area. To return to the default
display of either window, move your pointer over the window, and in the upper-right corner, click

 Visualize Sensor Data and Tracks in Bird's-Eye Scope

3-7

the home button that appears. For more details on these views, see “Vehicle and World
Coordinate Views”.

• Update signal properties. To access the properties of a signal, first select the signal from the left
pane. Then, on the scope toolstrip, click Properties. Using these properties, you can, for example,
show or hide sensor coverage areas or detections. In addition, to highlight certain sensor
coverage areas, you can change their color or transparency.

• Update Bird's-Eye Scope settings, such as changing the axes limits of the Vehicle Coordinates
View window or changing the display of signal names. On the scope toolstrip, click Settings. You
cannot change the Track position selector and Track velocity selector settings during
simulation. For more details, see the Settings > Vehicle Coordinates View section of the
Bird's-Eye Scope reference page.

After simulation, you can hide certain detections or tracks for the next simulation. In the left pane,
under Detections or Tracks, right-click the signal you want to hide. Then, select Move to Other
Applicable to move that signal into the Other Applicable Signals group. To hide sensor coverage
areas, select the corresponding signal in the left pane, and on the Properties tab, clear the Show
Sensor Coverage parameter. You cannot hide Ground Truth signals during simulation.

Organize Signal Groups (Optional)
To further organize the signals, you can rename signal groups or move signals into new groups. For
example, you can rename the Vision and Radar subgroups to Front of Car and Back of Car. Then
you can drag the signals as needed to move them into the appropriate groups based on the new
group names. When you drag a signal to a new group, the color of the signal changes to match the
color assigned to its group.

You cannot rename or delete the top-level groups in the left pane, but you can rename or delete any
subgroup. If you delete a subgroup, its signals move to the top-level group.

Update Model and Rerun Simulation
After you run the simulation, modify the model and inspect how the changes affect the visualization
on the Bird's-Eye Scope. For example, in the Sensor Simulation subsystem of the model, open the
two Vision Detection Generator blocks. These blocks have sensor indices of 1 and 2, respectively. On
the Measurements tab of each block, reduce the Maximum detection range (m) parameter to 50.
To see how the sensor coverage changes, rerun the simulation.

When you modify block parameters, you can rerun the simulation without having to find signals
again. If you add or remove blocks, ports, or signal lines, then you must click Find Signals again
before rerunning the simulation.

Save and Close Model
When you save and close the model, the settings for the Bird's-Eye Scope are also saved.

If you reopen the model and the Bird's-Eye Scope, the scope canvas is initially blank. Click Run to
run the simulation and visualize the saved signal properties. For example, if you reduced the
detection range in the previous step, the scope canvas displays this reduced range.

3 Tracking and Sensor Fusion

3-8

If you add new signals to the model, click Update Signals to find the new signals, and then click
Run to visualize the model with the new signals.

Note If you did not make a graphical change to the Bird's-Eye Scope before closing the model,
then, when you reopen the model, you have to find signals again before running the simulation.
Graphical changes include:

• Dragging signals to new groups
• Enabling the legend or World Coordinates View window
• Changing axes limits
• Changing the visual properties of actors, lane markings, or sensor coverage areas

 Visualize Sensor Data and Tracks in Bird's-Eye Scope

3-9

When you are done simulating the model, remove the model file folder from the MATLAB search path.

rmpath(genpath(fullfile(matlabroot,'examples','driving')))

See Also
Apps
Bird's-Eye Scope

Blocks
Detection Concatenation | Vision Detection Generator | Driving Radar Data Generator | Multi-Object
Tracker | Scenario Reader | Simulation 3D Lidar | Simulation 3D Probabilistic Radar | Lidar Point
Cloud Generator

Related Examples
• “Visualize Sensor Data from Unreal Engine Simulation Environment” on page 6-36
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” on page 8-295
• “Lateral Control Tutorial” on page 8-858
• “Autonomous Emergency Braking with Sensor Fusion” on page 8-303
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-140
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-146

3 Tracking and Sensor Fusion

3-10

Linear Kalman Filters
In this section...
“Motion Model” on page 3-11
“Measurement Models” on page 3-12
“Filter Loop” on page 3-12
“Built-In Motion Models in trackingKF” on page 3-14
“Example: Estimate 2-D Target States Using trackingKF” on page 3-15

Kalman filters track an object using a sequence of detections or measurements to estimate the state
of the object based on the motion model of the object. In a motion model, state is a collection of
quantities that represent the status of an object, such as its position, velocity, and acceleration. An
object motion model is defined by the evolution of the object state.

The linear Kalman filter (trackingKF) is an optimal, recursive algorithm for estimating the state of
an object if the estimation system is linear and Gaussian. An estimation system is linear if both the
motion model and measurement model are linear. The filter works by recursively predicting the
object state using the motion model and correcting the state using measurements.

Motion Model
For most types of objects tracked in the toolbox, the state vector consists of one-, two-, or three-
dimensional positions and velocities.

Consider an object moving in the x-direction at a constant acceleration. You can write the equation of
motion, using Newtonian equations, as:

mẍ = f

ẍ = f
m = a

Furthermore, if you define the state as:

x1 = x
x2 = ẋ,

you can write the equation of motion in state-space form as:

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a

In most cases, a motion model does not fully model the motion of an object, and you need to include
the process noise to compensate the uncertainty in the motion model. For the constant velocity
model, you can add process noise as an acceleration term.

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a +
0
1

vk

Here, vk is the unknown noise perturbation of the acceleration. For the filter to be optimal, you must
assume the process noise is zero-mean, white Gaussian noise.

 Linear Kalman Filters

3-11

You can extend this type of equation to more than one dimension. In two dimensions, the equation has
the form:

d
dt

x1
x2
y1
y2

=

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

x1
x2
y1
y2

+

0
ax
0
ay

+

0
vx
0
vy

The 4-by-4 matrix in this equation is the state transition matrix. For independent x- and y-motions,
this matrix is block diagonal.

When you convert a continuous time model to a discrete time model, you integrate the equations of
motion over the length of the time interval. In the discrete form, for a sample interval of T, the state
representation becomes:

x1, k + 1
x2, k + 1

=
1 T
0 1

x1, k
x2, k

+
1
2T2

T
a +

1
2T2

T
v

where xk+1 is the state at discrete time k+1, and xk is the state at the earlier discrete time k. If you
include noise, the equation becomes more complicated, because the integration of noise is not
straightforward. For details on how to obtain the discretized process noise from a continuous system,
See [1] .

You can generalize the state equation to:

xk + 1 = Akxk + Bkuk + Gkvk

where Ak is the state transition matrix and Bk is the control matrix. The control matrix accounts for
any known forces acting on the object. vk represents discretized process noise, following a Gaussian
distribution of mean 0 and covariance Qk. Gk is the process noise gain matrix.

Measurement Models
Measurements are what you observe or measure in a system. Measurements depend on the state
vector, but are usually not the same as the state vector. For instance, in a radar system, the
measurements can be spherical coordinates such as range, azimuth, and elevation, while the state
vector is the Cartesian position and velocity. A linear Kalman filter assumes the measurements are a
linear function of the state vector. To apply nonlinear measurement models, you can choose to use an
extended Kalman filter (trackingEKF) or an unscented Kalman filter (trackingUKF).

You can represent a linear measurement as:

zk = Hkxk + wk

Here, Hk is the measurement matrix and wk represents measurement noise at the current time step.
For an optimal filter, the measurement noise must be zero-mean, Gaussian white noise. Assume the
covariance matrix of the measurement noise is Rk .

Filter Loop
The filter starts with best estimates of the state x0|0 and the state covariance P0|0. The filter performs
these steps in a recursive loop.

3 Tracking and Sensor Fusion

3-12

1 Propagate the state to the next step using the motion equation:

xk + 1 k = Fkxk k + Bkuk .

Propagate the covariance matrix as well:

Pk + 1 k = FkPk kFk
T + GkQkGk

T .

The subscript notation k+1|k indicates that the corresponding quantity is the estimate at the k+1
step propagated from step k. This estimate is often called the a priori estimate. The predicted
measurement at the k+1 step is

zk + 1 k = Hk + 1xk + 1 k

2 Use the difference between the actual measurement and the predicted measurement to correct
the state at the k+1 step. To correct the state, the filter must compute the Kalman gain. First, the
filter computes the measurement prediction covariance (innovation) as:

Sk + 1 = Hk + 1Pk + 1 kHk + 1
T + Rk + 1

Then, the filter computes the Kalman gain as:

Kk + 1 = Pk + 1 kHk + 1
T Sk + 1

−1

3 The filter corrects the predicted estimate by using the measurement. The estimate, after
correction using the measurement zk+1, is

xk + 1 k + 1 = xk + 1 k + Kk + 1(zk + 1− zk + 1 k)

where Kk+1 is the Kalman gain. The corrected state is often called the a posteriori estimate of the
state, because it is derived after including the measurement.

The filter corrects the state covariance matrix as:

Pk + 1 k + 1 = Pk + 1 k− Kk + 1Sk + 1Kk + 1
T

This figure summarizes the Kalman loop operations. Once initialized, a Kalman filter loops between
prediction and correction until reaching the end of the simulation.

 Linear Kalman Filters

3-13

Built-In Motion Models in trackingKF
When you only need to use the standard 1-D, 2-D, or 3-D constant velocity or constant acceleration
motion models, you can specify the MotionModel property of trackingKF as one of these:

• "1D Constant Velocity"
• "1D Constant Acceleration"
• "2D Constant Velocity"
• "2D Constant Acceleration"
• "3D Constant Velocity"
• "3D Constant Acceleration"

To customize your own motion model, specify the MotionModel property as "Custom", and then
specify the state transition matrix in the StateTransitionModel property of the filter.

For the 3-D constant velocity model, the state equation is:

xk + 1
vx, k + 1
yk + 1

vy, k + 1
zk + 1

vz, k + 1

=

1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

xk
vx, k
yk

vy, k
zk

vz, k

For the 3-D constant acceleration model, the state equation is:

3 Tracking and Sensor Fusion

3-14

xk + 1
vx, k + 1
ax, k + 1
yk + 1

vy, k + 1
ay, k + 1
zk + 1

vz, k + 1
az, k + 1

=

1 T 1
2T2 0 0 0 0 0 0

0 1 T 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 T 1
2T2 0 0 0

0 0 0 0 1 T 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 T 1
2T2

0 0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 0 1

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
az, k

Example: Estimate 2-D Target States Using trackingKF
Initialize Estimation Model

Specify an initial position and velocity for a target that you assume moving in 2-D. The simulation
lasts 20 seconds with a sample time of 0.2 seconds.

rng(2021); % For repeatable results
dt = 0.2; % seconds
simTime = 20; % seconds
tspan = 0:dt:simTime;
trueInitialState = [30; 2; 40; 2]; % [x;vx;y;vy]
processNoise = diag([0; 1; 0; 1]); % Process noise matrix

Create a measurement noise covariance matrix, assuming that the target measurements consist of its
position states.

measureNoise = diag([4 4]); % Measurement noise matrix

The matrix specifies a standard deviation of 2 meters in both the x- and y-directions.

Preallocate variables in which to save estimation results.

numSteps = length(tspan);
trueStates = NaN(4,numSteps);
trueStates(:,1) = trueInitialState;
estimateStates = NaN(size(trueStates));

Obtain True States and Measurements

Propagate the constant velocity model, and generate the measurements with noise.

F = [1 dt 0 0;
 0 1 0 0;
 0 0 1 dt;
 0 0 0 1];
H = [1 0 0 0;
 0 0 1 0];
for i = 2:length(tspan)
 trueStates(:,i) = F*trueStates(:,i-1) + sqrt(processNoise)*randn(4,1);
end
measurements = H*trueStates + sqrt(measureNoise)*randn(2,numSteps);

 Linear Kalman Filters

3-15

Plot the true trajectory and the measurements.

figure
plot(trueStates(1,1),trueStates(3,1),"r*",DisplayName="True Initial")
hold on
plot(trueStates(1,:),trueStates(3,:),"r",DisplayName="Truth")
plot(measurements(1,:),measurements(2,:),"kx",DisplayName="Measurements")
xlabel("x (m)")
ylabel("y (m)")
axis image

Initialize Linear Kalman Filter

Initialize the filter with a state of [40; 0; 160; 0], which is far from the true initial state.
Normally, you can use the initial measurement to construct an initial state as
[measurements(1,1);0 ; measurements(2,1); 0]. Here, you use an erroneous initial state,
which enables you to test if the filter can quickly converge on the truth.

filter = trackingKF(MotionModel="2D Constant Velocity",State=[40; 0; 160;0], ...
 MeasurementModel=H,MeasurementNoise=measureNoise)

filter =
 trackingKF with properties:

 State: [4x1 double]
 StateCovariance: [4x4 double]

 MotionModel: '2D Constant Velocity'

3 Tracking and Sensor Fusion

3-16

 ProcessNoise: [2x2 double]

 MeasurementModel: [2x4 double]
 MeasurementNoise: [2x2 double]

 MaxNumOOSMSteps: 0

 EnableSmoothing: 0

 estimateStates(:,1) = filter.State;

Run Linear Kalman Filter and Show Results

Run the filter by recursively calling the predict and correct object functions. From the results, the
estimates converge on the truth quickly. In fact, the linear Kalman filter has an exponential
convergence speed.

for i=2:length(tspan)
 predict(filter,dt)
 estimateStates(:,i) = correct(filter,measurements(:,i));
end
plot(estimateStates(1,1),estimateStates(3,1),"g*",DisplayName="Initial Estimates")
plot(estimateStates(1,:),estimateStates(3,:),"g",DisplayName="Estimates")
legend(Location="southeast")

 Linear Kalman Filters

3-17

See Also
trackingKF | trackingEKF | trackingUKF | “Extended Kalman Filters” on page 3-19

References
[1] Li, X. Rong, and Vesselin P. Jilkov. "Survey of Maneuvering Target Tracking: Dynamic Models".

Edited by Oliver E. Drummond, 2000, pp. 212–35. DOI.org (Crossref), https://doi.org/
10.1117/12.391979.

3 Tracking and Sensor Fusion

3-18

Extended Kalman Filters
In this section...
“State Update Model” on page 3-19
“Measurement Model” on page 3-20
“Extended Kalman Filter Loop” on page 3-20
“Predefined Extended Kalman Filter Functions” on page 3-21
“Example: Estimate 2-D Target States with Angle and Range Measurements Using trackingEKF” on
page 3-22

When you use a filter to track objects, you use a sequence of detections or measurements to estimate
the state of an object based on the motion model of the object. In a motion model, state is a collection
of quantities that represent the status of an object, such as its position, velocity, and acceleration. Use
an extended Kalman filter (trackingEKF) when object motion follows a nonlinear state equation or
when the measurements are nonlinear functions of the state. For example, consider using an
extended Kalman filter when the measurements of the object are expressed in spherical coordinates,
such as azimuth, elevation, and range, but the states of the target are expressed in Cartesian
coordinates.

The formulation of an extended Kalman is based on the linearization of the state equation and
measurement equation. Linearization enables you to propagate the state and state covariance in an
approximately linear format, and requires Jacobians of the state equation and measurement equation.

Note If your estimate system is linear, you can use the linear Kalman filter (trackingKF) or the
extended Kalman filter (trackingEKF) to estimate the target state. If your system is nonlinear, you
should use a nonlinear filter, such as the extended Kalman filter or the unscented Kalman filter
(trackingUKF).

State Update Model
Assume a closed-form expression for the predicted state as a function of the previous state xk,
controls uk, noise wk, and time t.

xk + 1 = f (xk, uk, wk, t)

The Jacobian of the predicted state with respect to the previous state is obtained by partial
derivatives as:

F(x) = ∂ f
∂x .

The Jacobian of the predicted state with respect to the noise is:

F(w) = ∂ f
∂w .

These functions take simpler forms when the noise is additive in the state update equation:

xk + 1 = f (xk, uk, t) + wk

 Extended Kalman Filters

3-19

In this case, F(w) is an identity matrix.

You can specify the state Jacobian matrix using the StateTransitionJacobianFcn property of the
trackingEKF object. If you do not specify this property, the object computes Jacobians using
numeric differencing, which is slightly less accurate and can increase the computation time.

Measurement Model
In an extended Kalman filter, the measurement can also be a nonlinear function of the state and the
measurement noise.

zk = h(xk, vk, t)

The Jacobian of the measurement with respect to the state is:

H(x) = ∂h
∂x .

The Jacobian of the measurement with respect to the measurement noise is:

H(v) = ∂h
∂v .

These functions take simpler forms when the noise is additive in the measurement equation:

zk = h(xk, t) + vk

In this case, H(v) is an identity matrix.

In trackingEKF, you can specify the measurement Jacobian matrix using the
MeasurementJacobianFcn property. If you do not specify this property, the object computes the
Jacobians using numeric differencing, which is slightly less accurate and can increase the
computation time.

Extended Kalman Filter Loop
The extended Kalman filter loop is almost identical to the loop of “Linear Kalman Filters” on page 3-
11 except that:

• The filter uses the exact nonlinear state update and measurement functions whenever possible.
• The state Jacobian replaces the state transition matrix.
• The measurement jacobian replaces the measurement matrix.

3 Tracking and Sensor Fusion

3-20

Predefined Extended Kalman Filter Functions
The toolbox provides predefined state update and measurement functions to use in trackingEKF.

Motion Model Function Name Function Purpose State Representation
Constant velocity constvel Constant-velocity

state update model
• 1-D — [x;vx]
• 2-D — [x;vx;y;vy]
• 3-D —

[x;vx;y;vy;z;vz]

where

• x, y, and z represents the
position in the x-, y-, and
z-directions, respectively.

• vx, vy, and vz represents
the velocity in the x-, y-,
and z-directions,
respectively.

constveljac Constant-velocity
state update
Jacobian

cvmeas Constant-velocity
measurement
model

cvmeasjac Constant-velocity
measurement
Jacobian

 Extended Kalman Filters

3-21

Motion Model Function Name Function Purpose State Representation
Constant acceleration constacc Constant-

acceleration state
update model

• 1-D — [x;vx;ax]
• 2-D —

[x;vx;ax;y;vy;ay]
• 3-D —

[x;vx;ax;y;vy;ay;z;v
z;az]

where

• ax, ay, and az represents
the acceleration in the x-,
y-, and z-directions,
respectively.

constaccjac Constant-
acceleration state
update Jacobian

cameas Constant-
acceleration
measurement
model

cameasjac Constant-
acceleration
measurement
Jacobian

Constant turn rate constturn Constant turn-rate
state update model

• 2-D —
[x;vx;y;vy;omega]

• 3-D —
[x;vx;y;vy;omega;z;v
z]

where omega represents the
turn-rate.

constturnjac Constant turn-rate
state update
Jacobian

ctmeas Constant turn-rate
measurement
model

ctmeasjac Constant turn-rate
measurement
Jacobian

Example: Estimate 2-D Target States with Angle and Range
Measurements Using trackingEKF
Initialize Estimation Model

Assume a target moves in 2D with the following initial position and velocity. The simulation lasts 20
seconds with a sample time of 0.2 seconds.

rng(2022); % For repeatable results
dt = 0.2; % seconds
simTime = 20; % seconds
tspan = 0:dt:simTime;
trueInitialState = [30; 1; 40; 1]; % [x;vx;y;vy]
initialCovariance = diag([100,1e3,100,1e3]);
processNoise = diag([0; .01; 0; .01]); % Process noise matrix

Assume the measurements are the azimuth angle relative to the positive-x direction and the range to
from the origin to the target. The measurement noise covariance matrix is:

measureNoise = diag([2e-6;1]); % Measurement noise matrix. Units are m^2 and rad^2.

Preallocate variables in which to save results.

3 Tracking and Sensor Fusion

3-22

numSteps = length(tspan);
trueStates = NaN(4,numSteps);
trueStates(:,1) = trueInitialState;
estimateStates = NaN(size(trueStates));
measurements = NaN(2,numSteps);

Obtain True States and Measurements

Propagate the constant velocity model and generate the measurements with noise.

for i = 2:length(tspan)
 if i ~= 1
 trueStates(:,i) = stateModel(trueStates(:,i-1),dt) + sqrt(processNoise)*randn(4,1);
 end
 measurements(:,i) = measureModel(trueStates(:,i)) + sqrt(measureNoise)*randn(2,1);
end

Plot the true trajectory and the measurements.

figure(1)
plot(trueStates(1,1),trueStates(3,1),"r*",DisplayName="Initial Truth")
hold on
plot(trueStates(1,:),trueStates(3,:),"r",DisplayName="True Trajectory")
xlabel("x (m)")
ylabel("y (m)")
title("True Trajectory")
axis square

 Extended Kalman Filters

3-23

figure(2)
subplot(2,1,1)
plot(tspan,measurements(1,:)*180/pi)
xlabel("time (s)")
ylabel("angle (deg)")
title("Angle and Range")
subplot(2,1,2)
plot(tspan,measurements(2,:))
xlabel("time (s)")
ylabel("range (m)")

Initialize Extended Kalman Filter

Initialize the filter with an initial state estimate at [35; 0; 45; 0].

filter = trackingEKF(State=[35; 0; 45; 0],StateCovariance=initialCovariance, ...
 StateTransitionFcn=@stateModel,ProcessNoise=processNoise, ...
 MeasurementFcn=@measureModel,MeasurementNoise=measureNoise);
estimateStates(:,1) = filter.State;

Run Extended Kalman Filter And Show Results

Run the filter by recursively calling the predict and correct object functions.

for i=2:length(tspan)
 predict(filter,dt);
 estimateStates(:,i) = correct(filter,measurements(:,i));
end

3 Tracking and Sensor Fusion

3-24

figure(1)
plot(estimateStates(1,1),estimateStates(3,1),"g*",DisplayName="Initial Estimate")
plot(estimateStates(1,:),estimateStates(3,:),"g",DisplayName="Estimated Trajectory")
legend(Location="northwest")
title("True Trajectory vs Estimated Trajectory")

Helper Functions

stateModel modeled constant velocity motion without process noise.

function stateNext = stateModel(state,dt)
 F = [1 dt 0 0;
 0 1 0 0;
 0 0 1 dt;
 0 0 0 1];
 stateNext = F*state;
end

meausreModel models range and azimuth angle measurements without noise.

function z = measureModel(state)
 angle = atan(state(3)/state(1));
 range = norm([state(1) state(3)]);

 Extended Kalman Filters

3-25

 z = [angle;range];
end

See Also
trackingKF | trackingEKF | trackingUKF | “Linear Kalman Filters” on page 3-11

3 Tracking and Sensor Fusion

3-26

Planning, Mapping, and Control

• “Display Data on OpenStreetMap Basemap” on page 4-2
• “Read and Visualize HERE HD Live Map Data” on page 4-7
• “HERE HD Live Map Layers” on page 4-15
• “Rotations, Orientations, and Quaternions for Automated Driving” on page 4-19
• “Control Vehicle Velocity” on page 4-26
• “Velocity Profile of Straight Path” on page 4-28
• “Velocity Profile of Path with Curve and Direction Change” on page 4-32
• “Plan Path Using A-Star Path Planners ” on page 4-36

4

Display Data on OpenStreetMap Basemap
This example shows how to display a driving route and vehicle positions on an OpenStreetMap®
basemap.

Add the OpenStreetMap basemap to the list of basemaps available for use with the geoplayer
object. After you add the basemap, you do not need to add it again in future sessions.

name = 'openstreetmap';
url = 'https://a.tile.openstreetmap.org/${z}/${x}/${y}.png';
copyright = char(uint8(169));
attribution = copyright + "OpenStreetMap contributors";
addCustomBasemap(name,url,'Attribution',attribution)

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geographic player. Center the geographic player on the first position of the driving route and
set the zoom level to 12.

zoomLevel = 12;
player = geoplayer(data.latitude(1),data.longitude(1),zoomLevel);

Display the full route.

4 Planning, Mapping, and Control

4-2

plotRoute(player,data.latitude,data.longitude);

By default, the geographic player uses the World Street Map basemap ('streets') provided by
Esri®. Update the geographic player to use the added OpenStreetMap basemap instead.

player.Basemap = 'openstreetmap';

 Display Data on OpenStreetMap Basemap

4-3

Display the route again.

plotRoute(player,data.latitude,data.longitude);

4 Planning, Mapping, and Control

4-4

Display the positions of the vehicle in a sequence.

for i = 1:length(data.latitude)
 plotPosition(player,data.latitude(i),data.longitude(i))
end

 Display Data on OpenStreetMap Basemap

4-5

See Also
geoplayer | plotPosition | plotRoute | addCustomBasemap | removeCustomBasemap

4 Planning, Mapping, and Control

4-6

Read and Visualize HERE HD Live Map Data
HERE HD Live Map 1 (HERE HDLM), developed by HERE Technologies, is a cloud-based web service
that enables you to access highly accurate, continuously updated map data. The data is composed of
tiled map layers containing information such as the topology and geometry of roads and lanes, road-
level attributes and lane-level attributes, and the barriers, signs, and poles found along roads. This
data is suitable for a variety of advanced driver assistance system (ADAS) applications, including
localization, scenario generation, navigation, and path planning.

Using Automated Driving Toolbox functions and objects, you can configure and create a HERE HDLM
reader, read map data from the HERE HDLM web service, and then visualize the data from certain
layers.

Enter Credentials
Before you can use the HERE HDLM web service, you must enter the credentials that you obtained
from your agreement with HERE Technologies. To set up your credentials, use the
hereHDLMCredentials function.

hereHDLMCredentials setup

Enter a valid Access Key ID and Access Key Secret, and click OK. The credentials are saved for the
rest of your MATLAB session on your machine. To save your credentials for future MATLAB sessions
on your machine, in the dialog box, select Save my credentials between MATLAB sessions. These
credentials remain saved until you delete them.

1 You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.

 Read and Visualize HERE HD Live Map Data

4-7

https://www.here.com

Configure Reader to Search Specific Catalog
In the HERE HDLM web service, map data is stored in a set of databases called catalogs. Each
catalog roughly corresponds to a different geographic region, such as North America or Western
Europe. By creating a hereHDLMConfiguration object, you can configure a HERE HDLM reader to
search for map data from only a specific catalog. You can also optionally specify the version of the
catalog that you want to search. These configurations can speed up the performance of the reader,
because the reader does not search unnecessary catalogs for map data.

For example, create a configuration for the catalog that roughly corresponds to the North America
region.

config = hereHDLMConfiguration('hrn:here:data::olp-here-had:here-hdlm-protobuf-na-2');

Readers created with this configuration search for map data from only the specified catalog.

Configuring a HERE HDLM reader is optional. If you do not specify a configuration, the reader
defaults to searching for map tiles across all catalogs. The reader returns map data from the latest
version of the catalog in which those tiles were found.

Create Reader for Specific Map Tiles
The hereHDLMReader object reads HERE HDLM data from a selection of map tiles. By default, these
map tiles are set to a zoom level of 14, which corresponds to a rectangular area of about 5–10 square
kilometers.

4 Planning, Mapping, and Control

4-8

You select the map tiles from which to read data when you create a hereHDLMReader object. You can
specify the map tile IDs directly. Alternatively, you can specify the coordinates of a driving route and
read data from the map tiles of that route.

Load the latitude-longitude coordinates for a driving route in North America. For reference, display
the route on a geographic axes.

route = load('geoSequenceNatickMA.mat');
lat = route.latitude;
lon = route.longitude;

geoplot(lat,lon,'bo-')
geobasemap('streets')
title('Driving Route')

 Read and Visualize HERE HD Live Map Data

4-9

Create a hereHDLMReader object using the specified driving route and configuration.

reader = hereHDLMReader(lat,lon,'Configuration',config);

This reader enables you to read map data for the tiles that this driving route is on. The map data is
stored in a set of layers containing detailed information about various aspects of the map. The reader
supports reading data from the map layers for the Road Centerline Model, HD Lane Model, and HD
Localization Model.

4 Planning, Mapping, and Control

4-10

For more details on the layers in these models, see “HERE HD Live Map Layers” on page 4-15.

Read Map Layer Data
The read function reads data for the selected map tiles. The map data is returned as a series of layer
objects. Read data from the layer containing the topology geometry of the road.

topology = read(reader,'TopologyGeometry')

topology =

 2×1 TopologyGeometry array with properties:

 Data:
 HereTileId
 IntersectingLinkRefs

 Read and Visualize HERE HD Live Map Data

4-11

 LinksStartingInTile
 NodesInTile
 TileCenterHere2dCoordinate

 Metadata:
 Catalog
 CatalogVersion

Each map layer object corresponds to a map tile that you selected using the input hereHDLMReader
object. The IDs of these map tiles are stored in the TileIds property of the reader. Inspect the
properties of the map layer object for the first map tile. Your catalog version and map data might
differ from what is shown here.

topology(1)

ans =

 TopologyGeometry with properties:

 Data:
 HereTileId: 321884279
 IntersectingLinkRefs: [42×1 struct]
 LinksStartingInTile: [905×1 struct]
 NodesInTile: [635×1 struct]
 TileCenterHere2dCoordinate: [42.3083 -71.3782]

 Metadata:
 Catalog: 'hrn:here:data::olp-here-had:here-hdlm-protobuf-na-2'
 CatalogVersion: 3321

The properties of the TopologyGeometry layer object correspond to valid HERE HDLM fields for
that layer. In these layer objects, the names of the layer fields are modified to fit the MATLAB naming
convention for object properties. For more details about the layer objects, see the layerData output
argument description on the read function reference page.

Visualize Map Layer Data
To visualize the data of map layers, use the plot function. Plot the topology geometry of the returned
map layers. The plot shows the boundaries, nodes (intersections and dead-ends), and links (streets)
within the map tiles. If a link extends outside the boundaries of the specified map tiles, the layer data
includes that link.

plot(topology)

4 Planning, Mapping, and Control

4-12

Map layer plots are returned on a geographic axes. To customize map displays, you can use the
properties of the geographic axes. For more details, see GeographicAxes Properties. Overlay the
driving route on the plot.

hold on
geoplot(lat,lon,'bo-','DisplayName','Route')
hold off

 Read and Visualize HERE HD Live Map Data

4-13

See Also
hereHDLMReader | hereHDLMConfiguration | hereHDLMCredentials | read | plot

More About
• “HERE HD Live Map Layers” on page 4-15
• “Use HERE HD Live Map Data to Verify Lane Configurations” on page 8-781
• “Localization Correction Using Traffic Sign Data from HERE HD Maps” on page 8-795
• “Import HERE HD Live Map Roads into Driving Scenario” on page 5-104

4 Planning, Mapping, and Control

4-14

HERE HD Live Map Layers
HERE HD Live Map 2 (HERE HDLM), developed by HERE Technologies, is a cloud-based web service
that enables you to access highly accurate, continuously updated map data. The data is composed of
tiled map layers containing information such as the topology and geometry of roads and lanes, road-
level and lane-level attributes, and the barriers, signs, and poles found along roads. The data is stored
in a series of map catalogs that correspond to geographic regions.

To access layer data for a selection of map tiles, use a hereHDLMReader object. For information on
the hereHDLMReader workflow, see “Read and Visualize HERE HD Live Map Data” on page 4-7.

The layers are grouped into these models:

• “Road Centerline Model” on page 4-16 — Provides road topology, shape geometry, and other
road-level attributes

• “HD Lane Model” on page 4-17 — Contains lane topology, highly accurate geometry, and lane-
level attributes

• “HD Localization Model” on page 4-18 — Includes multiple features, such as road signs, to
support localization strategies

2 You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.

 HERE HD Live Map Layers

4-15

https://www.here.com

The available layers vary by geographic region, so not all layers are available for every map tile.
When you call the read function on a hereHDLMReader object and specify a map layer name, the
function returns the layer data as an object. For more information about these layer objects, see the
read function reference page.

Road Centerline Model
The Road Centerline Model represents the topology of the road network. It is composed of links
corresponding to streets and nodes corresponding to intersections and dead ends. For each map tile,
the layers within this model contain information about these links and nodes, such as the 2-D line
geometry of the road network, speed attributes, and routing attributes.

The figure shows a plot for the TopologyGeometry layer, which visualizes the 2-D line geometry of
the nodes and links within a map tile.

This table shows the map layers of the Road Centerline Model that a hereHDLMReader object can
read.

Road Centerline Model Layers Description
TopologyGeometry Topology and 2-D line geometry of the road. This

layer also contains definitions of the links
(streets) and nodes (intersections and dead-ends)
in the map tile.

RoutingAttributes Road attributes related to navigation and
conditions. These attributes are mapped
parametrically to the 2-D polyline geometry in the
topology layer.

RoutingLaneAttributes Core navigation lane attributes and conditions,
such as the number of lanes in a road. These
values are mapped parametrically to 2-D
polylines along the road links.

4 Planning, Mapping, and Control

4-16

Road Centerline Model Layers Description
SpeedAttributes Speed-related road attributes, such as speed

limits. These attributes are mapped to the 2-D
polyline geometry of the topology layer.

AdasAttributes Precision geometry measurements such as slope,
elevation, and curvature of roads. Use this data to
develop advanced driver assistance systems
(ADAS).

ExternalReferenceAttributes References to external links, nodes, and
topologies for other HERE maps.

LaneRoadReferences (also part of HD Lane
Model)

Road and lane group references and range
information. Use this data to translate positions
between the Road Centerline Model and the HD
Lane Model.

HD Lane Model
The HD Lane Model represents the topology and geometry of lane groups, which are the lanes within
a link (street). In this model, the shapes of lanes are modeled with 2-D and 3-D positions and support
centimeter-level accuracy. This model provides several lane attributes, including lane type, direction
of travel, and lane boundary color and style.

The figure shows a plot for the LaneTopology layer object, which visualizes the 2-D line geometry of
lane groups and their connectors within a map tile.

This table shows the map layers of the HD Lane Model that a hereHDLMReader object can read.

 HERE HD Live Map Layers

4-17

HD Lane Model Layers Description
LaneTopology Topologies of the HD Lane model, including lane

group, lane group connector, lane, and lane
connector topologies. This layer also contains the
simplified 2-D boundary geometry of the lane
model for determining map tile affinity and
overflow.

LaneGeometryPolyline 3-D lane geometry composed of a set of 3-D
points joined into polylines.

LaneAttributes Lane-level attributes, such as direction of travel
and lane type.

LaneRoadReferences (also part of Road
Centerline Model)

Road and lane group references and range
information. Used to translate positions between
the Road Centerline Model and the HD Lane
Model.

HD Localization Model
The HD Localization Model contains data, such as traffic signs, barriers, and poles, that helps
autonomous vehicles accurately locate where they are within a road network.

This table shows the map layers of the HD Localization Model that a hereHDLMReader object can
read. The reader does not support visualization of this layer data.

HD Localization Model Layers Description
LocalizationBarrier Positions, dimensions, and attributes of barriers

such as guardrails and Jersey barriers found
along roads

LocalizationPole Positions, dimensions, and attributes of traffic
signal poles and other poles found along or
hanging over roads

LocalizationSign Positions, dimensions, and attributes of traffic-
sign faces found along roads

See Also
hereHDLMReader | plot | read

More About
• “Read and Visualize HERE HD Live Map Data” on page 4-7
• “Use HERE HD Live Map Data to Verify Lane Configurations” on page 8-781
• “Localization Correction Using Traffic Sign Data from HERE HD Maps” on page 8-795

4 Planning, Mapping, and Control

4-18

Rotations, Orientations, and Quaternions for Automated
Driving

A quaternion is a four-part hypercomplex number used to describe three-dimensional rotations and
orientations. Quaternions have applications in many fields, including aerospace, computer graphics,
and virtual reality. In automated driving, sensors such as inertial measurement units (IMUs) report
orientation readings as quaternions. To use this data for localization, you can capture it using a
quaternion object, perform mathematical operations on it, or convert it to other rotation formats,
such as Euler angles and rotation matrices.

You can use quaternions to perform 3-D point and frame rotations.

• With point rotations, you rotate points in a static frame of reference.
• With frame rotations, you rotate the frame of reference around a static point to convert the frame

into the coordinate system relative to the point.

You can define these rotations by using an axis of rotation and an angle of rotation about that axis.
Quaternions encapsulate the axis and angle of rotation and have an algebra for manipulating these
rotations. The quaternion object uses the "right-hand rule" convention to define rotations. That is,
positive rotations are clockwise around the axis of rotation when viewed from the origin.

Quaternion Format
A quaternion number is represented in this form:

a + bi + c j + dk

a, b, c, and d are real numbers. These coefficients are known as the parts of the quaternion.

i, j, and k are the complex elements of a quaternion. These elements satisfy the equation i2 = j2 = k2 =
ijk = −1.

The quaternion parts a, b, c, and d specify the axis and angle of rotation. For a rotation of ɑ radians
about a rotation axis represented by the unit vector [x, y, z], the quaternion describing the rotation is
given by this equation:

cos α
2 + sin α

2 xi + yj + zk

Quaternion Creation
You can create quaternions in multiple ways. For example, create a quaternion by specifying its parts.

q = quaternion(1,2,3,4)

q =

 quaternion

 1 + 2i + 3j + 4k

 Rotations, Orientations, and Quaternions for Automated Driving

4-19

You can create arrays of quaternions in the same way. For example, create a 2-by-2 quaternion array
by specifying four 2-by-2 matrices.

qArray = quaternion([1 10; -1 1], [2 20; -2 2], [3 30; -3 3], [4 40; -4 4])

qArray =

 2x2 quaternion array

 1 + 2i + 3j + 4k 10 + 20i + 30j + 40k
 -1 - 2i - 3j - 4k 1 + 2i + 3j + 4k

You can also use four-column arrays to construct quaternions, where each column represents a
quaternion part. For example, create an array of quaternions that represent random rotations.

qRandom = randrot(4,1)

qRandom =

 4x1 quaternion array

 0.17446 + 0.59506i - 0.73295j + 0.27976k
 0.21908 - 0.89875i - 0.298j + 0.23548k
 0.6375 + 0.49338i - 0.24049j + 0.54068k
 0.69704 - 0.060589i + 0.68679j - 0.19695k

Index and manipulate quaternions just like any other array. For example, index a quaternion from the
qRandom quaternion array.

qRandom(3)

ans =

 quaternion

 0.6375 + 0.49338i - 0.24049j + 0.54068k

Reshape the quaternion array.

reshape(qRandom,2,2)

ans =

 2x2 quaternion array

 0.17446 + 0.59506i - 0.73295j + 0.27976k 0.6375 + 0.49338i - 0.24049j + 0.54068k
 0.21908 - 0.89875i - 0.298j + 0.23548k 0.69704 - 0.060589i + 0.68679j - 0.19695k

4 Planning, Mapping, and Control

4-20

Concatenate the quaternion array with the first quaternion that you created.

[qRandom; q]

ans =

 5x1 quaternion array

 0.17446 + 0.59506i - 0.73295j + 0.27976k
 0.21908 - 0.89875i - 0.298j + 0.23548k
 0.6375 + 0.49338i - 0.24049j + 0.54068k
 0.69704 - 0.060589i + 0.68679j - 0.19695k
 1 + 2i + 3j + 4k

Quaternion Math
Quaternions have well-defined arithmetic operations. To apply these operations, first define two
quaternions by specifying their real-number parts.

q1 = quaternion(1,2,3,4)

q1 = quaternion
 1 + 2i + 3j + 4k

q2 = quaternion(-5,6,-7,8)

q2 = quaternion
 -5 + 6i - 7j + 8k

Addition of quaternions is similar to complex numbers, where parts are added independently.

q1 + q2

ans = quaternion
 -4 + 8i - 4j + 12k

Subtraction of quaternions works similar to addition of quaternions.

q1 - q2

ans = quaternion
 6 - 4i + 10j - 4k

Because the complex elements of quaternions must satisfy the equation

i2 = j2 = k2 = ijk = − 1,

multiplication of quaternions is more complex than addition and subtraction. Given this requirement,
multiplication of quaternions is not commutative. That is, when multiplying quaternions, reversing
the order of the quaternions changes the result of their product.

 Rotations, Orientations, and Quaternions for Automated Driving

4-21

q1 * q2

ans = quaternion
 -28 + 48i - 14j - 44k

q2 * q1

ans = quaternion
 -28 - 56i - 30j + 20k

However, every quaternion has a multiplicative inverse, so you can divide quaternions. Right division
of q1 by q2 is equivalent to q1(q2−1).

q1 ./ q2

ans = quaternion
 0.10345 - 0.3908i - 0.091954j + 0.022989k

Left division of q1 by q2 is equivalent to (q2−1)q1.

q1 .\ q2

ans = quaternion
 0.6 - 1.2i + 0j + 2k

The conjugate of a quaternion is formed by negating each of the complex parts, similar to conjugate
of a complex number.

conj(q1)

ans = quaternion
 1 - 2i - 3j - 4k

To describe a rotation using a quaternion, the quaternion must be a unit quaternion. A unit
quaternion has a norm of 1, where the norm is defined as

norm q = a2 + b2 + c2 + d2.

Normalize a quaternion.

qNormalized = normalize(q1)

qNormalized = quaternion
 0.18257 + 0.36515i + 0.54772j + 0.7303k

Verify that this normalized unit quaternion has a norm of 1.

norm(qNormalized)

ans = 1.0000

The rotation matrix for the conjugate of a normalized quaternion is equal to the inverse of the
rotation matrix for that normalized quaternion.

4 Planning, Mapping, and Control

4-22

rotmat(conj(qNormalized),'point')

ans = 3×3

 -0.6667 0.6667 0.3333
 0.1333 -0.3333 0.9333
 0.7333 0.6667 0.1333

inv(rotmat(qNormalized,'point'))

ans = 3×3

 -0.6667 0.6667 0.3333
 0.1333 -0.3333 0.9333
 0.7333 0.6667 0.1333

Extract Quaternions from Transformation Matrix
If you have a 3-D transformation matrix created using functions such as rigid3d or affine3d, you
can extract the rotation matrix from it and represent it in the form of a quaternion. However, before
performing this conversion, you must first convert the rotation matrix from the postmultiply format to
the premultiply format expected by quaternions.

Postmultiply Format

To perform rotations using the rotation matrix part of a transformation matrix, multiply an (x, y, z)
point by this rotation matrix.

• In point rotations, this point is rotated within a frame of reference.
• In frame rotations, the frame of reference is rotated around this point.

Transformation matrices represented by rigid3d or affine3d objects use a postmultiply format. In
this format, the point is multiplied by the rotation matrix, in that order. To satisfy the matrix
multiplication, the point and its corresponding translation vector must be row vectors.

This equation shows the postmultiply format for a rotation matrix, R, and a translation vector, t.

x′ y′ z′ = x y z
R11 R12 R13
R21 R22 R23
R31 R32 R33

+ tx ty tz

This format also applies when R and t are combined into a homogeneous transformation matrix. In
this matrix, the 1 is used to satisfy the matrix multiplication and can be ignored.

x′ y′ z′ 1 = x y z 1

R11 R12 R13 0
R21 R22 R23 0
R31 R32 R33 0
tx ty tz 1

 Rotations, Orientations, and Quaternions for Automated Driving

4-23

Premultiply Format

In the premultiply format, the rotation matrix is multiplied by the point, in that order. To satisfy the
matrix multiplication, the point and its corresponding translation vector must be column vectors.

This equation shows the premultiply format, where R is the rotation matrix and t is the translation
vector.

x′
y′
z′

=
R11 R12 R13
R21 R22 R23
R31 R32 R33

x
y
z

+
tx
ty
tz

As with the postmultiply case, this format also applies when R and t are combined into a
homogeneous transformation matrix.

x′
y′
z′
1

=

R11 R12 R13 tx
R21 R22 R23 ty
R31 R32 R33 tz
0 0 0 1

x
y
z
1

Convert from Postmultiply to Premultiply Format

To convert a rotation matrix to the premultiply format expected by quaternions, take the transpose of
the rotation matrix.

Create a 3-D rigid geometric transformation object from a rotation matrix and translation vector. The
angle of rotation, θ, is in degrees.

theta = 30;
rot = [cosd(theta) sind(theta) 0; ...
 -sind(theta) cosd(theta) 0; ...
 0 0 1];
trans = [2 3 4];

tform = rigid3d(rot,trans)

tform =
 rigid3d with properties:

 Rotation: [3x3 double]
 Translation: [2 3 4]

The elements of the rotation matrix are ordered for rotating points using the postmultiply format.
Convert the matrix to the premultiply format by taking its transpose. Notice that the second element
of the first row and first column swap locations.

rotPost = tform.Rotation

rotPost = 3×3

 0.8660 0.5000 0
 -0.5000 0.8660 0
 0 0 1.0000

4 Planning, Mapping, and Control

4-24

rotPre = rotPost.'

rotPre = 3×3

 0.8660 -0.5000 0
 0.5000 0.8660 0
 0 0 1.0000

Create a quaternion from the premultiply version of the rotation matrix. Specify that the rotation
matrix is configured for point rotations.

q = quaternion(rotPre,'rotmat','point')

q = quaternion
 0.96593 + 0i + 0j + 0.25882k

To verify that the premultiplied quaternion and the postmultiplied rotation matrix produce the same
results, rotate a sample point using both approaches.

point = [1 2 3];
rotatedPointQuaternion = rotatepoint(q,point)

rotatedPointQuaternion = 1×3

 -0.1340 2.2321 3.0000

rotatedPointRotationMatrix = point * rotPost

rotatedPointRotationMatrix = 1×3

 -0.1340 2.2321 3.0000

To convert back to the original rotation matrix, extract a rotation matrix from the quaternion. Then,
create a rigid3d object by using the transpose of this rotation matrix.

R = rotmat(q,'point');
T = rigid3d(R',trans);
T.Rotation

ans = 3×3

 0.8660 0.5000 0
 -0.5000 0.8660 0
 0 0 1.0000

See Also
quaternion | rigid3d | affine3d | rotatepoint | rotateframe

More About
• “Build a Map from Lidar Data”
• “Build a Map from Lidar Data Using SLAM”

 Rotations, Orientations, and Quaternions for Automated Driving

4-25

Control Vehicle Velocity
This model uses a Longitudinal Controller Stanley block to control the velocity of a vehicle in forward
motion. In this model, the vehicle accelerates from 0 to 10 meters per second.

The Longitudinal Controller Stanley block is a discrete proportional-integral controller with integral
anti-windup. Given the current velocity and driving direction of a vehicle, the block outputs the
acceleration and deceleration commands needed to match the specified reference velocity.

Run the model. Then, open the scope to see the change in velocity and the corresponding
acceleration and deceleration commands.

4 Planning, Mapping, and Control

4-26

The Longitudinal Controller Stanley block saturates the acceleration command at a maximum value of
3 meters per second. The Maximum longitudinal acceleration (m/s^2) parameter of the block
determines this maximum value. Try tuning this parameter and resimulating the model. Observe the
effects of the change on the scope. Other parameters that you can tune include the gain coefficients
of the proportional and integral components of the block, using the Proportional gain, Kp and
Integral gain, Ki parameters, respectively.

See Also
Longitudinal Controller Stanley | Lateral Controller Stanley

More About
• “Automated Parking Valet in Simulink” on page 8-724

 Control Vehicle Velocity

4-27

Velocity Profile of Straight Path
This model uses a Velocity Profiler block to generate a velocity profile for a vehicle traveling forward
on a straight, 100-meter path that has no changes in direction.

The Velocity Profiler block generates velocity profiles based on the speed, acceleration, and jerk
constraints that you specify using parameters. You can use the generated velocity profile as the input
reference velocities of a vehicle controller.

This model is for illustrative purposes and does not show how to use the Velocity Profiler block in a
complete automated driving model. To see how to use this block in such a model, see the “Automated
Parking Valet in Simulink” on page 8-724 example.

Open and Inspect Model

The model consists of a single Velocity Profiler block with constant inputs. Open the model.

model = 'VelocityProfileStraightPath';
open_system(model)

The first three inputs specify information about the driving path.

• The Directions input specifies the driving direction of the vehicle along the path, where 1 means
forward and –1 means reverse. Because the vehicle travels only forward, the direction is 1 along
the entire path.

4 Planning, Mapping, and Control

4-28

• The CumLengths input specifies the length of the path. The path is 100 meters long and is
composed of a sequence of 200 cumulative path lengths.

• The Curvatures input specifies the curvature along the path. Because this path is straight, the
curvature is 0 along the entire path.

In a complete automated driving model, you can obtain these input values from the output of a Path
Smoother Spline block, which smooths a path based on a set of poses.

The StartVelocity and EndVelocity inputs specify the velocity of the vehicle at the start and end of
the path, respectively. The vehicle starts the path traveling at a velocity of 1 meter per second and
reaches the end of the path traveling at a velocity of 2 meters per second.

Generate Velocity Profile

Simulate the model to generate the velocity profile.

out = sim(model);

The output velocity profile is a sequence of velocities along the path that meet the speed,
acceleration, and jerk constraints specified in the parameters of the Velocity Profiler block.

The block also outputs the times at which the vehicle arrives at each point along the path. You can
use this output to visualize the velocities over time.

Visualize Velocity Profile

Use the simulation output to plot the velocity profile.

t = length(out.tout);
velocities = out.yout.signals(1).values(:,:,t);
times = out.yout.signals(2).values(:,:,t);

plot(times,velocities)
title('Velocity Profile')
xlabel('Times (s)')
ylabel('Velocities (m/s)')
grid on

 Velocity Profile of Straight Path

4-29

A vehicle that follows this velocity profile:

1 Starts at a velocity of 1 meter per second
2 Accelerates to a maximum speed of 10 meters per second, as specified by the Maximum

allowable speed (m/s) parameter of the Velocity Profiler block
3 Decelerates to its ending velocity of 2 meters per second

For comparison, plot the displacement of the vehicle over time by using the cumulative path lengths.

figure
cumLengths = linspace(0,100,200);
plot(times,cumLengths)
title('Displacement')
xlabel('Time (s)')
ylabel('Cumulative Path Length (m)')
grid on

4 Planning, Mapping, and Control

4-30

For details on how the block calculates the velocity profile, see the “Algorithms” section of the
Velocity Profiler block reference page.

See Also
Velocity Profiler | Path Smoother Spline

More About
• “Velocity Profile of Path with Curve and Direction Change” on page 4-32
• “Automated Parking Valet in Simulink” on page 8-724

 Velocity Profile of Straight Path

4-31

Velocity Profile of Path with Curve and Direction Change
This model uses a Velocity Profiler block to generate a velocity profile for a driving path that includes
a curve and a change in direction. In this model, the vehicle travels forward on a curved path for 50
meters, and then travels straight in reverse for another 50 meters.

The Velocity Profiler block generates velocity profiles based on the speed, acceleration, and jerk
constraints that you specify using parameters. You can use the generated velocity profile as the input
reference velocities of a vehicle controller.

This model is for illustrative purposes and does not show how to use the Velocity Profiler block in a
complete automated driving model. To see how to use this block in such a model, see the “Automated
Parking Valet in Simulink” on page 8-724 example.

Open and Inspect Model

The model consists of a single Velocity Profiler block with constant inputs. Open the model.

model = 'VelocityProfileCurvedPathDirectionChanges';
open_system(model)

4 Planning, Mapping, and Control

4-32

The first three inputs specify information about the driving path.

• The Directions input specifies the driving direction of the vehicle along the path, where 1 means
forward and –1 means reverse. In the first path segment, because the vehicle travels only forward,
the direction is 1 along the entire segment. In the second path segment, because the vehicle
travels only in reverse, the direction is –1 along the entire segment.

• The CumLengths input specifies the length of the path. The path consists of two 50-meter
segments. The first segment represents a forward left turn, and the second segment represents a
straight path in reverse. The path is composed of a sequence of 200 cumulative path lengths, with
100 lengths per 50-meter segment.

• The Curvatures input specifies the curvature along this path. The curvature of the first path
segment corresponds to a turning radius of 50 meters. Because the second path segment is
straight, the curvature is 0 along the entire segment.

In a complete automated driving model, you can obtain these input values from the output of a Path
Smoother Spline block, which smooths a path based on a set of poses.

The StartVelocity and EndVelocity inputs specify the velocity of the vehicle at the start and end of
the path, respectively. The vehicle starts the path traveling at a velocity of 1 meter per second and
reaches the end of the path traveling at a velocity of –1 meters per second. The negative velocity
indicates that the vehicle is traveling in reverse at the end of the path.

Generate Velocity Profile

Simulate the model to generate the velocity profile.

out = sim(model);

The output velocity profile is a sequence of velocities along the path that meet the speed,
acceleration, and jerk constraints specified in the parameters of the Velocity Profiler block.

The block also outputs the times at which the vehicle arrives at each point along the path. You can
use this output to visualize the velocities over time.

 Velocity Profile of Path with Curve and Direction Change

4-33

Visualize Velocity Profile

Use the simulation output to plot the velocity profile.

t = length(out.tout);
velocities = out.yout.signals(1).values(:,:,t);
times = out.yout.signals(2).values(:,:,t);

plot(times,velocities)
title('Velocity Profile')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
annotation('textarrow',[0.63 0.53],[0.56 0.56],'String',{'Direction change'});
grid on

For this path, the Velocity Profiler block generates two separate velocity profiles: one for the forward
left turn and one for the straight reverse motion. In the final output, the block concatenates these
velocities into a single velocity profile.

A vehicle that follows this velocity profile:

1 Starts at a velocity of 1 meter per second
2 Accelerates forward
3 Decelerates until its velocity reaches 0, so that the vehicle can switch driving directions
4 Accelerates in reverse

4 Planning, Mapping, and Control

4-34

5 Decelerates until it reaches its ending velocity

In both driving directions, the vehicle fails to reach the maximum speed specified by the Maximum
allowable speed (m/s) parameter of the Velocity Profiler block, because the path is too short.

For details on how the block calculates the velocity profile, see the “Algorithms” section of the
Velocity Profiler block reference page.

See Also
Velocity Profiler | Path Smoother Spline

More About
• “Velocity Profile of Straight Path” on page 4-28
• “Automated Parking Valet in Simulink” on page 8-724

 Velocity Profile of Path with Curve and Direction Change

4-35

Plan Path Using A-Star Path Planners
Plan the shortest vehicle path to a parking spot using the A* grid algorithm. Then impose
nonholonomic constraints on the vehicle and replan the path using the Hybrid A* algorithm.

Create Occpancy Map

Load a costmap of a parking lot. Create an occupancyMap (Navigation Toolbox) object using the
properties of the costmap object. Visualize the occupancy map.

data = load('parkingLotCostmapReducedInflation.mat');
costmapObj = data.parkingLotCostmapReducedInflation;
resolution = 1/costmapObj.CellSize;
oMap = occupancyMap(costmapObj.Costmap,resolution);
oMap.FreeThreshold = costmapObj.FreeThreshold;
oMap.OccupiedThreshold = costmapObj.OccupiedThreshold;
show(oMap)

Plan Path Using A* Grid Planner

Use the occupancy map to create a plannerAStarGrid (Navigation Toolbox) object.

gridPlanner = plannerAStarGrid(oMap);

Define the start and goal positions in world coordinate frame. The origin of this coordinate frame is at
the bottom-left corner of the map.

4 Planning, Mapping, and Control

4-36

startPos = [11,10];
goalPos = [31.5,18];

Plan a path from the start point to the goal point in world coordinates.

path = plan(gridPlanner,startPos,goalPos,"world");

Visualize the path and the explored nodes using the show object function.

show(gridPlanner)

Impose Nonholonomic Constraints and Replan Using Hybrid A* Planner

Create a state validator object for validating planned path using collision checking. Assign the
occupancy map to the state validator object.

validator = validatorOccupancyMap;
validator.Map = oMap;

Initialize a plannerHybridAStar (Navigation Toolbox) object with the state validator object. Impose
the nonholonomic constraints of minimum turning radius and motion primitive length by specifying
the MinTurningRadius and MotionPrimitiveLength properties of the planner.

hybridPlanner = plannerHybridAStar(validator,MinTurningRadius=4,MotionPrimitiveLength=6);

Define start and goal poses for the vehicle as [x, y, theta] vectors. x and y specify the position in
meters, and theta specifies the orientation angle in radians.

 Plan Path Using A-Star Path Planners

4-37

startPose = [4 4 pi/2]; % [meters, meters, radians]
goalPose = [45 27 -pi/2];

Plan a path from the start pose to the goal pose.

refpath = plan(hybridPlanner,startPose,goalPose);

Visualize the path using show object function.

show(hybridPlanner)

4 Planning, Mapping, and Control

4-38

Cuboid Driving Scenario Simulation

5

Create Driving Scenario Interactively and Generate Synthetic
Sensor Data

This example shows how to create a driving scenario and generate vision and radar sensor detections
from the scenario by using the Driving Scenario Designer app. You can use this synthetic data to
test your controllers or sensor fusion algorithms.

This example shows the entire workflow for creating a scenario and generating synthetic sensor data.
Alternatively, you can generate sensor data from prebuilt scenarios. See “Prebuilt Driving Scenarios
in Driving Scenario Designer” on page 5-22.

Create Driving Scenario
To open the app, at the MATLAB command prompt, enter drivingScenarioDesigner.

Add a Road
Add a curved road to the scenario canvas. On the app toolstrip, click Add Road. Then click one
corner of the canvas, extend the road to the opposite corner, and double-click the canvas to create
the road.

To make the road curve, add a road center around which to curve it. Right-click the middle of the
road and select Add Road Center. Then drag the added road center to one of the empty corners of
the canvas.

5 Cuboid Driving Scenario Simulation

5-2

To adjust the road further, you can click and drag any of the road centers. To create more complex
curves, add more road centers.

Add Lanes
By default, the road is a single lane and has no lane markings. To make the scenario more realistic,
convert the road into a two-lane highway. In the left pane, on the Roads tab, expand the Lanes
section. Set the Number of lanes to [1 1]. The app sets the Lane Width parameter to 3.6 meters,
which is a typical highway lane width.

 Create Driving Scenario Interactively and Generate Synthetic Sensor Data

5-3

The white, solid lanes markings on either edge of the road indicate the road shoulder. The yellow,
double-solid lane marking in the center indicates that the road is a two-way road. To inspect or
modify these lanes, from the Lane Marking list, select one of the lanes and modify the lane
parameters.

Add Barriers
To add barriers along the edges of the curved road, use the app toolstrip or the road context menu.
On the app toolstrip, click Add Actor > Jersey Barrier. Move the cursor to the right edge of the
road and click to add a barrier along it. This also opens up the Barriers tab on the left pane. To add a
gap of 1m between the barrier segments change the value of the Segment Gap (m) property in the
Barriers tab to 1.

5 Cuboid Driving Scenario Simulation

5-4

To add a guardrail barrier to the left edge of the road using the road context menu, right click on the
road and select Add Guardrail > Left edge. Specify a 1m gap between the barrier segments for the
guardrail, using the Segment Gap (m) property in the Barriers tab.

Add Vehicles
By default, the first car that you add to a scenario is the ego vehicle, which is the main car in the
driving scenario. The ego vehicle contains the sensors that detect the lane markings, pedestrians, or
other cars in the scenario. Add the ego vehicle, and then add a second car for the ego vehicle to
detect.

 Create Driving Scenario Interactively and Generate Synthetic Sensor Data

5-5

Add Ego Vehicle

To add the ego vehicle, right-click one end of the road, and select Add Car. To specify the trajectory
of the car, right-click the car, select Add Waypoints, and add waypoints along the road for the car to
pass through. After you add the last waypoint along the road, press Enter. The car autorotates in the
direction of the first waypoint. For finer precision over the trajectory, you can adjust the waypoints.
You can also right-click the path to add new waypoints.

The triangle indicates the pose of the vehicle, with the origin located at the center of the rear axle of
the vehicle.

Adjust the speed of the car. In the left pane, on the Actors tab, set Constant Speed to 15 m/s. For
more control over the speed of the car, set the velocity between waypoints in the v (m/s) column of
the Waypoints, Speeds, Wait Times, and Yaw table.

Add Second Car

Add a vehicle for the ego vehicle sensors to detect. On the app toolstrip, click Add Actor and select
Car. Add the second car with waypoints, driving in the lane opposite from the ego vehicle and on the
other end of the road. Leave the speed and other settings of the car unchanged.

5 Cuboid Driving Scenario Simulation

5-6

Add a Pedestrian
Add to the scenario, a pedestrian crossing the road. Zoom in on the middle of the road, right-click one
side of the road, and click Add Pedestrian. Then, to set the path of the pedestrian, add a waypoint
on the other side of the road.

By default, the color of the pedestrian nearly matches the color of the lane markings. To make the
pedestrian stand out more, from the Actors tab, click the corresponding color patch for the
pedestrian to modify its color.

To test the speed of the cars and the pedestrian, run the simulation. Adjust actor speeds or other
properties as needed by selecting the actor from the left pane of the Actors tab.

 Create Driving Scenario Interactively and Generate Synthetic Sensor Data

5-7

For example, if the cars are colliding with the pedestrian, in the v (m/s) column of the Waypoints,
Speeds, Wait Times, and Yaw table, adjust the speeds of the cars or the pedestrian. Alternatively, in
the wait (s) column of the table, set a wait time for the cars at the waypoint before the pedestrian
crosses the street.

By default, the simulation ends when the first actor completes its trajectory. To end the simulation
only after all actors complete their trajectories, on the app toolstrip, first click Settings. Then, set
Stop Condition to Last actor stops.

Add Sensors
Add camera, radar, and lidar sensors to the ego vehicle. Use these sensors to generate detections and
point cloud data from the scenario.

Add Camera

On the app toolstrip, click Add Camera. The sensor canvas shows standard locations at which to
place sensors. Click the frontmost predefined sensor location to add a camera sensor to the front
bumper of the ego vehicle.

5 Cuboid Driving Scenario Simulation

5-8

To place sensors more precisely, you can disable snapping options. In the bottom-left corner of the
sensor canvas, click the Configure the Sensor Canvas button .

By default, the camera detects only actors and not lanes. To enable lane detections, on the Sensors
tab in the left pane, expand the Detection Parameters section and set Detection Type to Objects
& Lanes. Then expand the Lane Settings section and update the settings as needed.

Add Radars

Snap a radar sensor to the front-left wheel. Right-click the predefined sensor location for the wheel
and select Add Radar. By default, sensors added to the wheels are short-range sensors.

Tilt the radar sensor toward the front of the car. Move your cursor over the coverage area, then click
and drag the angle marking.

 Create Driving Scenario Interactively and Generate Synthetic Sensor Data

5-9

Add an identical radar sensor to the front-right wheel. Right-click the sensor on the front-left wheel
and click Copy. Then right-click the predefined sensor location for the front-right wheel and click
Paste. The orientation of the copied sensor mirrors the orientation of the sensor on the opposite
wheel.

5 Cuboid Driving Scenario Simulation

5-10

Add Lidar

Snap a lidar sensor to the center of the roof of the vehicle. Right-click the predefined sensor location
for the roof center and select Add Lidar.

 Create Driving Scenario Interactively and Generate Synthetic Sensor Data

5-11

The lidar sensor appears in black. The gray surrounding the vehicle is the coverage area of the
sensor. Zoom out to see the full view of the coverage areas for the different sensors.

5 Cuboid Driving Scenario Simulation

5-12

Generate Synthetic Sensor Data
To generate data from the sensors, click Run. As the scenario runs, The Bird’s-Eye Plot displays the
detections and point cloud data.

The Ego-Centric View displays the scenario from the perspective of the ego vehicle.

 Create Driving Scenario Interactively and Generate Synthetic Sensor Data

5-13

Because you specified a lidar sensor, both the Ego-Centric View and Bird's-Eye Plot display the
mesh representations of actors instead of the cuboid representations. The lidar sensors use these
more detailed representations of actors to generate point cloud data. The Scenario Canvas still
displays only the cuboid representations. The radar and vision sensors base their detections on the
cuboid representations.

To turn off actor meshes, certain types of detections, or other aspects of the displays, use the
properties under Display on the app toolstrip.

By default, the scenario ends when the first actor stops moving. To run the scenario for a set amount
of time, on the app toolstrip, click Settings and change the stop condition.

Next, export the sensor detection:

• To export sensor data to the MATLAB workspace, on the app toolstrip, select Export > Export
Sensor Data. Name the workspace variable and click OK. The app saves the sensor data as a
structure containing sensor data such as the actor poses, object detections, and lane detections at
each time step.

• To export a MATLAB function that generates the scenario and its sensor data, select Export >
Export MATLAB Function. This function returns the sensor data as a structure, the scenario as
a drivingScenario object, and the sensor models as System objects. By modifying this function,
you can create variations of the original scenario. For an example of this process, see “Create
Driving Scenario Variations Programmatically” on page 5-125.

Save Scenario
After you generate the detections, click Save to save the scenario file. You can also save the sensor
models as separate files and save the road and actor models together as a separate scenario file.

You can reopen this scenario file from the app. Alternatively, at the MATLAB command prompt, you
can use this syntax.

drivingScenarioDesigner(scenarioFileName)

You can also reopen the scenario by using the exported drivingScenario object. At the MATLAB
command prompt, use this syntax, where scenario is the name of the exported object.

drivingScenarioDesigner(scenario)

To reopen sensors, use this syntax, where sensors is a sensor object or a cell array of such objects.

5 Cuboid Driving Scenario Simulation

5-14

drivingScenarioDesigner(scenario,sensors)

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader block to read
roads and actors from the scenario file or drivingScenario object into your model. This block does
not directly read sensor data. To add sensors that you created in the app to a Simulink model,
generate a model containing your scenario and sensors by selecting Export > Export Simulink
Model. In the model, the generated Scenario Reader block reads the scenario and the generated
sensor blocks define the sensors.

See Also
Apps
Driving Scenario Designer

Blocks
Scenario Reader | Driving Radar Data Generator | Vision Detection Generator | Lidar Point Cloud
Generator

Objects
drivingScenario | drivingRadarDataGenerator | visionDetectionGenerator |
lidarPointCloudGenerator | insSensor

More About
• “Keyboard Shortcuts and Mouse Actions for Driving Scenario Designer” on page 5-16
• “Create Roads with Multiple Lane Specifications Using Driving Scenario Designer” on page 5-

159
• “Create Reverse Motion Driving Scenarios Interactively” on page 5-70
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-22
• “Create Driving Scenario Variations Programmatically” on page 5-125
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-140
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-146

 Create Driving Scenario Interactively and Generate Synthetic Sensor Data

5-15

Keyboard Shortcuts and Mouse Actions for Driving Scenario
Designer

Note On Macintosh platforms, use the Command (⌘) key instead of Ctrl.

Canvas Operations
These operations apply when you edit scenarios or sensors on the Scenario Canvas or Sensor
Canvas panes, respectively.

Task Action
Cut road, actor, barrier, or sensor Ctrl+X
Copy road, actor, barrier, or sensor Ctrl+C
Paste road, actor, barrier, or sensor Ctrl+V
Delete road, actor, barrier, or sensor Delete
Undo Ctrl+Z
Redo Ctrl+Y
Zoom in or out Scroll wheel

Road Operations
These operations apply when you add or edit roads on the Scenario Canvas pane.

Task Action
Move road one meter in any direction Up, down, left, and right arrows
Commit a road to the canvas at the last-clicked
road center

Press Enter or right-click in the canvas while
creating the road

Commit a road to the canvas and create a road
center at the current location

Double-click in the canvas while creating the
road

A new road center is committed at the point
where you double-click.

Exit the road editing mode and remove any road
centers added while editing

Esc

Add a road center to an existing road Double-click the selected road at the point where
you want to add the road center

Actor Operations
Actor Selection, Placement, and Movement

These operations apply after you add actors to the Scenario Canvas pane.

5 Cuboid Driving Scenario Simulation

5-16

Task Action
Select an actor Click
Select multiple actors Ctrl+click

Alternatively, hold Shift and draw a box around
the actors you want to select. To select an actor,
the actor origin must be within the box.

Align actors along a selected dimension Right-click one of the selected actors, and select
one of the options in the Align Actors menu. You
can align actors along their top, bottom, left, or
right sides, or along their horizontal or vertical
centers. This figure shows actors aligned along
their left side.

 Keyboard Shortcuts and Mouse Actions for Driving Scenario Designer

5-17

Task Action
Distribute selected actors evenly along a road Right-click one of the selected actors, and select

one of the options in the Distribute Actors
menu. You can distribute actors horizontally or
vertically. This figure shows actors distributed
vertically along a road.

Move selected actors 1 meter in any direction Up, down, left, and right arrows
Move selected actors 0.1 meter in any direction Hold Ctrl and use the up, down, left, and right

arrows

Actor Trajectories

These operations apply after you select an actor on the Scenario Canvas pane and right-click the
actor to add trajectory waypoints. If you select multiple actors, then these operations are disabled.

Task Action
Commit a trajectory to the canvas at the last-
clicked waypoint

Press Enter or right-click while creating the
trajectory

Commit an actor trajectory to the canvas and
create a waypoint at the current location

Double-click in the canvas while creating the
trajectory

A new waypoint is committed at the point where
you double-click.

Exit the trajectory editing mode and remove any
waypoints added while editing

Esc

Add a waypoint to an existing trajectory Double-click the selected actor at the point where
you want to add the waypoint

Add forward motion waypoints to a trajectory Press Ctrl+F and add new waypoints
Add reverse motion waypoints to a trajectory Press Ctrl+R and add new waypoints to

trajectory

Actor Rotation

These operations apply to actors on the Scenario Canvas pane that do not already have specified
trajectories. To modify existing trajectories for a selected actor, interactively move actor waypoints.
Alternatively, on the Actors pane, edit the yaw values in the Waypoints, Speeds, Wait Times, and
Yaw table.

5 Cuboid Driving Scenario Simulation

5-18

To interactively rotate an actor that does not already have a trajectory, move your pointer over the
actor and select the actor rotation widget.

If you do not see this widget, try zooming in.

Alternatively, click in the pane to select the actor you want to rotate and use these keyboard
shortcuts.

If you have multiple actors selected, then these operations apply to all selected actors.

Task Action
Rotate actor 1 degree clockwise Hold Alt and press the right arrow key
Rotate actor 1 degree counterclockwise Hold Alt and press the left arrow key
Rotate actor 15 degrees clockwise Hold Alt+Ctrl and press the right arrow key
Rotate actor 15 degrees counterclockwise Hold Alt+Ctrl and press the left arrow key
Set actor rotation to 0 degrees Hold Alt and press the up arrow key
Set actor rotation to 180 degrees Hold Alt and press the down arrow key

Preview Actor Times of Arrival
This operation applies when at least one actor in the driving scenario has a specified wait time or
non-default spawn or despawn times. To specify a wait time or spawn and despawn times for an actor,
use the wait (s) parameter in the Waypoints, Speeds, Wait Times, and Yaw table or the Actor
spawn and despawn parameter, respectively.

 Keyboard Shortcuts and Mouse Actions for Driving Scenario Designer

5-19

Task Action
Preview actor times of arrival at waypoints Point to a waypoint along the trajectory of an

actor

Barrier Placement Operations
These operations apply while you add barriers to the Scenario Canvas pane using Add Actor >
Jersey Barrier or Add Actor > Guardrail.

Task Action
Add a barrier to a single road edge. Single Click on the highlighted road edge.
Add barriers to multiple road edges. Ctrl+Click on the highlighted road edge.

Continue to add barriers to multiple road edges
as required.

Select multiple road segments on the same side
of the road.

Shift+Click on a road edge.

If any intersections exist, barriers will not be
added to the area of intersection.

Sensor Operations
These operations apply after you select a sensor on the Sensor Canvas pane.

Task Action
Undo a sensor rotation while still rotating it. Esc

5 Cuboid Driving Scenario Simulation

5-20

File Operations
Task Action
Open scenario file Ctrl+O
Save scenario file Ctrl+S

See Also
Driving Scenario Designer

 Keyboard Shortcuts and Mouse Actions for Driving Scenario Designer

5-21

Prebuilt Driving Scenarios in Driving Scenario Designer
The Driving Scenario Designer app provides a library of prebuilt scenarios representing common
driving maneuvers. The app also includes scenarios representing European New Car Assessment
Programme (Euro NCAP®) test protocols and cuboid versions of the prebuilt scenes used in the 3D
simulation environment.

Choose a Prebuilt Scenario
To get started, open the Driving Scenario Designer app. At the MATLAB command prompt, enter
drivingScenarioDesigner.

In the app, the prebuilt scenarios are stored as MAT-files and organized into folders. To open a
prebuilt scenario file, from the app toolstrip, select Open > Prebuilt Scenario. Then select a
prebuilt scenario from one of the folders.

• “Euro NCAP” on page 5-22
• “Intersections” on page 5-22
• “Simulation 3D” on page 5-27
• “Turns” on page 5-27
• “U-Turns” on page 5-35

Euro NCAP

These scenarios represent Euro NCAP test protocols. The app includes scenarios for testing
autonomous emergency braking, emergency lane keeping, and lane keep assist systems. For more
details, see “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-44.

Intersections

These scenarios involve common traffic patterns at four-way intersections and roundabouts.

5 Cuboid Driving Scenario Simulation

5-22

File Name Description
EgoVehicleGoesStraight_BicycleFromLeft
GoesStraight_Collision.mat

The ego vehicle travels north and goes straight
through an intersection. A bicycle coming from
the left side of the intersection goes straight and
collides with the ego vehicle.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-23

File Name Description
EgoVehicleGoesStraight_PedestrianToRig
htGoesStraight.mat

The ego vehicle travels north and goes straight
through an intersection. A pedestrian in the lane
to the right of the ego vehicle also travels north
and goes straight through the intersection.

5 Cuboid Driving Scenario Simulation

5-24

File Name Description
EgoVehicleGoesStraight_VehicleFromLeft
GoesStraight.mat

The ego vehicle travels north and goes straight
through an intersection. A vehicle coming from
the left side of the intersection also goes straight.
The ego vehicle crosses in front of the other
vehicle.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-25

File Name Description
EgoVehicleGoesStraight_VehicleFromRigh
tGoesStraight.mat

The ego vehicle travels north and goes straight
through an intersection. A vehicle coming from
the right side of the intersection also goes
straight and crosses through the intersection
first.

5 Cuboid Driving Scenario Simulation

5-26

File Name Description
Roundabout.mat The ego vehicle travels north and crosses the

path of a pedestrian while entering a roundabout.
The ego vehicle then crosses the path of another
vehicle as both vehicles drive through the
roundabout.

Simulation 3D

These scenarios are cuboid versions of several of the prebuilt scenes available in the 3D simulation
environment. You can add vehicles and trajectories to these scenarios. Then, you can include these
vehicles and trajectories in your Simulink model to simulate them in the 3D environment. This
environment is rendered using the Unreal Engine from Epic Games. For more details on these
scenarios, see “Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer” on page 5-
65.

Turns

These scenarios involve turns at four-way intersections.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-27

File Name Description
EgoVehicleGoesStraight_VehicleFromLeft
TurnsLeft.mat

The ego vehicle travels north and goes straight
through an intersection. A vehicle coming from
the left side of the intersection turns left and
ends up in front of the ego vehicle.

5 Cuboid Driving Scenario Simulation

5-28

File Name Description
EgoVehicleGoesStraight_VehicleFromRigh
tTurnsRight.mat

The ego vehicle travels north and goes straight
through an intersection. A vehicle coming from
the right side of the intersection turns right and
ends up in front of the ego vehicle.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-29

File Name Description
EgoVehicleGoesStraight_VehicleInFrontT
urnsLeft.mat

The ego vehicle travels north and goes straight
through an intersection. A vehicle in front of the
ego vehicle turns left at the intersection.

5 Cuboid Driving Scenario Simulation

5-30

File Name Description
EgoVehicleGoesStraight_VehicleInFrontT
urnsRight.mat

The ego vehicle travels north and goes straight
through an intersection. A vehicle in front of the
ego vehicle turns right at the intersection.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-31

File Name Description
EgoVehicleTurnsLeft_PedestrianFromLeft
GoesStraight.mat

The ego vehicle travels north and turns left at an
intersection. A pedestrian coming from the left
side of the intersection goes straight. The ego
vehicle completes its turn before the pedestrian
finishes crossing the intersection.

5 Cuboid Driving Scenario Simulation

5-32

File Name Description
EgoVehicleTurnsLeft_PedestrianInOppLan
eGoesStraight.mat

The ego vehicle travels north and turns left at an
intersection. A pedestrian in the opposite lane
goes straight through the intersection. The ego
vehicle completes its turn before the pedestrian
finishes crossing the intersection.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-33

File Name Description
EgoVehicleTurnsLeft_VehicleInFrontGoes
Straight.mat

The ego vehicle travels north and turns left at an
intersection. A vehicle in front of the ego vehicle
goes straight through the intersection.

5 Cuboid Driving Scenario Simulation

5-34

File Name Description
EgoVehicleTurnsRight_VehicleInFrontGoe
sStraight.mat

The ego vehicle travels north and turns right at
an intersection. A vehicle in front of the ego
vehicle goes straight through the intersection.

U-Turns

These scenarios involve U-turns at four-way intersections.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-35

File Name Description
EgoVehicleGoesStraight_VehicleInOppLaneM
akesUTurn.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle in
the opposite lane makes a U-turn. The ego
vehicle ends up behind the vehicle.

5 Cuboid Driving Scenario Simulation

5-36

File Name Description
EgoVehicleMakesUTurn_PedestrianFromRight
GoesStraight.mat

The ego vehicle travels north and makes a U-
turn at an intersection. A pedestrian coming
from the right side of the intersection goes
straight and crosses the path of the U-turn.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-37

File Name Description
EgoVehicleMakesUTurn_VehicleInOppLaneGoe
sStraight.mat

The ego vehicle travels north and makes a U-
turn at an intersection. A vehicle traveling
south in the opposite direction goes straight
and ends up behind the ego vehicle.

5 Cuboid Driving Scenario Simulation

5-38

File Name Description
EgoVehicleTurnsLeft_Vehicle1MakesUTurn_V
ehicle2GoesStraight.mat

The ego vehicle travels north and turns left at
an intersection. A vehicle in front of the ego
vehicle makes a U-turn at the intersection. A
second vehicle, a truck, comes from the right
side of the intersection. The ego vehicle ends
up in the lane next to the truck.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-39

File Name Description
EgoVehicleTurnsLeft_VehicleFromLeftMakes
UTurn.mat

The ego vehicle travels north and turns left at
an intersection. A vehicle coming from the left
side of the intersection makes a U-turn. The
ego vehicle ends up in the lane next to the
other vehicle.

5 Cuboid Driving Scenario Simulation

5-40

File Name Description
EgoVehicleTurnsRight_VehicleFromRightMak
esUTurn.mat

The ego vehicle travels north and turns right
at an intersection. A vehicle coming from the
right side of the intersection makes a U-turn.
The ego vehicle ends up behind the vehicle, in
an adjacent lane.

Modify Scenario
After you choose a scenario, you can modify the parameters of the roads and actors. For example,
from the Actors tab on the left, you can change the position or velocity of the ego vehicle or other
actors. From the Roads tab, you can change the width of the lanes or the type of lane markings.

You can also add or modify sensors. For example, from the Sensors tab, you can change the detection
parameters or the positions of the sensors. By default, in Euro NCAP scenarios, the ego vehicle does
not contain sensors. All other prebuilt scenarios have at least one front-facing camera or radar
sensor, set to detect lanes and objects.

Generate Synthetic Sensor Data
To generate detections from the sensors, on the app toolstrip, click Run. As the scenario runs, the
Ego-Centric View displays the scenario from the perspective of the ego vehicle. The Bird’s-Eye
Plot displays the detections.

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-41

Export the sensor data.

• To export sensor data to the MATLAB workspace, on the app toolstrip, select Export > Export
Sensor Data. Name the workspace variable and click OK. The app saves the sensor data as a
structure containing sensor data such as the actor poses, object detections, and lane detections at
each time step.

• To export a MATLAB function that generates the scenario and its sensor data, select Export >
Export MATLAB Function. This function returns the sensor data as a structure, the scenario as
a drivingScenario object, and the sensor models as System objects. By modifying this function,
you can create variations of the original scenario. For an example of this process, see “Create
Driving Scenario Variations Programmatically” on page 5-125.

Save Scenario
Because prebuilt scenarios are read-only, save a copy of the driving scenario to a new folder. To save
the scenario file, on the app toolstrip, select Save > Scenario File As.

You can reopen this scenario file from the app. Alternatively, at the MATLAB command prompt, you
can use this syntax.

drivingScenarioDesigner(scenarioFileName)

You can also reopen the scenario by using the exported drivingScenario object. At the MATLAB
command prompt, use this syntax, where scenario is the name of the exported object.

drivingScenarioDesigner(scenario)

To reopen sensors, use this syntax, where sensors is a sensor object or a cell array of such objects.

5 Cuboid Driving Scenario Simulation

5-42

drivingScenarioDesigner(scenario,sensors)

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader block to read
roads and actors from the scenario file or drivingScenario object into your model. This block does
not directly read sensor data. To add sensors that you created in the app to a Simulink model,
generate a model containing your scenario and sensors by selecting Export > Export Simulink
Model. In the model, the generated Scenario Reader block reads the scenario and the generated
sensor blocks define the sensors.

See Also
Apps
Driving Scenario Designer

Blocks
Driving Radar Data Generator | Vision Detection Generator | Lidar Point Cloud Generator

Objects
drivingScenario | drivingRadarDataGenerator | visionDetectionGenerator |
lidarPointCloudGenerator | insSensor

More About
• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2
• “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-44
• “Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer” on page 5-65
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-140
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-146

 Prebuilt Driving Scenarios in Driving Scenario Designer

5-43

Euro NCAP Driving Scenarios in Driving Scenario Designer
The Driving Scenario Designer app provides a library of prebuilt scenarios representing European
New Car Assessment Programme (Euro NCAP) test protocols. The app includes scenarios for testing
autonomous emergency braking (AEB), emergency lane keeping (ELK), and lane keep assist (LKA)
systems.

Choose a Euro NCAP Scenario
To get started, open the Driving Scenario Designer app. At the MATLAB command prompt, enter
drivingScenarioDesigner.

In the app, the Euro NCAP scenarios are stored as MAT-files and organized into folders. To open a
Euro NCAP file, on the app toolstrip, select Open > Prebuilt Scenario. The PrebuiltScenarios
folder opens, which includes subfolders for all prebuilt scenarios available in the app (see also
“Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-22).

Double-click the EuroNCAP folder, and then choose a Euro NCAP scenario from one of these
subfolders.

• “Autonomous Emergency Braking” on page 5-44
• “Emergency Lane Keeping” on page 5-52
• “Lane Keep Assist” on page 5-56

Autonomous Emergency Braking

These scenarios are designed to test autonomous emergency braking (AEB) systems. AEB systems
warn drivers of impending collisions and automatically apply brakes to prevent collisions or reduce
the impact of collisions. Some AEB systems prepare the vehicle and restraint systems for impact. The
table describes a subset of the AEB scenarios.

5 Cuboid Driving Scenario Simulation

5-44

File Name Description
AEB_Bicyclist_Longitudinal_25width.mat The ego vehicle collides with the bicyclist that is

in front of it. Before the collision, the bicyclist
and ego vehicle are traveling in the same
direction along the longitudinal axis. At collision
time, the bicycle is 25% of the way across the
width of the ego vehicle.

Additional scenarios vary the location of the
bicycle at collision time.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-45

File Name Description
AEB_CCRb_2_initialGap_12m.mat A car-to-car rear braking (CCRb) scenario, where

the ego vehicle rear-ends a braking vehicle. The
braking vehicle begins to decelerate at 2 m/s2.
The initial gap between the ego vehicle and the
braking vehicle is 12 m.

Additional scenarios vary the amount of
deceleration and the initial gap between the ego
vehicle and braking vehicle.

5 Cuboid Driving Scenario Simulation

5-46

File Name Description
AEB_CCRm_50overlap.mat A car-to-car rear moving (CCRm) scenario, where

the ego vehicle rear-ends a moving vehicle. At
collision time, the ego vehicle overlaps with 50%
of the width of the moving vehicle.

Additional scenarios vary the amount of overlap
and the location of the overlap.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-47

File Name Description
AEB_CCRs_-75overlap.mat A car-to-car rear stationary (CCRs) scenario,

where the ego vehicle rear-ends a stationary
vehicle. At collision time, the ego vehicle overlaps
with –75% of the width of the stationary vehicle.
When the ego vehicle is to the left of the other
vehicle, the percent overlap is negative.

Additional scenarios vary the amount of overlap
and the location of the overlap.

5 Cuboid Driving Scenario Simulation

5-48

File Name Description
AEB_Pedestrian_Farside_50width.mat The ego vehicle collides with a pedestrian who is

traveling from the left side of the road, which
Euro NCAP test protocols refer to as the far side.
These protocols assume that vehicles travel on
the right side of the road. Therefore, the left side
of the road is the side farthest from the ego
vehicle. At collision time, the pedestrian is 50% of
the way across the width of the ego vehicle.

Additional scenarios vary the location of the
pedestrian at collision time.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-49

File Name Description
AEB_PedestrianChild_Nearside_50width.m
at

The ego vehicle collides with a pedestrian who is
traveling from the right side of the road, which
Euro NCAP test protocols refer to as the near
side. These protocols assume that vehicles travel
on the right side of the road. Therefore, the right
side of the road is the side nearest to the ego
vehicle. At collision time, the pedestrian is 50% of
the way across the width of the ego vehicle.

5 Cuboid Driving Scenario Simulation

5-50

File Name Description
AEB_PedestrianTurning_Farside_50width.
mat

The ego vehicle turns at an intersection and
collides with a pedestrian who is traveling
parallel with the left side, or far side, of the
vehicle at the start of the simulation. At collision
time, the pedestrian is 50% of the way across the
width of the ego vehicle.

In an additional scenario, the pedestrian is on the
other side of the intersection and travels parallel
with the right side, or near side, of the vehicle at
the start of the simulation.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-51

File Name Description
Reverse_AEB_Pedestrian_Stationary_50wi
dth.mat

The ego vehicle travels in reverse and collides
with a stationary pedestrian. At collision time, the
pedestrian is 50% of the way across the width of
the ego vehicle.

In an additional scenario, before the collision, the
pedestrian travels from the right side, or near
side, of the forward frame of reference of the
vehicle.

Emergency Lane Keeping

These scenarios are designed to test emergency lane keeping (ELK) systems. ELK systems prevent
collisions by warning drivers of impending, unintentional lane departures. The table describes a
subset of the ELK scenarios.

5 Cuboid Driving Scenario Simulation

5-52

File Name Description
ELK_FasterOvertakingVeh_Intent_Vlat_0.
5.mat

The ego vehicle intentionally changes lanes and
collides with a faster, overtaking vehicle that is in
the other lane. The ego vehicle travels at a lateral
velocity of 0.5 m/s.

Additional scenarios vary the lateral velocity and
whether the lane change was intentional or
unintentional.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-53

File Name Description
ELK_OncomingVeh_Vlat_0.3.mat The ego vehicle unintentionally changes lanes

and collides with an oncoming vehicle that is in
the other lane. The ego vehicle travels at a lateral
velocity of 0.3 m/s.

Additional scenarios vary the lateral velocity.

5 Cuboid Driving Scenario Simulation

5-54

File Name Description
ELK_OvertakingVeh_Unintent_Vlat_0.3.ma
t

The ego vehicle unintentionally changes lanes,
overtakes a vehicle in the other lane, and collides
with that vehicle. The ego vehicle travels at a
lateral velocity of 0.3 m/s.

Additional scenarios vary the lateral velocity and
whether the lane change was intentional or
unintentional.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-55

File Name Description
ELK_RoadEdge_NoBndry_Vlat_0.2.mat The ego vehicle unintentionally changes lanes

and ends up on the road edge. The road edge has
no lane boundary markings. The ego vehicle
travels at a lateral velocity of 0.2 m/s.

Additional scenarios vary the lateral velocity and
whether the road edge has a solid boundary,
dashed boundary, or no boundary.

Lane Keep Assist

These scenarios are designed to test lane keep assist (LKA) systems. LKA systems detect
unintentional lane departures and automatically adjust the steering angle of the vehicle to stay within
the lane boundaries. The table lists a subset of the LKA scenarios.

5 Cuboid Driving Scenario Simulation

5-56

File Names Description
LKA_DashedLine_Solid_Left_Vlat_0.5.mat The ego vehicle unintentionally departs from a

lane that is dashed on the left and solid on the
right. The car departs the lane from the left
(dashed) side, traveling at a lateral velocity of 0.5
m/s.

Additional scenarios vary the lateral velocity and
whether the dashed lane that the vehicle crosses
over is on the left or right.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-57

File Names Description
LKA_DashedLine_Unmarked_Right_Vlat_0.5
.mat

The ego vehicle unintentionally departs from a
lane that is dashed on the right and unmarked on
the left. The car departs the lane from the right
(dashed) side, traveling at a lateral velocity of 0.5
m/s.

Additional scenarios vary the lateral velocity and
whether the dashed lane marking that the vehicle
crosses over is on the left or right.

5 Cuboid Driving Scenario Simulation

5-58

File Names Description
LKA_RoadEdge_NoBndry_Vlat_0.5.mat The ego vehicle unintentionally departs from a

lane and ends up on the road edge. The road
edge has no lane boundary markings. The car
travels at a lateral velocity of 0.5 m/s.

Additional scenarios vary the lateral velocity.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-59

File Names Description
LKA_RoadEdge_NoMarkings_Vlat_0.5.mat The ego vehicle unintentionally departs from a

lane and ends up on the road edge. The road has
no lane markings. The car travels at a lateral
velocity of 0.5 m/s.

Additional scenarios vary the lateral velocity.

5 Cuboid Driving Scenario Simulation

5-60

File Names Description
LKA_SolidLine_Dashed_Left_Vlat_0.5.mat The ego vehicle unintentionally departs from a

lane that is solid on the left and dashed on the
right. The car departs the lane from the left
(solid) side, traveling at a lateral velocity of 0.5
m/s.

Additional scenarios vary the lateral velocity and
whether the solid lane marking that the vehicle
crosses over is on the left or right.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-61

File Names Description
LKA_SolidLine_Unmarked_Right_Vlat_0.5.
mat

The ego vehicle unintentionally departs from a
lane that is a solid on the right and unmarked on
the left. The car departs the lane from the right
(solid) side, traveling at a lateral velocity of 0.5
m/s.

Additional scenarios vary the lateral velocity and
whether the solid lane marking that the vehicle
crosses over is on the left or right.

Modify Scenario
By default, in Euro NCAP scenarios, the ego vehicle does not contain sensors. If you are testing a
vehicle sensor, on the app toolstrip, click Add Camera or Add Radar to add a sensor to the ego
vehicle. Then, on the Sensor tab, adjust the parameters of the sensors to match your sensor model. If
you are testing a camera sensor, to enable the camera to detect lanes, expand the Detection
Parameters section, and set Detection Type to Lanes & Objects.

You can also adjust the parameters of the roads and actors in the scenario. For example, from the
Actors tab on the left, you can change the position or velocity of the ego vehicle or other actors.
From the Roads tab, you can change the width of lanes or the type of lane markings.

Generate Synthetic Detections
To generate detections from any added sensors, click Run. As the scenario runs, the Ego-Centric
View displays the scenario from the perspective of the ego vehicle. The Bird’s-Eye Plot displays the
detections.

5 Cuboid Driving Scenario Simulation

5-62

Export the detections.

• To export sensor data to the MATLAB workspace, on the app toolstrip, select Export > Export
Sensor Data. Name the workspace variable and click OK. The app saves the sensor data as a
structure containing sensor data such as the actor poses, object detections, and lane detections at
each time step.

• To export a MATLAB function that generates the scenario and its sensor data, select Export >
Export MATLAB Function. This function returns the sensor data as a structure, the scenario as
a drivingScenario object, and the sensor models as System objects. By modifying this function,
you can create variations of the original scenario. For an example of this process, see “Create
Driving Scenario Variations Programmatically” on page 5-125.

Save Scenario
Because Euro NCAP scenarios are read-only, save a copy of the driving scenario to a new folder. To
save the scenario file, on the app toolstrip, select Save > Scenario File As.

You can reopen this scenario file from the app. Alternatively, at the MATLAB command prompt, you
can use this syntax.

drivingScenarioDesigner(scenarioFileName)

You can also reopen the scenario by using the exported drivingScenario object. At the MATLAB
command prompt, use this syntax, where scenario is the name of the exported object.

drivingScenarioDesigner(scenario)

To reopen sensors, use this syntax, where sensors is a sensor object or a cell array of such objects.

 Euro NCAP Driving Scenarios in Driving Scenario Designer

5-63

drivingScenarioDesigner(scenario,sensors)

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader block to read
roads and actors from the scenario file or drivingScenario object into your model. This block does
not directly read sensor data. To add sensors that you created in the app to a Simulink model,
generate a model containing your scenario and sensors by selecting Export > Export Simulink
Model. In the model, the generated Scenario Reader block reads the scenario and the generated
sensor blocks define the sensors.

References
[1] European New Car Assessment Programme. Euro NCAP Assessment Protocol - SA. Version 8.0.2.

January 2018.

[2] European New Car Assessment Programme. Euro NCAP AEB C2C Test Protocol. Version 2.0.1.
January 2018.

[3] European New Car Assessment Programme. Euro NCAP LSS Test Protocol. Version 2.0.1. January
2018.

See Also
Apps
Driving Scenario Designer

Blocks
Scenario Reader | Driving Radar Data Generator | Vision Detection Generator | Lidar Point Cloud
Generator

Objects
drivingScenario | drivingRadarDataGenerator | visionDetectionGenerator |
lidarPointCloudGenerator | insSensor

More About
• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-22
• “Create Driving Scenario Variations Programmatically” on page 5-125
• “Autonomous Emergency Braking with Sensor Fusion” on page 8-303
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-140
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-146

External Websites
• Euro NCAP Safety Assist Protocols

5 Cuboid Driving Scenario Simulation

5-64

https://www.euroncap.com/en/for-engineers/protocols/safety-assist/

Cuboid Versions of 3D Simulation Scenes in Driving Scenario
Designer

The Driving Scenario Designer app provides prebuilt scenarios that recreate scenes from the 3D
simulation environment within the cuboid simulation environment. In these cuboid versions of the
scenes, you can add vehicles represented using simple box shapes and specify their trajectories.
Then, you can simulate these vehicles and trajectories in your Simulink model by using the higher
fidelity 3D simulation versions of the scenes. The 3D environment renders these scenes using the
Unreal Engine from Epic Games. For more details about the environment, see “Unreal Engine
Simulation for Automated Driving” on page 6-2.

Choose 3D Simulation Scenario
Open the Driving Scenario Designer app. At the MATLAB command prompt, enter
drivingScenarioDesigner.

The app stores the 3D simulation scenarios as MAT-files called scenario files. To open a scenario file,
first select Open > Prebuilt Scenario on the app toolstrip. The PrebuiltScenarios folder that
opens includes subfolders for all prebuilt scenarios available in the app.

Double-click the Simulation3D folder, and then choose one of the scenarios described in this table.

File Name of Cuboid Scenario Description Corresponding 3D Scene
CurvedRoad.mat Curved, looped road Curved Road

 Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer

5-65

File Name of Cuboid Scenario Description Corresponding 3D Scene
DoubleLaneChange.mat Straight road with traffic cones

and traffic barrels that are set
up for executing a double lane
change

The cuboid version does not
include the traffic signs or
traffic light that are in the
corresponding 3D scene.

Double Lane Change

StraightRoad.mat Straight road segment Straight Road

5 Cuboid Driving Scenario Simulation

5-66

File Name of Cuboid Scenario Description Corresponding 3D Scene
USCityBlock.mat City block with intersections

and barriers

The cuboid version does not
include the traffic lights that are
in the corresponding 3D scene.
It also does not include
crosswalk or pedestrian
markings at intersections or
objects inside the city blocks,
such as buildings, trees, and fire
hydrants.

US City Block

USHighway.mat Highway with traffic cones and
barriers

The cuboid version does not
include the traffic signs or
guard rails that are in the
corresponding 3D scene.

US Highway

 Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer

5-67

Note The Driving Scenario Designer app does not include cuboid versions of these scenes:

• Large Parking Lot
• Open Surface
• Parking Lot
• Virtual Mcity

To generate vehicle trajectories for these unsupported scenes or for custom scenes, use the process
described in the “Select Waypoints for Unreal Engine Simulation” on page 8-894 example.

Modify Scenario
With the scenario loaded, you can now add vehicles to the scenario, set their trajectories, and
designate one of the vehicles as the ego vehicle. For an example that shows how to do complete these
actions, see “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2.

If you plan to simulate these vehicles in the corresponding 3D scene, avoid modifying the road
network or existing road objects, such as barriers and traffic cones. Otherwise, you can break parity
between the two versions and simulation results might differ. To prevent such accidental changes to
the existing road network, road interactions are disabled by default. If you want to modify the road
network, in the bottom-left corner of the Scenario Canvas pane, click the Configure the Scenario
Canvas button . Then, select Enable road interactions.

You can add sensors to the ego vehicle, but you cannot recreate these sensors in the 3D environment.
The environment has its own sensors in the form of Simulink blocks. For more details, see “Choose a
Sensor for Unreal Engine Simulation” on page 6-17.

Save Scenario
Because these scenarios are read-only, to save your scenario file, you must save a copy of it to a new
folder. On the app toolstrip, select Save > Scenario File As.

You can reopen the saved scenario file from the app. Alternatively, at the MATLAB command prompt,
enter this command, where scenarioFileName represents the scenario file to open.

drivingScenarioDesigner(scenarioFileName)

Recreate Scenario in Simulink for 3D Environment
After you save the scenario file containing the vehicles and other actors that you added, you can
recreate these vehicles in trajectories in Simulink. At a high level, follow this workflow:

1 Configure 3D scene — In a new model, add a Simulation 3D Scene Configuration block and
specify the 3D scene that corresponds to your scenario file.

2 Read actor poses from scenario file — Add a Scenario Reader block and read the actor poses at
each time step from your scenario file. These poses comprise the trajectories of the actors.

3 Transform actor poses — Output the actors, including the ego vehicle, from the Scenario Reader
block. Use Vehicle To World and Cuboid To 3D Simulation blocks to convert the actor poses to the
coordinate system used in the 3D environment.

5 Cuboid Driving Scenario Simulation

5-68

4 Specify actor poses to vehicles — Add Simulation 3D Vehicle with Ground Following blocks that
correspond to the vehicles in your model. Specify the converted actor poses as inputs to the
vehicle blocks.

5 Add sensors and simulate — Add sensors, simulate in the 3D environment, and view sensor data
using the Bird's-Eye Scope.

For an example that follows this workflow, see “Visualize Sensor Data from Unreal Engine Simulation
Environment” on page 6-36.

See Also
Apps
Driving Scenario Designer

Blocks
Simulation 3D Scene Configuration | Scenario Reader | Vehicle To World | Cuboid To 3D Simulation

More About
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-22
• “Visualize Sensor Data from Unreal Engine Simulation Environment” on page 6-36

 Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer

5-69

Create Reverse Motion Driving Scenarios Interactively
This example shows how to create a driving scenario in which a vehicle drives in reverse by using the
Driving Scenario Designer app. In this example, you specify a vehicle that completes a three-point
turn.

Three-Point Turn Scenario
A three-point turn is a basic driving maneuver for changing directions on a road. The three segments
of a three-point turn consist of these motions:

1 Drive forward and turn toward the opposite side of the road.
2 Drive in reverse while turning back toward the original side of the road.
3 Drive forward toward the opposite side of the road to complete the change in direction.

You can use reverse motions to design more complex scenarios for testing automated driving
algorithms.

Add Road
Open the Driving Scenario Designer app.

drivingScenarioDesigner

Add a straight road to the scenario. Right-click the Scenario Canvas pane and select Add Road.
Extend the road toward the top of the canvas until it is about 50 meters long. Double-click to commit
the road to the canvas.

5 Cuboid Driving Scenario Simulation

5-70

Expand the width of the road to leave enough room for the vehicle to complete the three-point turn.
In the left pane, on the Roads tab, increase Width (m) from 6 to 8.

 Create Reverse Motion Driving Scenarios Interactively

5-71

Add Vehicle
Add a vehicle to the road. Right-click the bottom right corner of the road and select Add Car. Zoom
in on the vehicle and the first half of the road, which is where the vehicle will execute the three-point
turn.

5 Cuboid Driving Scenario Simulation

5-72

Add Trajectory
Specify a trajectory for the vehicle to complete a three-point turn.

1 Right-click the vehicle and select Add Forward Waypoints. The pointer displays the (x,y)
position on the canvas and the motion direction that the car will travel as you specify waypoints.

 Create Reverse Motion Driving Scenarios Interactively

5-73

2 Specify the first segment of the three-point turn. Click to add waypoints that turn toward the left
side of the road.

3 Specify the second segment of the three-point turn. Press Ctrl+R to switch to specifying reverse
waypoints. Then, click to add waypoints that turn back toward the right side of the road.

5 Cuboid Driving Scenario Simulation

5-74

4 Specify the third segment of the three-point turn. Press Ctrl+F to switch back to specifying
forward waypoints. Then click to add waypoints that turn back toward the left side of the road,
adjacent to the first specified waypoint.

5 Press Enter to commit the waypoints to the canvas.

 Create Reverse Motion Driving Scenarios Interactively

5-75

Run Simulation
Run the simulation. To view the direction that the car is traveling, on the app toolstrip, select Display
> Show actor pose indicator during simulation.

As the simulation runs, the vehicle briefly stops between each point in the three-point turn. When
switching between forward and reverse motions in a trajectory, the app automatically sets the v (m/s)
value at the waypoint where the switch occurs to 0.

5 Cuboid Driving Scenario Simulation

5-76

Adjust Trajectory Using Specified Yaw Values
To fine-tune the trajectory, set specific yaw orientation angles for the vehicle to reach at specific
waypoints. For example, as the vehicle begins its reverse motion trajectory, suppose you want the
vehicle to be at exactly a 90-degree angle from where it started.

 Create Reverse Motion Driving Scenarios Interactively

5-77

First, determine the ID of the waypoint where the vehicle begins this reverse motion by moving your
pointer over that waypoint. Then, in the Waypoints, Speeds, Wait Times, and Yaw table in the left
pane, set the yaw (deg) value of the corresponding row to 90. For example, if the vehicle begins its
reverse motion at waypoint 5, update the fifth row of the yaw (deg) column.

5 Cuboid Driving Scenario Simulation

5-78

During simulation, the vehicle is now turned exactly 90 degrees from where it began. To clear a
previously set yaw value, right-click a waypoint and select Restore Default Yaw. You can also clear
all set yaw values by right-clicking the vehicle and selecting Restore Default Yaws.

To work with prebuilt scenarios that use reverse motions and turns with specified yaw values, see the
prebuilt autonomous emergency braking (AEB) scenarios described in “Euro NCAP Driving Scenarios
in Driving Scenario Designer” on page 5-44.

See Also
Apps
Driving Scenario Designer

More About
• “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-44
• “Create Actor and Vehicle Trajectories Programmatically” on page 8-663

 Create Reverse Motion Driving Scenarios Interactively

5-79

Generate INS Sensor Measurements from Interactive Driving
Scenario

The Driving Scenario Designer app enables you to create driving scenarios interactively and
generate synthetic sensor data for testing your automated driving algorithms. In driving scenarios
that represent geographic locations, you can add a sensor that fuses measurements from an inertial
navigation system (INS) and global navigation satellite system (GNSS) such as a GPS, and generate
the fused measurements. You can then export this synthetic inertial sensor data to MATLAB for
further analysis.

Import Road Network
To generate realistic INS and GNSS sensor data from the app, you must use a road network that is
based on a real-world geographic location. This example uses a road network that is imported from
OpenStreetMap. It is the same road network used in the “Import OpenStreetMap Data into Driving
Scenario” on page 5-111 example.

1 Open the Driving Scenario Designer app.

drivingScenarioDesigner
2 On the app toolstrip, select Import and then OpenStreetMap.
3 In the OpenStreetMap Import dialog box, browse for this file, where matlabroot is the root of

your MATLAB folder:

matlabroot/examples/driving/data/applehill.osm

The file was downloaded from https://www.openstreetmap.org, which provides access to
crowd-sourced map data all over the world. The data is licensed under the Open Data Commons
Open Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

After you load the file, the Select Roads section of the dialog box displays the road network for
the MathWorks® Apple Hill campus.

5 Cuboid Driving Scenario Simulation

5-80

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

4 To keep the driving scenario simple for this example, click to select only the bottom-left road
segment for import.

5 Click Import. The app imports the road and generates a road network.

 Generate INS Sensor Measurements from Interactive Driving Scenario

5-81

Add Actor and Trajectory
To create a trajectory that is compatible with INS and GNSS sensor readings, the trajectory must be
smooth, with minimal jerk and no discontinuities in acceleration. Create an actor and specify a
trajectory that follows the road.

1 On the app toolstrip, select Add Actor and then Car.
2 On the Scenario Canvas, click to add the car to the right end of the road.

5 Cuboid Driving Scenario Simulation

5-82

3 Right-click the car and select Add Forward Waypoints. Then, click to add waypoints along the
length of the road. When you add the last waypoint, press Enter to commit the trajectory to the
road.

 Generate INS Sensor Measurements from Interactive Driving Scenario

5-83

Smooth the Trajectory
By using the default trajectory values, the car travels at a constant speed of 30 m/s (about 67 mph)
through each waypoint. This speed is suitable for a highway scenario, but not for the geographic
location used in this example. Reduce the speed of the car to 5 m/s (about 11 mph), and specify
slower speeds around the turn.

1 On the Actors tab at the left, in the Trajectory section, set Constant Speed (m/s) to 5. In the
Waypoints, Speeds, Wait Times, and Yaw table, the app reduces the v (m/s) values from 30 to
5.

2 For the waypoints around the turn, reduce the v (m/s) values to 4. In this sample trajectory, the
car slows down to 4 m/s when it reaches waypoint 5, maintains this speed through waypoints 6
and 7, and speeds back up to 5 m/s by the time it reaches waypoint 8.

5 Cuboid Driving Scenario Simulation

5-84

3 Select Use smooth, jerk-limited trajectory, which is a required parameter for working with
INS sensor simulation.

If you receive an error that the app is unable to create a smooth trajectory, try making the
following changes:

• Increase the distance between the waypoints where the car reduces speed (between
waypoints 4 and 5 in the previous image). The extended distance gives the car more time to
decelerate. Similarly, you can also extend the distance between the waypoints where the car
increases speed (between waypoints 7 and 8 in the previous image).

• Reduce the speed values, and check that the difference in speed between waypoints is not too
great. Using the previous image as an example, if you had specified a speed of 10 m/s for the
last waypoint, the car would not have enough space to accelerate to that speed from 4 m/s.

• Increase the Jerk (m/s3) parameter value. Increasing this value increases the number of
possible trajectories that the app can compute at the expense of reduced comfort for human
passengers.

Add INS Sensor
Mount the INS sensor to the car.

 Generate INS Sensor Measurements from Interactive Driving Scenario

5-85

1 On the app toolstrip, click Add INS.
2 On the Sensor Canvas, click to add the INS sensor to the predefined Rear Window location.

Placing a sensor at this location mounts the sensor at the ego vehicle origin.

3 (Optional) On the Sensors tab at the left, modify the measurement parameters of the sensor. For
example, you can modify the accuracy of the yaw, pitch, and roll readings, or the accuracy of
position, velocity, and acceleration measurement.

Simulate Scenario
Generate INS data from the scenario by simulating the scenario. On the app toolstrip, click Run. The
Bird's-Eye Plot shows no sensor data because the app does not support INS sensor visualization.

If the simulation runs too slowly given the slow speeds used in the trajectory, increase the sample
time of the scenario. On the app toolstrip, click Settings, and adjust the Sample Time (ms)
parameter.

5 Cuboid Driving Scenario Simulation

5-86

Export to MATLAB and Explore Sensor Data
The Driving Scenario Designer app enables you to export data from the most recent simulation
run. Export the scenario sensor data to the MATLAB workspace and view the generated INS
measurements.

1 On the app toolstrip, select Export and then Export Sensor Data.
2 Name the sensor data variable to be exported sensorData and click OK.
3 Explore the exported sensor data. The exported data is a structure array containing actor poses

and sensor data at each simulation time step. Because the scenario contains no sensors that
produce object detections, lane detections, or point clouds, the corresponding structure fields are
empty arrays. The number of structures shown here differs from the number in your exported
variable.

sensorData

sensorData =

 1×89 struct array with fields:

 Time
 ActorPoses
 ObjectDetections
 LaneDetections
 PointClouds
 INSMeasurements

4 View the data for the first INS measurement. INS measurements are stored in a cell array of
structures. Because the scenario contains only one INS sensor, the cell array has only one
structure. The fields of the INS measurement structure are the same as the fields produced when
you generate measurements from an insSensor System object™. The INS measurement shown
here will differ from the measurement in your exported variable.

sensorData(1).INSMeasurements{:}

ans =

 struct with fields:

 Orientation: [0.5389 0.4500 160.6807]
 Position: [-48.1293 -72.3647 0.9084]
 Velocity: [-4.7473 1.6082 -0.0525]
 Acceleration: [7.0945e-11 2.0255e-10 0]
 AngularVelocity: [3.0819e-15 -1.5500e-15 -2.4593e-09]

Alternatively, by selecting Export and then MATLAB Function from the app, you can export a
MATLAB function for reproducing the scenario and INS sensor at the MATLAB command line. The
INS sensor returned by this function is an insSensor System object.

Export Scenario and Sensor to a Simulink Model
The Driving Scenario Designer app enables you to export the scenario and sensors to a Simulink
model. Save the scenario as INSTestScenario.MAT. To generate Simulink blocks for the scenario
and its sensors, on the app toolstrip, select Export > Export Simulink Model. This model shows
sample blocks that were exported from the app.

 Generate INS Sensor Measurements from Interactive Driving Scenario

5-87

See Also
Apps
Driving Scenario Designer

Objects
insSensor | drivingScenario

Functions
smoothTrajectory | state

Blocks
INS | Scenario Reader

Related Examples
• “Import OpenStreetMap Data into Driving Scenario” on page 5-111

5 Cuboid Driving Scenario Simulation

5-88

Import ASAM OpenDRIVE Roads into Driving Scenario
ASAM OpenDRIVE is an open file format that enables you to specify large and complex road
networks. Using the Driving Scenario Designer app, you can import roads and lanes from an ASAM
OpenDRIVE file into a driving scenario. You can then add actors and sensors to the scenario and
generate synthetic lane and object detections for testing your driving algorithms developed in
MATLAB. Alternatively, to test driving algorithms developed in Simulink, you can use a Scenario
Reader block to read the road network and actors into a model.

The app supports importing road networks from OpenDRIVE® file versions 1.4 and 1.5, as well as
ASAM OpenDRIVE file version 1.6.

To import ASAM OpenDRIVE roads and lanes into a drivingScenario object instead of into the
app, use the roadNetwork function.

Import ASAM OpenDRIVE File
To import an ASAM OpenDRIVE file into the Driving Scenario Designer app, follow these steps:

1 Open the Driving Scenario Designer app. At the MATLAB command prompt, enter:

drivingScenarioDesigner
2 On the app toolstrip, click Import > ASAM OpenDRIVE File.
3 In the ASAM OpenDRIVE Import dialog box, browse for a valid ASAM OpenDRIVE file of

type .xodr or .xml.

In this example, you navigate to this file, where matlabroot is the root of your MATLAB folder:

matlabroot/examples/driving/data/roundabout.xodr

Note You cannot import an ASAM OpenDRIVE road network into an existing driving scenario. If
you attempt to do so, the app prompts you to save your existing scenario.

4 (Optional) If you do not want to see any errors or warnings that may occur during import, clear
the Show errors and warnings parameter. By default, this parameter is selected.

5 Click Import. If you have selected the Show errors and warnings parameter, the Import ASAM
OpenDRIVE Results dialog box displays any warnings and errors that occurr during import. You
can copy these warnings and errors to a text file. Then, close the dialog box.

 Import ASAM OpenDRIVE Roads into Driving Scenario

5-89

The Scenario Canvas of the app displays the imported road network.

Note As of R2021b, the ASAM OpenDRIVE import feature offers functional and visual improvements,
as well as a few additional limitations.

5 Cuboid Driving Scenario Simulation

5-90

• You can now add new roads to a scenario and export a MATLAB function after importing an ASAM
OpenDRIVE road network.

• You can now import roads with multiple lane specifications.
• Imported roads show boundary lines that were not shown previously.
• Road centers always appear in the middle of imported roads. Previously, some roads were showing

road centers on the road edges.
• Junctions are represented using a RoadGroup object that combines road segments within a

junction. Previously, each road segment within a junction was represented separately. As a result,
imported road networks now use a smaller number of roads.

• The road IDs, number of roads, junction IDs, and number of junctions in a driving scenario may
not match those specified in the imported ASAM OpenDRIVE file.

Inspect Roads
The roads in the imported network are thousands of meters long. Use the mouse wheel to zoom in the
road network and inspect it more closely. The road network contains a roundabout that connects six
roads.

Verify that the road network imported as expected, keeping in mind the following limitations and
behaviors within the app.

 Import ASAM OpenDRIVE Roads into Driving Scenario

5-91

ASAM OpenDRIVE Import Limitations

The Driving Scenario Designer app does not support all components of the ASAM OpenDRIVE
specification.

• You can import only lanes, lane type information, and roads. The import of road objects and traffic
signals is not supported.

• ASAM OpenDRIVE files containing large road networks can take up to several minutes to load. In
addition, these road networks can cause slow interactions on the app canvas. Examples of large
road networks include ones that model the roads of a city or ones with roads that are thousands of
meters long.

• Lanes with variable widths are not supported. The width is set to the highest width found within
that lane. For example, if a lane has a width that varies from 2 meters to 4 meters, the app sets
the lane width to 4 meters throughout.

• Multiple lane specifications for one-way roads are not supported. The app applies the lane
specifications of the first road segment to the entire one-way road. For example, if the first road
segment of a one-way road has four lanes and the second road segment has three lanes, then the
app applies four lanes to the entire one-way road.

• Roads with lane type information specified as driving, border, restricted, shoulder, and
parking are supported. Lanes with any other lane type information are imported as border lanes.

• Lane marking styles Bott Dots, Curbs, and Grass are not supported. Lanes with these marking
styles are imported as unmarked.

Road Orientation

In the Driving Scenario Designer app, the orientation of roads can differ from the orientation of
roads in other tools that display ASAM OpenDRIVE roads. The table shows this difference in
orientation between the app and the OpenDRIVE ODR Viewer.

Driving Scenario Designer OpenDRIVE ODR Viewer

In the OpenDRIVE ODR viewer, the X-axis runs along the bottom of the viewer, and the Y-axis runs
along the left side of the viewer.

In the Driving Scenario Designer app, the Y-axis runs along the bottom of the canvas, and the X-
axis runs along the left side of the canvas. This world coordinate system in the app aligns with the
vehicle coordinate system (XV,YV) used by vehicles in the driving scenario, where:

5 Cuboid Driving Scenario Simulation

5-92

• The XV-axis (longitudinal axis) points forward from a vehicle in the scenario.
• The YV-axis (lateral axis) points to the left of the vehicle, as viewed when facing forward.

For more details about the coordinate systems, see “Coordinate Systems in Automated Driving
Toolbox” on page 1-2.

Add Actors and Sensors to Scenario
You can add actors and sensors to a scenario containing ASAM OpenDRIVE roads.

Before adding an actor and sensors, if you have road interactions enabled, consider disabling them to
prevent you from accidentally dragging road centers and changing the road network. If road
interactions are enabled, in the bottom-left corner of the Scenario Canvas, click the Configure the
Scenario Canvas button , and then clear Enable road interactions.

Add an ego vehicle to the scenario by right-clicking one of the roads in the canvas and selecting Add
Car. To specify the trajectory of the car, right-click the car in the canvas, select Add Forward
Waypoints (Ctrl+F), and add waypoints along the road for the car to pass through. After you add
the last waypoint along the road, press Enter. The car autorotates in the direction of the first
waypoint.

 Import ASAM OpenDRIVE Roads into Driving Scenario

5-93

Add a camera sensor to the ego vehicle. On the app toolstrip, click Add Camera. Then, on the sensor
canvas, add the camera to the predefined location representing the front window of the car.

5 Cuboid Driving Scenario Simulation

5-94

Configure the camera to detect lanes. In the left pane, on the Sensors tab, expand the Detection
Parameters section. Then, set the Detection Type parameter to Lanes.

Generate Synthetic Detections
To generate lane detections from the camera, on the app toolstrip, click Run. As the scenario runs,
the Ego-Centric View displays the scenario from the perspective of the ego vehicle. The Bird’s-Eye
Plot displays the left-lane and right-lane boundaries of the ego vehicle.

 Import ASAM OpenDRIVE Roads into Driving Scenario

5-95

To export a MATLAB function that generates the scenario and its detections, on the app toolstrip,
click Export > MATLAB Function.

To export the detections to the MATLAB workspace, on the app toolstrip, click Export > Export
Sensor Data. Name the workspace variable and click OK.

Save Scenario
After you generate the detections, click Save to save the scenario file. In addition, you can save the
sensor models as separate files. You can also save the road and actor models together as a separate
scenario file.

You can reopen this scenario file from the app. Alternatively, at the MATLAB command prompt, you
can use this syntax.

drivingScenarioDesigner(scenarioFileName)

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader block to read
the roads and actors from the drivingScenario object or the scenario file into your model.
Scenario files containing large ASAM OpenDRIVE road networks can take up to several minutes to
read into models. The Scenario Reader block does not directly read sensor data. To add sensors
created in the app to a Simulink model, you can generate a model containing your scenario and
sensors by selecting Export > Simulink Model. In this model, a Scenario Reader block reads the
scenario and radar and vision sensor blocks model the sensors.

5 Cuboid Driving Scenario Simulation

5-96

See Also
Apps
Driving Scenario Designer

Blocks
Scenario Reader

Objects
drivingScenario

Functions
roadNetwork

More About
• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-22
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Scenario Generation from Recorded Vehicle Data” on page 8-518
• “Export Driving Scenario to ASAM OpenDRIVE File” on page 5-98
• “Export Driving Scenario to ASAM OpenSCENARIO File” on page 5-164

External Websites
• ASAM OpenDRIVE

 Import ASAM OpenDRIVE Roads into Driving Scenario

5-97

https://www.asam.net/standards/detail/opendrive/

Export Driving Scenario to ASAM OpenDRIVE File
ASAM OpenDRIVE is an open file format that enables you to specify large and complex road
networks. Using the Driving Scenario Designer app, you can export the roads, lanes, junctions, and
actors in a driving scenario to an ASAM OpenDRIVE file. There may be variations between the
original scenario and the exported scenario. For details, see “Limitations” on page 5-101.

The app supports exporting driving scenarios to OpenDRIVE file versions V1.4, V1.5, and ASAM
OpenDRIVE file version V1.6.

To programmatically export the roads, lanes, junctions, and actors in a drivingScenario object to
an OpenDRIVE file, use the export object function of the drivingScenario object.

Load Scenario File
To open the Driving Scenario Designer app, enter this command at the MATLAB command prompt:

drivingScenarioDesigner

To load a scenario file, on the app toolstrip, click Open > Scenario File. The file you select must be a
valid driving scenario session file with the .mat file extension.

From your MATLAB root folder, navigate to and open this file:

matlabroot/examples/driving/data/LeftTurnScenario.mat

The Scenario Canvas tab displays the scenario.

5 Cuboid Driving Scenario Simulation

5-98

Note You can also create a scenario by using the Driving Scenario Designer app, and then export
the scenario to an ASAM OpenDRIVE file. For information about how to create a scenario, see
“Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2.

Export to ASAM OpenDRIVE
To export the roads, lanes, junctions, and actors in the scenario to an ASAM OpenDRIVE file, on the
app toolstrip, click Export > ASAM OpenDRIVE File.

The app opens the OpenDRIVE Export dialog box . Specify file information using these options:

• File Path — Specify a name for the output ASAM OpenDRIVE file with either the .xodr or .xml
file extension. By default, the app saves the file in the current working directory. To specify a
different file location, click Browse. If a file with the specified name already exists, the app
overwrites the existing file.

• File Version — Specify the file format version for the output file as Version 1.4 (default),
Version 1.5, or Version 1.6.

 Export Driving Scenario to ASAM OpenDRIVE File

5-99

• Export Actors — Select this parameter to export actors to ASAM OpenDRIVE file. By default, this
parameter is selected.

• Show errors and warnings — Select this parameter to display errors and warnings that occur
during export. By default, this parameter is selected.

Once you have specified the file information, click Export. If you have selected the Show errors and
warnings parameter, the Export ASAM OpenDRIVE Results dialog box displays any warnings and
errors that occur during export. You can copy these warnings and errors to a text file. Then, close the
dialog box.

Inspect Exported Scenario
To inspect the exported scenario using the Driving Scenario Designer app, on the app toolstrip,
select Import > ASAM OpenDRIVE File. Select the exported ASAM OpenDRIVE file and click
Open. The app does not support importing actors specified in ASAM OpenDRIVE file. See “Import
ASAM OpenDRIVE Roads into Driving Scenario” on page 5-89 for more details.

Actual Scenario Exported Scenario

5 Cuboid Driving Scenario Simulation

5-100

Notice that the exported road network shows minor variations at the road junction. For more
information about the variations, see “Limitations” on page 5-101.

Limitations
Roads

• The cubic polynomial and the parametric cubic polynomial geometry types in the scenario are
exported as spiral geometry types. This causes some variations in the exported road geometry if
the road is a curved road. For example, in the figure below, notice that the sharp corners in the
input road became relatively smooth when exported to the ASAM OpenDRIVE format.

Input Road Exported ASAM OpenDRIVE Road

• When segments of adjacent roads overlap with each other, the app does not export the
overlapping segments of the roads.

Input Roads Exported ASAM OpenDRIVE Roads

 Export Driving Scenario to ASAM OpenDRIVE File

5-101

Lanes

• When a road with multiple lane specifications has any segment containing only one lane, the app
does not export multiple lane specifications. Instead the specifications of the first road segment
are applied to the entire road while exporting.

Input Road Exported ASAM OpenDRIVE Road
The first segment of the original road has only
one lane.

The entire exported road has the same
specification as the first segment of the input
road.

• When a road with multiple lane specifications contains a taper between two road segments, the
app exports the road without taper.

Input Road Exported ASAM OpenDRIVE Road

• When a road consisting of multiple segments is connected to a junction, the app does not export
the road.

Junctions

• The junctions of the road network are processed without lane connection information, so the
junction shapes may not be accurate in the exported scenario.

Input Road Exported ASAM OpenDRIVE Road

Actors

• The app does not export any actor that is present either on a junction or on a road with multiple
road segments.

5 Cuboid Driving Scenario Simulation

5-102

• While exporting a user-defined actor, the app sets the type of object to 'none'.

ASAM OpenDRIVE Import

• When you export a driving scenario object that contains an imported ASAM OpenDRIVE scenario,
the limitations of ASAM OpenDRIVE import apply to ASAM OpenDRIVE export. For information on
the limitations of ASAM OpenDRIVE import, see “Import ASAM OpenDRIVE Roads into Driving
Scenario” on page 5-89.

See Also
Apps
Driving Scenario Designer

Objects
drivingScenario

Functions
export

More About
• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-22
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Import ASAM OpenDRIVE Roads into Driving Scenario” on page 5-89
• “Export Driving Scenario to ASAM OpenSCENARIO File” on page 5-164

External Websites
• ASAM OpenDRIVE

 Export Driving Scenario to ASAM OpenDRIVE File

5-103

https://www.asam.net/standards/detail/opendrive/

Import HERE HD Live Map Roads into Driving Scenario
HERE HD Live Map3 (HERE HDLM), developed by HERE Technologies, is a cloud-based web service
that enables you to access highly accurate, continuously updated map data. Using the Driving
Scenario Designer app, you can import map data from the HERE HDLM service and use it to
generate roads for your driving scenarios.

This example focuses on importing map data in the app. Alternatively, to import HERE HDLM roads
into a drivingScenario object, use the roadNetwork function.

Set Up HERE HDLM Credentials
To access the HERE HDLM web service, you must enter valid HERE credentials from HERE
Technologies. Set up these credentials by using the hereHDLMCredentials function. At the
MATLAB command prompt, enter:

hereHDLMCredentials setup

In the HERE HD Live Map Credentials dialog box, enter a valid Access Key ID and Access Key
Secret. To save your credentials for future MATLAB sessions on your machine, in the dialog box,
select Save my credentials between MATLAB sessions and click OK. The credentials are now
saved for the rest of your MATLAB session on your machine.

If you need to change your credentials, you can delete them and set up new ones by using the
hereHDLMCredentials function.

Specify Geographic Coordinates
To select the roads you want to import, you need to specify a region of interest from which to obtain
the road data. To define this region of interest, specify latitude and longitude coordinates that are
near that road data. You can specify coordinates for a single point or a set of points, such as ones that
make up a driving route.

Specify the coordinates from a driving route.

1 Load a sequence of latitude and longitude coordinates that make up a driving route. At the
MATLAB command prompt, enter these commands:

data = load('geoSequence.mat');
lat = data.latitude;
lon = data.longitude;

2 Open the app.

drivingScenarioDesigner

3 On the app toolstrip, select Import and then HERE HD Live Map. If you previously entered or
saved HERE credentials, then the dialog box opens directly to the page where you can specify
geographic coordinates.

3 You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and to get the
required credentials (access_key_id and access_key_secret) for using the HERE Service.

5 Cuboid Driving Scenario Simulation

5-104

https://www.here.com

4 Leave From Workspace selected, and then select the variables for the route coordinates.

• Set the Latitude parameter to lat.
• Set the Longitude parameter to lon.

This table describes the complete list of options for specifying latitude and longitude coordinates.

 Import HERE HD Live Map Roads into Driving Scenario

5-105

Specify Geographic
Coordinates
Parameter Value

Description Latitude Parameter
Value

Longitude
Parameter Value

From Workspace Specify a set of
latitude and longitude
coordinates, such as
from a driving route
obtained through a
GPS. These
coordinates must be
stored as variables in
the MATLAB
workspace.

Workspace variable
containing vectors of
decimal values in the
range [–90, 90]. Units
are in degrees.

Latitude and
Longitude must be
the same size. After
you select a Latitude
variable, the
Longitude list
includes only
variables of the same
size as your Latitude
selection.

Workspace variable
containing vectors of
decimal values in the
range [–180, 180].
Units are in degrees.

Latitude and
Longitude must be
the same size. After
you select a
Longitude variable,
if you select a
Latitude variable of a
different size, the
dialog box clears your
Longitude selection.

Input Coordinates Specify latitude and
longitude coordinates
for a single
geographic point.

Decimal scalar in the
range [–90, 90]. Units
are in degrees.

Decimal scalar in the
range [–180, 180].
Units are in degrees.

Select Region Containing Roads
After you specify the latitude and longitude coordinates, the Select Region section of the dialog box
displays these coordinates in orange on a map. The geographic reference point, which is the first
coordinate in the driving route, is also displayed. This point is the origin of the imported scenario.
Click this point to show or hide the coordinate data.

The coordinates are connected in a line. A rectangular region of interest displays around the
coordinates. In the next page of the dialog box, you select the roads to import based on which roads
are at least partially within this region.

5 Cuboid Driving Scenario Simulation

5-106

You can change the size of this region or move it around to select different roads. To zoom in and out
of the region, use the buttons in the top-right corner of the map display.

With the coordinates still enclosed within the region, click Next.

Select Roads to Import
After you select a region, the Select Roads section of the dialog box displays selectable roads in
black.

Using the selected region, select the roads that are nearest to the driving route by clicking Select
Nearest Roads. The selected roads are overlaid onto the driving route and appear in blue.

 Import HERE HD Live Map Roads into Driving Scenario

5-107

This table describes additional actions you can take for selecting roads from a region.

Goal Action
Select individual roads from the region. Click the individual roads to select them.
Select all roads from the region. Click Select All.
Select all but a few roads from the region. Click Select All, and then click the individual

roads to deselect them.
Select roads from the region that are nearest to
the specified coordinates.

Click Select Nearest Roads. Use this option
when you have a sequence of nonsparse
coordinates. If your coordinates are sparse or the
underlying HERE HDLM data for those
coordinates are sparse, then the app might not
select the nearest roads.

Select a subset of roads from a region, such as all
roads in the upper half of the region.

In the top-left corner of the map display, click the
Select Roads button . Then, draw a rectangle
around the roads to select.

• To deselect a subset of roads from this
selection, click the Deselect Roads button .
Then, draw a rectangle around the roads to
deselect.

• To deselect all roads and start over, click
Deselect All.

Note The number of roads you select has a direct effect on app performance. Select the fewest roads
that you need to create your driving scenario.

5 Cuboid Driving Scenario Simulation

5-108

Import Roads
With the roads nearest to the route still selected, click Import. The app imports the HERE HDLM
roads and generates a road network.

To maintain the same alignment with the geographic map display, the X-axis of the Scenario Canvas
is on the bottom and the Y-axis is on the left. In driving scenarios that are not imported from maps,
the X-axis is on the left and the Y-axis is on the bottom. This alignment is consistent with the
Automated Driving Toolbox world coordinate system.

The origin of the scenario corresponds to the geographic reference point and is the first point
specified in the driving route. Even if you select roads from the end of a driving route, the origin is
still anchored to this first point. If you specified a single geographic point by using the Input
Coordinates option, then the origin is that point.

By default, road interactions are disabled. Disabled road interactions prevent you from accidentally
modifying the network and reduces visual clutter by hiding the road centers. If you want to modify
the roads, in the bottom-left corner of the Scenario Canvas, click the Configure the Scenario Canvas
button . Then, select Enable road interactions.

 Import HERE HD Live Map Roads into Driving Scenario

5-109

Note In some cases, the app is unable to import all selected roads. The app pauses the import, and
the dialog box highlights the nonimportable roads in red. To continue importing all other selected
roads, click Continue.

Compare Imported Roads Against Map Data
The generated road network in the app has several differences from the actual HERE HDLM road
network. For example, the actual HERE HDLM road network contains roads with varying widths. The
Driving Scenario Designer app does not support this feature. Instead, the app sets each road to
have the maximum width found along its entire length. This change increases the widths of the roads
and might cause roads to overlap.

For more details on the unsupported HERE HDLM road and lane features, see the “Limitations”
section of the Driving Scenario Designer app reference page.

Save Scenario
Save the scenario file. After you save the scenario, you cannot import additional HERE HDLM roads
into it. Instead, you need to create a new scenario and import a new road network.

You can now add actors and sensors to the scenario, generate synthetic lane and object detections for
testing your driving algorithms, or import the scenario into Simulink.

See Also
Apps
Driving Scenario Designer

Blocks
Scenario Reader

Objects
drivingScenario

Functions
roadNetwork

More About
• “Read and Visualize HERE HD Live Map Data” on page 4-7
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2
• “Import OpenStreetMap Data into Driving Scenario” on page 5-111
• “Import Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) into Driving Scenario” on page 5-117

External Websites
• HERE Technologies

5 Cuboid Driving Scenario Simulation

5-110

https://www.here.com

Import OpenStreetMap Data into Driving Scenario
OpenStreetMap is a free, open-source web map service that enables you to access crowdsourced map
data. Using the Driving Scenario Designer app, you can import map data from OpenStreetMap and
use it to generate roads for your driving scenarios.

This example focuses on importing map data in the app. Alternatively, to import OpenStreetMap
roads into a drivingScenario object, use the roadNetwork function.

Select OpenStreetMap File
To import a road network, you must first select an OpenStreetMap file containing the road geometry
for that network. To export these files from openstreetmap.org, specify a map location, manually
adjust the region around this location, and export the road geometry for that region to an
OpenStreetMap with extension .osm. Only roads whose whole lengths are within this specified region
are exported. In this example, you select an OpenStreetMap file that was previously exported from
this website.

1 Open the Driving Scenario Designer app.

drivingScenarioDesigner
2 On the app toolstrip, select Import and then OpenStreetMap.
3 In the OpenStreetMap Import dialog box, browse for this file, where matlabroot is the root of

your MATLAB folder:

matlabroot/examples/driving/data/applehill.osm

The file was downloaded from https://www.openstreetmap.org, which provides access to
crowd-sourced map data all over the world. The data is licensed under the Open Data Commons
Open Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

The Select Roads section of the dialog box displays the road network for the MathWorks Apple Hill
campus. The gray box represents the map region selected from openstreetmap.org. The center
point of the gray box is the geographic reference point. Click this point to show or hide the
coordinate data. When the roads are imported into that app, this point becomes the origin of the
driving scenario.

 Import OpenStreetMap Data into Driving Scenario

5-111

https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

Select Roads to Import
In the Select Roads section of the dialog box, select the roads that you want to import into a driving
scenario. The selectable roads are in black.

Note The number of roads you select has a direct effect on app performance. Select the fewest roads
that you need to create your driving scenario.

Because this road network is small, click Select All to select all roads. The selected roads appear in
blue.

5 Cuboid Driving Scenario Simulation

5-112

This table describes the actions you can take for selecting roads to import.

Goal Action
Select individual roads from the region. Click the individual roads to select them.
Select all roads from the region. Click Select All.
Select all but a few roads from the region. Click Select All, and then click the individual

roads to deselect them.
Select a subset of roads from a region, such as all
roads in the upper half of the region.

In the top-left corner of the map display, click the
Select Roads button . Then, draw a rectangle
around the roads to select.

• To deselect a subset of roads from this
selection, click the Deselect Roads button .
Then, draw a rectangle around the roads to
deselect.

• To deselect all roads and start over, click
Deselect All.

Import Roads
With all roads in the network still selected, click Import. The app pauses the import and highlights
one of the roads in red. The app is unable to render the geometry of this road properly, so the road
cannot be imported.

Click Continue to continue importing all other selected roads. The app imports the roads and
generates a road network.

 Import OpenStreetMap Data into Driving Scenario

5-113

To maintain the same alignment with the geographic map display, the X-axis of the Scenario Canvas
is on the bottom and the Y-axis is on the left. In driving scenarios that are not imported from maps,
the X-axis is on the left and the Y-axis is on the bottom. This alignment is consistent with the
Automated Driving Toolbox world coordinate system. The origin of the scenario corresponds to the
geographic reference point.

By default, road interactions are disabled. Disabled road interactions prevent you from accidentally
modifying the network and reduce visual clutter by hiding the road centers. If you want to modify the
roads, in the bottom-left corner of the Scenario Canvas, click the Configure the Scenario Canvas
button . Then, select Enable road interactions.

Compare Imported Roads Against Map Data
The generated road network in the app differs from the OpenStreetMap road network. For example,
examine the difference in this portion of the road network.

5 Cuboid Driving Scenario Simulation

5-114

OpenStreetMap Road Network Imported Driving Scenario

The transition between roads in the imported scenario is more abrupt because the app does not
support the gradual tapering of lanes as the number of lanes change. In addition, because the app
does not import lane-level information from OpenStreetMap, the number of lanes in the generated
road network is based only on the direction of travel specified in the road network, where:

• All one-way roads are imported as single-lane roads.
• All two-way roads are imported as two-lane roads.

These lanes all have the same width, which can lead to abrupt transitions such as in the example
shown in the table.

For more details on the limitations of importing OpenStreetMap data, see the “Limitations” section of
the Driving Scenario Designer app reference page.

Save Scenario
Save the scenario file. After you save the scenario, you cannot import additional OpenStreetMap
roads into it. Instead, you must create a new scenario and import a new road network.

You can now add actors and sensors to the scenario, generate synthetic lane and object detections for
testing your driving algorithms, or import the scenario into Simulink.

See Also
Apps
Driving Scenario Designer

Blocks
Scenario Reader

Objects
drivingScenario

Functions
roadNetwork

More About
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2

 Import OpenStreetMap Data into Driving Scenario

5-115

• “Import HERE HD Live Map Roads into Driving Scenario” on page 5-104
• “Import Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) into Driving Scenario” on page 5-117

External Websites
• openstreetmap.org

5 Cuboid Driving Scenario Simulation

5-116

https://www.openstreetmap.org/

Import Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) into
Driving Scenario

Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) 4, developed by ZENRIN DataCom CO., LTD., is a
web service that enables you to access map data for areas in Japan. Using the Driving Scenario
Designer app, you can import map data from the Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0)
service and use it to generate roads for your driving scenarios.

This example focuses on importing map data in the app. Alternatively, to import Zenrin Japan Map
API 3.0 (Itsumo NAVI API 3.0) data into a drivingScenario object, use the roadNetwork function.

Importing map data from the Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service requires
Automated Driving Toolbox Importer for Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Service.

Set Up Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Credentials
To access the Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service, you must enter valid
credentials from ZENRIN DataCom CO., LTD. Set up these credentials by using the
zenrinCredentials function. At the MATLAB command prompt, enter:

zenrinCredentials setup

In the Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Credentials dialog box, enter a valid Client
ID and Secret Key. To save your credentials for future MATLAB sessions on your machine, in the
dialog box, select Save my credentials between MATLAB sessions and click OK. The credentials
are now saved for the rest of your MATLAB sessions on your machine.

If you need to change your credentials, you can delete them and set up new ones by using the
zenrinCredentials function.

Specify Geographic Coordinates
To select the roads you want to import, you need to specify a region of interest from which to obtain
the road data. To define this region of interest, specify latitude and longitude coordinates that are
near that road data. You can specify coordinates for a single point or a set of points, such as ones that
make up a driving route.

Specify the coordinates from a driving route.

1 Load a sequence of latitude and longitude coordinates that make up a driving route. At the
MATLAB command prompt, enter these commands:

data = load('tokyoSequence.mat');
lat = data.latitude;
lon = data.longitude;

2 Open the app.

drivingScenarioDesigner
3 On the app toolstrip, select Import and then Zenrin Japan Map API 3.0 (Itsumo NAVI API

3.0). If you previously entered or saved Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0)

4 To gain access to the Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) service and get the required credentials (a client
ID and secret key), you must enter into a separate agreement with ZENRIN DataCom CO., LTD.

 Import Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) into Driving Scenario

5-117

https://www.mathworks.com/matlabcentral/fileexchange/88632-automated-driving-toolbox-importer-for-zenrin-japan-map-api-3-0-itsumo-navi-api-3-0-service
https://support.e-map.ne.jp/manuals/v3/

credentials, then the dialog box opens directly to the page where you can specify geographic
coordinates.

4 Leave From Workspace selected, and then select the variables for the route coordinates.

• Set the Latitude parameter to lat.
• Set the Longitude parameter to lon.

This table describes the complete list of options for specifying latitude and longitude coordinates.

5 Cuboid Driving Scenario Simulation

5-118

Specify Geographic
Coordinates
Parameter Value

Description Latitude Parameter
Value

Longitude
Parameter Value

From Workspace Specify a set of
latitude and longitude
coordinates, such as
from a driving route
obtained through a
GPS. These
coordinates must be
stored as variables in
the MATLAB
workspace.

Workspace variable
containing vectors of
decimal values in the
range [–90, 90]. Units
are in degrees.

Latitude and
Longitude must be
the same size. After
you select a Latitude
variable, the
Longitude list
includes only
variables of the same
size as your Latitude
selection.

Workspace variable
containing vectors of
decimal values in the
range [–180, 180].
Units are in degrees.

Latitude and
Longitude must be
the same size. After
you select a
Longitude variable,
if you select a
Latitude variable of a
different size, the
dialog box clears your
Longitude selection.

Input Coordinates Specify latitude and
longitude coordinates
for a single
geographic point.

Decimal scalar in the
range [–90, 90]. Units
are in degrees.

Decimal scalar in the
range [–180, 180].
Units are in degrees.

Select Region Containing Roads
After you specify the latitude and longitude coordinates, the Select Region section of the dialog box
displays these coordinates in orange on a map. The geographic reference point, which is the first
coordinate in the driving route, is also displayed. This point is the origin of the imported scenario.
Click this point to show or hide the coordinate data.

The coordinates are connected in a line. A rectangular region of interest displays around the
coordinates. In the next page of the dialog box, you select the roads to import based on which roads
are at least partially within this region.

 Import Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) into Driving Scenario

5-119

You can change the size of this region or move it around to select different roads. To zoom in and out
of the region, use the buttons in the top-right corner of the map display.

With the coordinates still enclosed within the region, click Next.

Select Roads to Import
After you select a region, the Select Roads section of the dialog box displays selectable roads in
black.

Using the selected region, select the roads that are nearest to the driving route by clicking Select
Nearest Roads. The selected roads are overlaid onto the driving route and appear in blue.

5 Cuboid Driving Scenario Simulation

5-120

This table describes additional actions you can take for selecting roads from a region.

Goal Action
Select individual roads from the region. Click the individual roads to select them.
Select all roads from the region. Click Select All.
Select all but a few roads from the region. Click Select All, and then click the individual

roads to deselect them.
Select roads from the region that are nearest to
the specified coordinates.

Click Select Nearest Roads. Use this option
when you have a sequence of nonsparse
coordinates. If your coordinates are sparse or the
underlying data for those coordinates are sparse,
then the app might not select the nearest roads.

Select a subset of roads from a region, such as all
roads in the upper half of the region.

In the top-left corner of the map display, click the
Select Roads button . Then, draw a rectangle
around the roads to select.

• To deselect a subset of roads from this
selection, click the Deselect Roads button .
Then, draw a rectangle around the roads to
deselect.

• To deselect all roads and start over, click
Deselect All.

Note The number of roads you select has a direct effect on app performance. Select the fewest roads
that you need to create your driving scenario.

 Import Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) into Driving Scenario

5-121

Import Roads
With the roads nearest to the route still selected, click Import. The app imports the Zenrin Japan
Map API 3.0 (Itsumo NAVI API 3.0) data and generates a road network.

To maintain the same alignment with the geographic map display, the X-axis of the Scenario Canvas
is on the bottom and the Y-axis is on the left. In driving scenarios that are not imported from maps,
the X-axis is on the left and the Y-axis is on the bottom. This alignment is consistent with the
Automated Driving Toolbox world coordinate system.

The origin of the scenario corresponds to the geographic reference point and is the first point
specified in the driving route. Even if you select roads from the end of a driving route, the origin is
still anchored to this first point. If you specified a single geographic point by using the Input
Coordinates option, then the origin is that point.

By default, road interactions are disabled. Disabled road interactions prevent you from accidentally
modifying the network and reduces visual clutter by hiding the road centers. If you want to modify

5 Cuboid Driving Scenario Simulation

5-122

the roads, in the bottom-left corner of the Scenario Canvas, click the Configure the Scenario Canvas
button . Then, select Enable road interactions.

Note In some cases, the app is unable to import all selected roads. The app pauses the import, and
the dialog box highlights the nonimportable roads in red. To continue importing all other selected
roads, click Continue.

Compare Imported Roads Against Map Data
The generated road network in the app has several differences from the actual Zenrin Japan Map API
3.0 (Itsumo NAVI API 3.0) road network. For example, when the Zenrin Japan Map API 3.0 (Itsumo
NAVI API 3.0) service provides information using a range, such as by specifying a road with two to
three lanes or a road between 3–5.5 meters wide, the generated road network uses scalar values
instead.

For more details about limitations of road networks generated from Zenrin Japan Map API 3.0
(Itsumo NAVI API 3.0) data, see the “Limitations” section of the Driving Scenario Designer app
reference page.

Save Scenario
Save the scenario file. After you save the scenario, you cannot import additional Zenrin Japan Map
API 3.0 (Itsumo NAVI API 3.0) roads into it. Instead, you need to create a new scenario and import a
new road network.

You can now add actors and sensors to the scenario, generate synthetic lane and object detections for
testing your driving algorithms, or import the scenario into Simulink.

See Also
Apps
Driving Scenario Designer

Blocks
Scenario Reader

Objects
drivingScenario

Functions
roadNetwork

More About
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2
• “Import HERE HD Live Map Roads into Driving Scenario” on page 5-104
• “Import OpenStreetMap Data into Driving Scenario” on page 5-111

 Import Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) into Driving Scenario

5-123

External Websites
• ZENRIN DataCom CO., LTD.

5 Cuboid Driving Scenario Simulation

5-124

https://www.zenrin-datacom.net/toppage/

Create Driving Scenario Variations Programmatically
This example shows how to programmatically create variations of a driving scenario that was built
using the Driving Scenario Designer app. Programmatically creating variations of a scenario
enables you to rapidly test your driving algorithms under multiple conditions.

To create programmatic variations of a driving scenario, follow these steps:

1 Interactively build a driving scenario by using the Driving Scenario Designer app.
2 Export a MATLAB® function that generates the MATLAB code that is equivalent to this scenario.
3 In the MATLAB Editor, modify the exported function to create variations of the original scenario.
4 Call the function to generate a drivingScenario object that represents the scenario.
5 Import the scenario object into the app to simulate the modified scenario or generate additional

scenarios. Alternatively, to simulate the modified scenario in Simulink®, import the object into a
Simulink model by using a Scenario Reader block.

The diagram shows a visual representation of this workflow.

Build Scenario in App

Use the Driving Scenario Designer to interactively build a driving scenario on which to test your
algorithms. For more details on building scenarios, see “Create Driving Scenario Interactively and
Generate Synthetic Sensor Data” on page 5-2.

This example uses a driving scenario that is based on one of the prebuilt scenarios that you can load
from the Driving Scenario Designer app.

Open the scenario file in the app.

drivingScenarioDesigner('LeftTurnScenarioNoSensors.mat')

Click Run to simulate the scenario. In this scenario, the ego vehicle travels north and goes straight
through an intersection. Meanwhile, a vehicle coming from the left side of the intersection turns left
and ends up in front of the ego vehicle, in the adjacent lane.

 Create Driving Scenario Variations Programmatically

5-125

For simplicity, this scenario does not include sensors mounted on the ego vehicle.

Export MATLAB Function of Scenario

After you view and simulate the scenario, you can export the scenario to the MATLAB command line.
From the Driving Scenario Designer app toolstrip, select Export > MATLAB Function. The
exported function contains the MATLAB code used to produce the scenario created in the app. Open
the exported function.

open LeftTurnScenarioNoSensors.m;

Calling this function returns these aspects of the driving scenario.

• scenario — Roads and actors of the scenarios, returned as a drivingScenario object.
• egoVehicle — Ego vehicle defined in the scenario, returned as a Vehicle object. For details,

see the vehicle function.

5 Cuboid Driving Scenario Simulation

5-126

If your scenario contains sensors, then the returned function includes additional code for generating
the sensors. If you simulated the scenario containing those sensors, then the function can also
generate the detections produced by those sensors.

Modify Function to Create Scenario Variations

By modifying the code in the exported MATLAB function, you can generate multiple variations of a
single scenario. One common variation is to test the ego vehicle at different speeds. In the exported
MATLAB function, the speed of the ego vehicle is set to a constant value of 10 meters per second
(speed = 10). To generate varying ego vehicle speeds, you can convert the speed variable into an
input argument to the function. Open the script containing a modified version of the exported
function.

open LeftTurnScenarioNoSensorsModified.m;

In this modified function:

• egoSpeed is included as an input argument.
• speed, the constant variable, is deleted.
• To compute the ego vehicle trajectory, egoSpeed is used instead of speed.

This figure shows these script modifications.

To produce additional variations, consider:

• Modifying the road and lane parameters to view the effect on lane detections
• Modifying the trajectory or starting positions of the vehicles
• Modifying the dimensions of the vehicles

Call Function to Generate Programmatic Scenarios

Using the modified function, generate a variation of the scenario in which the ego vehicle travels at a
constant speed of 20 meters per second.

scenario = LeftTurnScenarioNoSensorsModified(20) % m/s

scenario =
 drivingScenario with properties:

 SampleTime: 0.0400
 StopTime: Inf
 SimulationTime: 0

 Create Driving Scenario Variations Programmatically

5-127

 IsRunning: 1
 Actors: [1x2 driving.scenario.Vehicle]
 Barriers: [0x0 driving.scenario.Barrier]
 ParkingLots: [0x0 driving.scenario.ParkingLot]

Import Modified Scenario into App

To import the modified scenario with the modified vehicle into the app, use the
drivingScenarioDesigner function. Specify the drivingScenario object as an input argument.

drivingScenarioDesigner(scenario)

Previously, the other vehicle passed through the intersection first. Now, with the speed of the ego
vehicle increased from 10 to 20 meters per second, the ego vehicle passes through the intersection
first.

When working with drivingScenario objects in the app, keep these points in mind.

• To try out different ego vehicle speeds, call the exported function again, and then import the new
drivingScenario object using the drivingScenarioDesigner function. The app does not
include a menu option for importing these objects.

5 Cuboid Driving Scenario Simulation

5-128

• If your scenario includes sensors, you can reopen both the scenario and sensors by using this
syntax: drivingScenarioDesigner(scenario,sensors).

• If you make significant changes to the dimensions of an actor, be sure that the ClassID property
of the actor corresponds to a Class ID value specified in the app. For example, in the app, cars
have a Class ID of 1 and trucks have a Class ID of 2. If you programmatically change a car to
have the dimensions of a truck, update the ClassID property of that vehicle from 1 (car) to 2
(truck).

Import Modified Scenario into Simulink

To import the modified scenario into a Simulink model, use a Scenario Reader block. This block reads
the roads and actors from either a scenario file saved from the app or a drivingScenario variable
saved to the MATLAB workspace or the model workspace. Add a Scenario Reader block to your model
and set these parameters.

1 Set Source of driving scenario to From workspace.
2 Set MATLAB or model workspace variable name to the name of the drivingScenario

variable in your workspace.

When working with drivingScenario objects in Simulink, keep these points in mind.

• When Source of ego vehicle is set to Scenario, the model uses the ego vehicle defined in your
drivingScenario object. The block determines which actor is the ego vehicle based on the
specified ActorID property of the actor. This actor must be a Vehicle object (see vehicle). To
change the designated ego vehicle, update the Ego vehicle ActorID parameter.

• When connecting the output actor poses to sensor blocks, confirm that in the sensor blocks, the
parameter for specifying the source of the actor profiles is set to From Scenario Reader
block. With this option selected, the sensor blocks obtain the actor profiles directly from the
actors specified in your drivingScenario object.

See Also
Apps
Driving Scenario Designer

Blocks
Radar Detection Generator | Vision Detection Generator | Scenario Reader | Lidar Point Cloud
Generator

Functions
vehicle | actorProfiles

Objects
drivingScenario | drivingRadarDataGenerator | visionDetectionGenerator |
lidarPointCloudGenerator

More About
• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2
• “Prebuilt Driving Scenarios in Driving Scenario Designer” on page 5-22
• “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-44

 Create Driving Scenario Variations Programmatically

5-129

• “Create Driving Scenario Programmatically” on page 8-644

5 Cuboid Driving Scenario Simulation

5-130

Generate Sensor Blocks Using Driving Scenario Designer
This example shows how to update the radar and camera sensors of a Simulink® model by using the
Driving Scenario Designer app. The Driving Scenario Designer app enables you to generate multiple
sensor configurations quickly and interactively. You can then use these generated sensor
configurations in your existing Simulink models to test your driving algorithms more thoroughly.

Inspect and Simulate Model

The model used in this example implements an autonomous emergency braking (AEB) sensor fusion
algorithm and is configured to simulate a pedestrian collision scenario. For more details about this
model, see the “Autonomous Emergency Braking with Sensor Fusion” on page 8-303 example. Open
the model.

open_system('AEBTestBenchExample')

The driving scenario and sensor detection generators used to test the algorithm are located in the
Vehicle Environment > Actors and Sensor Simulation subsystem. Open this subsystem.

open_system('AEBTestBenchExample/Vehicle and Environment/Actors and Sensor Simulation')

 Generate Sensor Blocks Using Driving Scenario Designer

5-131

A Scenario Reader block reads the actors and roads from the specified Driving Scenario Designer file.
The block outputs the non-ego actors. These actors are then passed to Driving Radar Data Generator
and Vision Detection Generator sensor blocks. During simulation, these blocks generate detections of
the non-ego actors.

Simulate and visualize the scenario on the Bird's-Eye Scope. On the model toolstrip, under Review
Results, click Bird's-Eye Scope. In the scope, click Find Signals, and then click Run to run the
simulation. In this scenario, the AEB model causes the ego vehicle to brake in time to avoid a collision
with a pedestrian child who is crossing the street.

5 Cuboid Driving Scenario Simulation

5-132

During this example, you replace the existing sensors in this model with new sensors created in the
Driving Scenario Designer app.

Load Scenario in App

The model uses a driving scenario that is based on one of the prebuilt Euro NCAP test protocol
scenarios. You can load these scenarios from the Driving Scenario Designer app. For more details on
these scenarios, see “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-44.

Load the scenario file into the app.

drivingScenarioDesigner('AEB_PedestrianChild_Nearside_50width_overrun.mat')

To simulate the scenario in the app, click Run. In the app simulation, unlike in the model simulation,
the ego vehicle collides with the pedestrian. The app uses a predefined ego vehicle trajectory,

 Generate Sensor Blocks Using Driving Scenario Designer

5-133

whereas the model uses the AEB algorithm to control the trajectory and cause the ego vehicle to
brake.

Load Sensors

The loaded scenario file contains only the roads and actors in the scenario. A separate file contains
the sensors. To load these sensors into the scenario, on the app toolstrip, select Open > Sensors.
Open the AEBSensor.mat file located in the example folder. Alternatively, from your MATLAB root
folder, navigate to and open this file: matlabroot/examples/driving/data/AEBSensors.mat.

A radar sensor is mounted to the front bumper of the ego vehicle. A camera sensor is mounted to the
front window of the ego vehicle.

5 Cuboid Driving Scenario Simulation

5-134

Update Sensors

Update the radar and camera sensors by changing their locations on the ego vehicles.

1 On the Sensor Canvas, click and drag the radar sensor to the predefined Front Window
location.

2 Click and drag the camera sensor to the predefined Front Bumper location. At this predefined
location, the app updates the camera from a short-range sensor to a long-range sensor.

3 Optionally, in the left pane, on the Sensors tab, try modifying the parameters of the camera and
radar sensors. For example, you can change the detection probability or the accuracy and noise
settings.

4 Save a copy of this new scenario and sensor configuration to a writeable location.

For more details on working with sensors in the app, see “Create Driving Scenario Interactively and
Generate Synthetic Sensor Data” on page 5-2.

This image shows a sample updated sensor configuration.

 Generate Sensor Blocks Using Driving Scenario Designer

5-135

Export Scenario and Sensors to Simulink

To generate Simulink blocks for the scenario and its sensors, on the app toolstrip, select Export >
Export Simulink Model. This model shows sample blocks that were exported from the app.

open_system('AEBGeneratedScenarioAndSensors')

5 Cuboid Driving Scenario Simulation

5-136

If you made no changes to the roads and actors in the scenario, then the Scenario Reader block reads
the same road and actor data that was used in the AEB model. The Driving Radar Data Generator and
Vision Detection Generator blocks model the radar and camera that you created in the app.

Copy Exported Scenario and Sensors into Existing Model

Replace the scenario and sensors in the AEB model with the newly generated scenario and sensors.
Even if you did not modify the roads and actors and read data from the same scenario file, replacing
the existing Scenario Reader block is still a best practice. Using this generated block keeps the bus
names for scenario and sensors consistent as data passes between them.

To get started, in the AEB model, reopen the Vehicle Environment > Actors and Sensor
Simulation subsystem.

open_system('AEBTestBenchExample/Vehicle and Environment/Actors and Sensor Simulation')

Next, to cope the scenario and sensor blocks with the generated ones, follow these steps:

1 Delete the existing Scenario Reader, Driving Radar Data Generator, and Vision Detection
Generator blocks. Do not delete the signal lines that are input to the Scenario Reader block or
output from the sensor blocks. Alternatively, disconnect these blocks without deleting them, and
comment them out of the model. Using this option, you can compare the existing blocks to the
new one and revert back if needed. Select each block. Then, on the Block tab, select Comment
Out.

2 Copy the blocks from the generated model into the AEB model.
3 Open the copied-in Scenario Reader block and set the Source of ego vehicle parameter to

Input port. Click OK. The AEB model defines the ego vehicle in the Pack Ego Actor block,
which you connect to the Ego Vehicle port of the Scenario Reader block.

4 Connect the existing signal lines to the copied-in blocks. To clean up the layout of the model, on
the Format tab of the model, select Auto Arrange.

5 Verify that the updated subsystem block diagram resembles the pre-existing block diagram.
Then, save the model, or save a copy of the model to a writeable location.

Simulate Updated Model

To visualize the updated scenario simulation, reopen the Bird's-Eye Scope, click Find Signals, and
then click Run. With this updated sensor configuration, the ego vehicle does not brake in time.

 Generate Sensor Blocks Using Driving Scenario Designer

5-137

To try different sensor configurations, reload the scenario and sensors in the app, export new
scenarios and sensors, and copy them into the AEB model.

See Also
Apps
Bird's-Eye Scope | Driving Scenario Designer

Blocks
Vision Detection Generator | Driving Radar Data Generator | Scenario Reader | Lidar Point Cloud
Generator

More About
• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2
• “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-44
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-140
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-146

5 Cuboid Driving Scenario Simulation

5-138

• “Autonomous Emergency Braking with Sensor Fusion” on page 8-303

 Generate Sensor Blocks Using Driving Scenario Designer

5-139

Test Open-Loop ADAS Algorithm Using Driving Scenario
This example shows how to test an open-loop ADAS (advanced driver assistance system) algorithm in
Simulink®. In an open-loop ADAS algorithm, the ego vehicle behavior is predefined and does not
change as the scenario advances during simulation.

To test the algorithm, you use a driving scenario that was saved from the Driving Scenario Designer
app. In this example, you read in a scenario by using a Scenario Reader block, and then visualize the
scenario and sensor detections on the Bird's-Eye Scope.

Inspect Driving Scenario

This example uses a driving scenario that is based on one of the prebuilt scenarios that you access
through the Driving Scenario Designer app. For more details on these scenarios, see “Prebuilt
Driving Scenarios in Driving Scenario Designer” on page 5-22.

Open the scenario file in the app.

drivingScenarioDesigner('LeftTurnScenario.mat')

To simulate the scenario, click Run. In this scenario, the ego vehicle travels north and goes straight
through an intersection. A vehicle coming from the left side of the intersection turns left and ends up
in front of the ego vehicle.

5 Cuboid Driving Scenario Simulation

5-140

The ego vehicle has these sensors:

• A front-facing radar for generating object detections
• A front-facing camera and rear-facing camera for generating object and lane boundary detections
• A lidar on the center of its roof for generating point cloud data of the scenario

 Test Open-Loop ADAS Algorithm Using Driving Scenario

5-141

Inspect Model

The model in this example was generated from the app by selecting Export > Export Simulink
Model. In the model, a Scenario Reader block reads the actors and roads from the scenario file and
outputs the non-ego actors and lane boundaries. Open the model.

open_system('OpenLoopWithScenarios.slx')

In the Scenario Reader block, the Driving Scenario Designer file name parameter specifies the
name of the scenario file. You can specify a scenario file that is on the MATLAB® search path, such as

5 Cuboid Driving Scenario Simulation

5-142

the scenario file used in this example, or the full path to a scenario file. Alternatively, you can specify
a drivingScenario object by setting Source of driving scenario to From workspace, and then
setting MATLAB or model workspace variable name to the name of a valid drivingScenario
object workspace variable.

The Scenario Reader block outputs the poses of the non-ego actors in the scenario and the left-lane
and right-lane boundaries of the ego vehicle. To output all lane boundaries of the road on which the
ego vehicle is traveling, select the corresponding option for the Lane boundaries to output
parameter.

The actors, lane boundaries, and ego vehicle pose are passed to a subsystem containing the sensor
blocks. Open the subsystem.

open_system('OpenLoopWithScenarios/Detection Generators')

The Driving Radar Data Generator, Vision Detection Generator, and Lidar Point Cloud Generator
blocks produce synthetic detections from the scenario. You can fuse this sensor data to generate
tracks, such as in the open-loop example “Sensor Fusion Using Synthetic Radar and Vision Data in
Simulink” on page 8-295.

The outputs of the sensor blocks in this model are in vehicle coordinates, where:

 Test Open-Loop ADAS Algorithm Using Driving Scenario

5-143

• The X-axis points forward from the ego vehicle.
• The Y-axis points to the left of the ego vehicle.
• The origin is located at the center of the rear axle of the ego vehicle.

Because this model is open loop, the ego vehicle behavior does not change as the simulation
advances. Therefore, the Source of ego vehicle parameter is set to Scenario, and the block reads
the predefined ego vehicle pose and trajectory from the scenario file. For vehicle controllers and
other closed-loop models, set the Source of ego vehicle parameter to Input port. With this
option, you specify an ego vehicle that is defined in the model as an input to the Scenario Reader
block. For an example, see “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-
146.

Visualize Simulation

To visualize the scenario and sensor detections, use the Bird's-Eye Scope. On the Simulink toolstrip,
under Review Results, click Bird's-Eye Scope. Then, in the scope, click Find Signals and run the
simulation.

5 Cuboid Driving Scenario Simulation

5-144

Update Simulation Settings

This model uses the default simulation stop time of 10 seconds. Because the scenario is only about 5
seconds long, the simulation continues to run in the Bird's-Eye Scope even after the scenario has
ended. To synchronize the simulation and scenario stop times, on the Simulink model toolbar, set the
simulation stop time to 5.2 seconds, which is the exact stop time of the app scenario. After you run
the simulation, the app displays this value in the bottom-right corner of the scenario canvas.

If the simulation runs too fast in the Bird's-Eye Scope, you can slow down the simulation by using
simulation pacing. On the Simulink toolstrip, select Run > Simulation Pacing. Select the Enable
pacing to slow down simulation check box and decrease the simulation time to slightly less than 1
second per wall-clock second, such as 0.8 seconds. Then, rerun the simulation in the Bird's-Eye
Scope.

See Also
Apps
Bird's-Eye Scope | Driving Scenario Designer

Blocks
Scenario Reader | Driving Radar Data Generator | Vision Detection Generator | Lidar Point Cloud
Generator

More About
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” on page 8-295
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 5-146
• “Create Driving Scenario Variations Programmatically” on page 5-125
• “Generate Sensor Blocks Using Driving Scenario Designer” on page 5-131

 Test Open-Loop ADAS Algorithm Using Driving Scenario

5-145

Test Closed-Loop ADAS Algorithm Using Driving Scenario
This model shows how to test a closed-loop ADAS (advanced driver assistance system) algorithm in
Simulink®. In a closed-loop ADAS algorithm, the ego vehicle is controlled by changes in its scenario
environment as the simulation advances.

To test the scenario, you use a driving scenario that was saved from the Driving Scenario Designer
app. In this model, you read in a scenario using a Scenario Reader block, and then visually verify the
performance of the algorithm, an autonomous emergency braking (AEB) system, on the Bird's-Eye
Scope.

Inspect Driving Scenario

This example uses a driving scenario that is based on one of the prebuilt Euro NCAP test protocol
scenarios that you can access through the Driving Scenario Designer app. For more details on these
scenarios, see “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-44.

Open the scenario file in the app.

drivingScenarioDesigner('AEB_PedestrianChild_Nearside_50width_overrun.mat')

Click Run to simulate the scenario. In this scenario, the ego vehicle collides with a pedestrian child
who is crossing the street.

5 Cuboid Driving Scenario Simulation

5-146

In the model used in this example, you use an AEB sensor fusion algorithm to detect the pedestrian
child and test whether the ego vehicle brakes in time to avoid a collision.

Inspect Model

The model implements the AEB algorithm described in the “Autonomous Emergency Braking with
Sensor Fusion” on page 8-303 example and is configured to simulate a pedestrian collision scenario.
Open the model.

open_system('AEBTestBenchExample')

A Scenario Reader block reads the non-ego actors and roads from the specified scenario file and
outputs the non-ego actors. The ego vehicle is passed into the block through an input port.

The Scenario Reader block is located in the Vehicle Environment > Actors and Sensor
Simulation subsystem. Open this subsystem.

open_system('AEBTestBenchExample/Vehicle and Environment/Actors and Sensor Simulation')

 Test Closed-Loop ADAS Algorithm Using Driving Scenario

5-147

In the Scenario Reader block, the Driving Scenario Designer file name parameter specifies the
name of the scenario file. You can specify a scenario file that is on the MATLAB® search path, such as
the scenario file used in this example, or the full path to a scenario file. Alternatively, you can specify
a drivingScenario object by setting Source of driving scenario to From workspace and then
setting MATLAB or model workspace variable name to the name of a valid drivingScenario
object workspace variable. In closed-loop simulations, specifying the drivingScenario object is
useful because it enables you finer control over specifying the initial position of the ego vehicle in
your model.

The Scenario Reader block outputs the poses of the non-ego actors in the scenario. These poses are
passed to vision and radar sensors, whose detections are used to determine the behavior of the AEB
controller.

The actor poses are output in vehicle coordinates, where:

• The X-axis points forward from the ego vehicle.
• The Y-axis points to the left of the ego vehicle.
• The origin is located at the center of the rear axle of the ego vehicle.

Although this scenario includes a predefined ego vehicle, the Scenario Reader block is configured to
ignore this ego vehicle definition. Instead, the ego vehicle is defined in the model and specified as an
input to the Scenario Reader block (the Source of ego vehicle parameter is set to Input port). As
the simulation advances, the AEB algorithm determines the pose and trajectory of the ego vehicle. If
you are developing an open-loop algorithm, where the ego vehicle is predefined in the driving
scenario, set the Source of ego vehicle parameter to Scenario. For an example, see “Test Open-
Loop ADAS Algorithm Using Driving Scenario” on page 5-140.

5 Cuboid Driving Scenario Simulation

5-148

Visualize Simulation

To visualize the scenario, use the Bird's-Eye Scope. From the Simulink toolstrip, under Review
Results, click Bird's-Eye Scope. Then, in the scope, click Find Signals and run the simulation. With
the AEB algorithm, the ego vehicle brakes in time to avoid a collision.

See Also
Apps
Bird's-Eye Scope | Driving Scenario Designer

Blocks
Scenario Reader | Driving Radar Data Generator | Vision Detection Generator | Lidar Point Cloud
Generator

 Test Closed-Loop ADAS Algorithm Using Driving Scenario

5-149

More About
• “Autonomous Emergency Braking with Sensor Fusion” on page 8-303
• “Lateral Control Tutorial” on page 8-858
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 5-140
• “Create Driving Scenario Variations Programmatically” on page 5-125
• “Generate Sensor Blocks Using Driving Scenario Designer” on page 5-131

5 Cuboid Driving Scenario Simulation

5-150

Automate Control of Intelligent Vehicles by Using Stateflow
Charts

This example shows how to model a highway scenario with intelligent vehicles that are controlled by
the same decision logic. Each vehicle determines when to speed up, slow down, or change lanes
based on the logic defined by a standalone Stateflow® chart. Because the driving conditions
(including the relative position and speed of nearby vehicles) differ from vehicle to vehicle, separate
chart objects in MATLAB® control the individual vehicles on the highway.

Open Driving Scenario

To start the example, run the script sf_driver_demo.m. The script displays a 3-D animation of a
long highway and several vehicles. The view focuses on a single vehicle and its surroundings. As this
vehicle moves along the highway, the standalone Stateflow chart sf_driver shows the decision logic
that determines its actions.

Starting from a random position, each vehicle attempts to travel at a target speed. Because the target
speeds are chosen at random, the vehicles can obstruct one another. In this situation, a vehicle will
try to change lanes and resume its target speed.

The class file HighwayScenario defines a drivingScenario object that represents the 3-D
environment that contains the highway and the vehicles on it. To control the motion of the vehicles,
the drivingScenario object creates an array of Stateflow chart objects. Each chart object controls
a different vehicle in the simulation.

Execute Decision Logic for Vehicles

The Stateflow chart sf_driver consists of two top-level states, LaneKeep and LaneChange.

When the LaneKeep state is active, the corresponding vehicle stays in its lane of traffic. In this state,
there are two possible substates:

 Automate Control of Intelligent Vehicles by Using Stateflow Charts

5-151

• Cruise is active when the zone directly in front of the vehicle is empty and the vehicle can travel
at its target speed.

• Follow becomes active when the zone directly in front of the vehicle is occupied and its target
speed is faster than the speed of the vehicle in front. In this case, the vehicle is forced to slow
down and attempt to change lanes.

When the LaneChange state is active, the corresponding vehicle attempts to change lanes. In this
state, there are two possible substates:

• Continue is active when the zone next to the vehicle is empty and the vehicle can change lanes
safely.

• Abort becomes active when the zone next to the vehicle is occupied. In this case, the vehicle is
forced to remain in its lane.

5 Cuboid Driving Scenario Simulation

5-152

 Automate Control of Intelligent Vehicles by Using Stateflow Charts

5-153

The transitions between the states LaneKeep and LaneChange are guarded by the value of
isLaneChanging. In the LaneKeep state, the chart sets this local data to true when the substate
Follow is active and there is enough room beside the vehicle to change lanes. In the LaneChange
state, the chart sets this local data to false when the vehicle finishes changing lanes.

See Also
drivingScenario

More About
• “Create Driving Scenario Programmatically” on page 8-644
• “Create Actor and Vehicle Trajectories Programmatically” on page 8-663
• “Define Road Layouts Programmatically” on page 8-674

5 Cuboid Driving Scenario Simulation

5-154

Simulate INS Block
In this example, you simulate an INS block by using the pose information of a vehicle undertaking a
left-turn trajectory.

Load Vehicle Trajectory Data

First, you load the trajectory information of the vehicle to the workspace.

load leftTurnTrajectory.mat

You notice that seven new variables appear in MATLAB workspace.

• dt — The time step size of 0.4 seconds.
• t — The total time span of 7.88 seconds.
• vehPos, vehVel, vehAcc, vehOrient, vehAngVel — The history of position, velocity,

acceleration, orientation, and angular velocity, each specified as a 198-by-3 matrix, where 198 is
the total number of steps.

Open Simulink Model

Next, you open the Simulink model.

open simulateINS.slx

The model contains three parts: the data importing part, the INS block, and the scope block to
compare the true positions with the INS outputs.

The data importing part imports the vehicle trajectory data into Simulink using the From Workspace
(Simulink) block. You use a helper function helperFromWorkspace, attached in the example folder,
to convert the trajectory data into a structure format required by the From Workspace block.

Run the Model

Run the Simulink model.

resulsts = sim('simulateINS');

Click on the scope block and see the results. The INS block position outputs closely follow the truth
with the addition of noise.

 Simulate INS Block

5-155

See Also
INS

Related Examples
• “Generate INS Measurements from Driving Scenario in Simulink” on page 5-157

5 Cuboid Driving Scenario Simulation

5-156

Generate INS Measurements from Driving Scenario in Simulink
Generate measurements from an INS sensor that is mounted to a vehicle in a driving scenario.
Visualize the position, velocity and acceleration profile of the vehicle using those sensor
measurements in comparison with the ground truth values from the scenario.

Inspect Model

Open the Simulink model that reads ground truth measurements from a driving scenario using the
Scenario Reader block and generates measurements using the INS block. The Ego Vehicle State
port is enabled in the Scenario Reader block to obtain the ground truth measurements, which are
then fed to the INS block. For more information about creating interactive driving scenarios with INS
sensor using Driving Scenario Designer app and exporting them to Simulink models, refer to
“Generate INS Sensor Measurements from Interactive Driving Scenario” on page 5-80.

open_system('ScenarioINSExampleSimulinkModel');

Simulate the model and visualize measurements

Simulate the model. Note that the ground truth and sensor measurements are set to be logged during
the simulation.

sim('ScenarioINSExampleSimulinkModel');

Open Simulation Data Inspector to visualize the position, velocity and acceleration profile of the
vehicle based on the INS sensor measurements, in comparison with ground truth data obtained from
the driving scenario. From the list of logged signals, select the signals corresponding to the
measurements that you wish to compare and visualize.

Simulink.sdi.view

See Also
Driving Scenario Designer | insSensor

 Generate INS Measurements from Driving Scenario in Simulink

5-157

More About
• “Generate INS Sensor Measurements from Interactive Driving Scenario” on page 5-80
• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2

5 Cuboid Driving Scenario Simulation

5-158

Create Roads with Multiple Lane Specifications Using Driving
Scenario Designer

This example shows how to interactively create roads with multiple lane specifications using the
Driving Scenario Designer app. You can add or drop lanes along a road by defining multiple lane
specifications for that road.

This example shows the workflow to create a road with a special passing lane. The passing lane
enables slower vehicles to move into the right lane so that faster vehicles can pass uninterrupted in
the left lane.

You can also define multiple lane specifications programmatically. For more information, see
compositeLaneSpec.

Open Driving Scenario Designer
To open the app, at the MATLAB command prompt, enter drivingScenarioDesigner.

 Create Roads with Multiple Lane Specifications Using Driving Scenario Designer

5-159

Add Road
Add a straight road to the scenario canvas. On the app toolstrip, select Add Road. Then, click at the
bottom-center of the canvas, extend the road to the top-center, and double-click the canvas to create
the road. To specify precise coordinates for road centers, in the left pane, on the Roads tab, expand
the Road Centers section and enter the values for x-axis and y-axis positions shown in this table.

Road Center x (m) y (m)
1 0 0
2 100 0

Define Multiple Lane Specifications
By default, the road is a single-segment, single-lane road without lane markings. To define multiple
lane specifications, split the road into the desired number of road segments and specify different lane
specifications for each road segment. The order for numbering the lanes and segments of a road
depends on the orientation of the road. For more details, see “Draw Direction of Road and Numbering
of Lanes” and “Composite Lane Specification”.

Divide Road into Segments

In the left pane, on the Roads tab, set the Number of Road Segments to 3. By default, the length of
the road is divided equally into the specified number of road segments. You can edit the lengths of
road segments using the Segment Range parameter that denotes the normalized range for each
road segment. Set the Segment Range parameter to [0.4 0.3 0.3].

5 Cuboid Driving Scenario Simulation

5-160

Specify Lane Information for Each Road Segment

To define lane specifications for each road segment, from the Road Segment list, select the desired
segment. Then, expand the Lanes section and set the Number of lanes and the Lane Width (m)
parameters as shown in this table.

Road Segment Number of Lanes Lane Width (m)
Segment 1 (range = 40%) [1 1] 4
Segment 2 (range = 30%) [1 2] 4
Segment 3 (range = 30%) [1 1] 4

This image shows the road after specifying the lane information.

You can inspect or modify the Lane Types and Lane Markings parameters for the lanes in the
selected road segment. This example uses default values for these parameters.

Define Connection Between Road Segments

By default, road segments do not have taper when you add or drop lanes along the road. To make the
scenario more realistic, specify information for the lanes to taper linearly when adding or dropping
lanes between road segments.

Expand the Segment Taper section, select Taper 1 from the list, and set these parameters:

 Create Roads with Multiple Lane Specifications Using Driving Scenario Designer

5-161

• Shape — Linear
• Length (m) — 15

Select Taper 2 from the list and specify the same values for its corresponding parameters.

Note For two-way road segments, the app determines the position from which to add or drop lanes
based on the specified Number of Lanes parameter. When you create multiple lane specifications for
a one-way road, the Segment Taper section additionally contains the Position parameter. Using this
parameter, you can specify the edge of the road segment from which to add or drop lanes.

This image shows the road after specifying segment taper information.

Next Steps
This example showed how to create a road with multiple lane specifications using the Driving
Scenario Designer app. You can add actors and trajectories to the scenario. You can also add
sensors and generate synthetic detections. For more information, see “Create Driving Scenario
Interactively and Generate Synthetic Sensor Data” on page 5-2.

To export a road network to an ASAM OpenDRIVE file, see “Export Driving Scenario to ASAM
OpenDRIVE File” on page 5-98.

5 Cuboid Driving Scenario Simulation

5-162

See Also
Apps
Driving Scenario Designer

Objects
drivingScenario | compositeLaneSpec | laneSpecConnector

Related Examples
• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2
• “Define Road Layouts Programmatically” on page 8-674
• “Export Driving Scenario to ASAM OpenDRIVE File” on page 5-98

 Create Roads with Multiple Lane Specifications Using Driving Scenario Designer

5-163

Export Driving Scenario to ASAM OpenSCENARIO File
ASAM OpenSCENARIO is an open file format that describes the dynamic content of driving scenarios.
Using the Driving Scenario Designer app, you can export road networks, actors, and trajectories
from a driving scenario to an ASAM OpenSCENARIO file.

The app supports exporting driving scenarios to ASAM OpenSCENARIO file versions 1.0 and 1.1.

To programmatically export a driving scenario to an ASAM OpenSCENARIO file, use the export
object function of the drivingScenario object.

Load Scenario File
To open the Driving Scenario Designer app, enter this command at the MATLAB command prompt:

drivingScenarioDesigner

To load an existing scenario file, on the app toolstrip, select Open > Scenario File. The file you
select must be a valid driving scenario session file with the .mat file extension. Alternatively, you can
create a new scenario by using the Driving Scenario Designer app, and then export that scenario
to an ASAM OpenSCENARIO file. For information about how to create a scenario, see “Create Driving
Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2.

Navigate to and open this driving scenario, where matlabroot is your MATLAB root folder:

matlabroot/examples/driving/data/CutInScenario.mat

The Scenario Canvas pane displays the scenario, in which an ego vehicle and a target vehicle travel
on a straight road with predefined trajectories such that the target vehicle cuts into the ego lane.

5 Cuboid Driving Scenario Simulation

5-164

This scenario contains these ASAM OpenSCENARIO actions:

• SpeedAction — The ego vehicle travels with an initial speed of 15 m/s and then stops
momentarily when it reaches a specified waypoint. The ego vehicle then travels at a speed of 10
m/s until the end of the scenario.

• VisibilityAction — The target vehicle enters the scenario after 3 seconds.
• FollowTrajectoryAction — The vehicles explicitly follow their trajectories, specified using

waypoints.

Run the scenario and observe the behaviors of the two vehicles.

Export to ASAM OpenSCENARIO
To export the road network, actors, and trajectories in the scenario to an ASAM OpenSCENARIO file,
on the app toolstrip, select Export > ASAM OpenSCENARIO File.

 Export Driving Scenario to ASAM OpenSCENARIO File

5-165

The app opens the ASAM OpenSCENARIO Export dialog box.

5 Cuboid Driving Scenario Simulation

5-166

On the OpenSCENARIO tab, specify these options:

• File Path — Specifies a name and location for the output ASAM OpenSCENARIO file with either
the .xosc or .xml file extension. By default, the app saves the file in the current working
directory. To specify a different file location, click Browse. If a file with the specified name already
exists, the app overwrites the existing file.

• File Version — Specifies the ASAM OpenSCENARIO version for the output file as Version 1.0
or Version 1.1.

Default: Version 1.0

On the OpenDRIVE tab, specify information for the associated ASAM OpenDRIVE file using these
options:

• File Version — Specifies the ASAM OpenDRIVE version for the output file as Version 1.4,
Version 1.5, or Version 1.6.

Default: Version 1.4
• Export Actors — Select this parameter to export actors to the ASAM OpenDRIVE file.

Default: on

Once you have specified the file information, click Export. The app creates an ASAM OpenSCENARIO
file, which describes the dynamic behaviors of actors in the scenario, as well as additional data files.
Each data file contains information about a specific scenario element, such as a vehicle or pedestrian.
The name of each data file has the prefix filename_, where filename is the name specified using
the File Path option.

Data File Element of Scenario
filename_OpenDRIVE.xodr Road network and barriers in the scenario
filename_VehicleCatalog.xosc Properties of vehicles

 Export Driving Scenario to ASAM OpenSCENARIO File

5-167

Data File Element of Scenario
filename_PedestrianCatalog.xosc Properties of pedestrians

Note The app exports data files based on the contents of the scenario. For example, if the scenario
does not contain any pedestrians, then the data file filename_PedestrianCatalog.xosc is not
exported.

ASAM OpenSCENARIO Representations
The exported files contain representations of driving scenario actors and their parameters in the
ASAM OpenSCENARIO format.

Name, Class, and Actor Properties

The app exports the Name, Class, and Actor Properties for each actor to a Vehicle element within
the filename_VehicleCatalog file.
<Vehicle name="Car1" vehicleCategory="car">
 <BoundingBox>
 <Center x="1.35" y="0" z="0"/>
 <Dimensions height="1.4" length="4.7" width="1.8"/>
 </BoundingBox>
 <Performance maxAcceleration="5.36" maxDeceleration="6" maxSpeed="39"/>
 <Axles>
 <FrontAxle maxSteering="0.5" positionX="2.8" positionZ="0.1905" trackWidth="1.8" wheelDiameter="0.381"/>
 <RearAxle maxSteering="0.5" positionX="0" positionZ="0.1905" trackWidth="1.8" wheelDiameter="0.381"/>
 </Axles>
 <Properties/>
</Vehicle>

ASAM OpenSCENARIO vehicles include parameters without equivalent actor characteristics. This
table shows the default values for those ASAM OpenSCENARIO parameters for various types of
exported actors.

Vehicle Parameter Default Value in Exported File
Car Truck Bicycle

maxAcceleration 5.3645 m/s2 0.897 m/s2 0.231 m/s2

maxDeceleration 6 m/s2 0.474 m/s2 7 m/s2

maxSpeed 39 m/s 30 m/s 22 m/s
maxSteering 0.5 rad 0.5 rad 0.61 rad
trackWidth Width of vehicle Width of vehicle 0
wheelDiameter 0.381 m 0.5715 m 0.571 m

This table describes how each attribute in the exported file maps to the actor properties in the app.

Exported Attribute in ASAM OpenSCENARIO Conversion from Actor Properties
x-coordinate of center of bounding box x-coordinate of actor Position +

RearOverhang + 0.5 * Length
y-coordinate of center of bounding box y-coordinate of actor Position
z-coordinate of center of bounding box z-coordinate of actor Position

5 Cuboid Driving Scenario Simulation

5-168

Exported Attribute in ASAM OpenSCENARIO Conversion from Actor Properties
positionX of front axle x-coordinate of actor Position +

FrontOverhang – RearOverhang + Length
positionZ of front axle 0.5 * wheelDiameter
positionX of rear axle x-coordinate of actor Position
positionZ of rear axle 0.5 * wheelDiameter

Waypoints

The app exports the waypoints of an actor to the Trajectory element of the
FollowTrajectoryAction in the Init section of the output ASAM OpenSCENARIO file. The
Trajectory element defines the motion of the associated vehicle in the world position format using
a polyline. Setting TrajectoryFollowingMode to position forces the actor to strictly adhere to
the specified trajectory. Exported trajectories do not include a time dimension.
<PrivateAction>
 <RoutingAction>
 <FollowTrajectoryAction>
 <Trajectory closed="false" name="Trajectory1">
 <Shape>
 <Polyline>
 <Vertex time="1">
 <Position>
 <WorldPosition h="0" p="0" r="0" x="5" y="0" z="0"/>
 </Position>
 </Vertex>
 <Vertex time="2">
 <Position>
 <WorldPosition h="0" p="0" r="0" x="10" y="0" z="0"/>
 </Position>
 </Vertex>
 </Polyline>
 </Shape>
 </Trajectory>
 <TimeReference/>
 <TrajectoryFollowingMode followingMode="position"/>
 </FollowTrajectoryAction>
 </RoutingAction>
</PrivateAction>

Note

• The app interpolates additional waypoints between the ones specified in the driving scenario, to
generate smooth trajectories for exported actors in the output ASAM OpenSCENARIO file.

• The app does not support exporting reverse waypoints of actors to an ASAM OpenSCENARIO file.

Speed

When the speed of a vehicle changes in the scenario, the app exports this information to a
SpeedAction element in the output ASAM OpenSCENARIO file. The app exports speed changes as a
constant rate of change toward a target speed by setting the dynamicsDimension and
dynamicsShape attributes of the SpeedActionDynamics element to rate and linear,
respectively.
<PrivateAction>
 <LongitudinalAction>
 <SpeedAction>

 Export Driving Scenario to ASAM OpenSCENARIO File

5-169

 <SpeedActionDynamics dynamicsDimension="rate" dynamicsShape="linear" value="5"/>
 <SpeedActionTarget>
 <AbsoluteTargetSpeed value="26"/>
 </SpeedActionTarget>
 </SpeedAction>
 </LongitudinalAction>
</PrivateAction>

Wait Time

When an actor in a driving scenario uses the wait (s) parameter, the app exports this information
using the delay attribute of the condition element that triggers the event that executes the next
SpeedAction.

In this sample code, the ego vehicle stops at the specified waypoint for 0.5 seconds and then
continues traveling forward. The event DS_Event_Ego4 specifies that the ego vehicle comes to a rest
position. The code represents the wait time information using the delay attribute of the DS_Cond5
condition, which triggers the event after DS_Event_Ego4. As a result, the ego vehicle waits for 0.5
seconds after coming to rest before it begins moving again.
<Event name="DS_Event_Ego4" priority="overwrite">
 <Action name="DS_Action_Ego4">
 <PrivateAction>
 <LongitudinalAction>
 <SpeedAction>
 <SpeedActionDynamics dynamicsDimension="rate" dynamicsShape="linear" value="-0.54932"/>
 <SpeedActionTarget>
 <AbsoluteTargetSpeed value="0"/>
 </SpeedActionTarget>
 </SpeedAction>
 </LongitudinalAction>
 </PrivateAction>
 </Action>
 <StartTrigger>
 <ConditionGroup>
 <Condition conditionEdge="none" delay="0" name="DS_Cond4">
 <ByEntityCondition>
 <TriggeringEntities triggeringEntitiesRule="any">
 <EntityRef entityRef="Ego"/>
 </TriggeringEntities>
 <EntityCondition>
 <ReachPositionCondition tolerance="2.0">
 <Position>
 <WorldPosition x="57" y="0" z="0"/>
 </Position>
 </ReachPositionCondition>
 </EntityCondition>
 </ByEntityCondition>
 </Condition>
 </ConditionGroup>
 </StartTrigger>
</Event>
<Event name="DS_Event_Ego5" priority="overwrite">
 <Action name="DS_Action_Ego5">
 <PrivateAction>
 <LongitudinalAction>
 <SpeedAction>
 <SpeedActionDynamics dynamicsDimension="rate" dynamicsShape="linear" value="0.77556"/>
 <SpeedActionTarget>
 <AbsoluteTargetSpeed value="2.5926"/>
 </SpeedActionTarget>
 </SpeedAction>
 </LongitudinalAction>
 </PrivateAction>
 </Action>
 <StartTrigger>
 <ConditionGroup>
 <Condition conditionEdge="none" delay="0.5" name="DS_Cond5">
 <ByValueCondition>

5 Cuboid Driving Scenario Simulation

5-170

 <StoryboardElementStateCondition state="completeState" storyboardElementRef="DS_Action_Ego4" storyboardElementType="action"/>
 </ByValueCondition>
 </Condition>
 </ConditionGroup>
 </StartTrigger>
</Event>

Actor spawn and despawn

When you enable the Actor spawn and despawn parameter, with valid values for the Entry Time
(s) and Exit Time (s) parameters, the app exports this information using the VisibilityAction
element.

<PrivateAction>
 <VisibilityAction graphics="true" sensors="true" traffic="true"/>
</PrivateAction>

Limitations
The Driving Scenario Designer app does not support all components of the ASAM OpenSCENARIO
specification. This table shows the list of supported elements and attributes.

Supported Element or Attribute
AbsoluteTargetSpeed
Act
Action
Actors
Axle
Axles
BoundingBox
ByEntityCondition
ByValueCondition
CatalogReference
Center
Clothoid
Condition
ConditionGroup
Dimensions
Directory
Entities
EntityCondition
EntityObject
EntityRef
Event
File

 Export Driving Scenario to ASAM OpenSCENARIO File

5-171

Supported Element or Attribute
FileHeader
FollowTrajectoryAction
Init
LongitudinalAction
Maneuver
ManeuverGroup
MiscObject
OpenScenario
Pedestrian
Performance
Polyline
Position
Private
PrivateAction
ReachPositionCondition
RoadNetwork
Route
RoutingAction
ScenarioObject
Shape
SimulationTimeCondition
SpeedAction
SpeedActionTarget
Story
Storyboard
StoryboardElementStateCondition
TeleportAction
Trajectory
Trigger
TriggeringEntities
Vehicle
VehicleCatalogLocation
Vertex
VisibilityAction
Waypoint
WorldPosition

5 Cuboid Driving Scenario Simulation

5-172

See Also
Apps
Driving Scenario Designer

Objects
drivingScenario

Functions
export | roadNetwork

Related Examples
• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2
• “Import ASAM OpenDRIVE Roads into Driving Scenario” on page 5-89
• “Export Driving Scenario to ASAM OpenDRIVE File” on page 5-98

External Websites
• ASAM OpenSCENARIO
• ASAM OpenDRIVE

 Export Driving Scenario to ASAM OpenSCENARIO File

5-173

https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/opendrive/

3D Simulation – User's Guide

6

Unreal Engine Simulation for Automated Driving
Automated Driving Toolbox provides a co-simulation framework that models driving algorithms in
Simulink and visualizes their performance in a virtual simulation environment. This environment uses
the Unreal Engine from Epic Games.

Simulink blocks related to the simulation environment can be found in the Automated Driving
Toolbox > Simulation 3D block library. These blocks provide the ability to:

• Configure scenes in the simulation environment.
• Place and move vehicles within these scenes.
• Set up camera, radar, and lidar sensors on the vehicles.
• Simulate sensor outputs based on the environment around the vehicle.
• Obtain ground truth data for semantic segmentation and depth information.

This simulation tool is commonly used to supplement real data when developing, testing, and
verifying the performance of automated driving algorithms. In conjunction with a vehicle model, you
can use these blocks to perform realistic closed-loop simulations that encompass the entire
automated driving stack, from perception to control.

For more details on the simulation environment, see “How Unreal Engine Simulation for Automated
Driving Works” on page 6-9.

Unreal Engine Simulation Blocks
To access the Automated Driving Toolbox > Simulation 3D library, at the MATLAB command
prompt, enter drivingsim3d.

Scenes

To configure a model to co-simulate with the simulation environment, add a Simulation 3D Scene
Configuration block to the model. Using this block, you can choose from a set of prebuilt scenes
where you can test and visualize your driving algorithms. You can also use this block to control the
sun position and weather conditions in the scene. The following image is from the Virtual Mcity
scene.

6 3D Simulation – User's Guide

6-2

The toolbox includes these scenes.

Scene Description
Straight Road Straight road segment
Curved Road Curved, looped road
Parking Lot Empty parking lot
Double Lane Change Straight road with barrels and traffic signs that

are set up for executing a double lane change
maneuver

Open Surface Flat, black pavement surface with no road objects
US City Block City block with intersections, barriers, and traffic

lights
US Highway Highway with cones, barriers, traffic lights, and

traffic signs
Large Parking Lot Parking lot with parked cars, cones, curbs, and

traffic signs
Virtual Mcity City environment that represents the University

of Michigan proving grounds (see Mcity Test
Facility); includes cones, barriers, an animal,
traffic lights, and traffic signs

If you have the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package,
then you can modify these scenes or create new ones. For more details, see “Customize Unreal
Engine Scenes for Automated Driving” on page 6-44.

 Unreal Engine Simulation for Automated Driving

6-3

https://mcity.umich.edu/our-work/mcity-test-facility/
https://mcity.umich.edu/our-work/mcity-test-facility/

Vehicles

To define a virtual vehicle in a scene, add a Simulation 3D Vehicle with Ground Following block to
your model. Using this block, you can control the movement of the vehicle by supplying the X, Y, and
yaw values that define its position and orientation at each time step. The vehicle automatically moves
along the ground.

You can also specify the color and type of vehicle. The toolbox includes these vehicle types:

• Box Truck
• Hatchback
• Muscle Car
• Sedan
• Small Pickup Truck
• Sport Utility Vehicle

Sensors

You can define virtual sensors and attach them at various positions on the vehicles. The toolbox
includes these sensor modeling and configuration blocks.

Block Description
Simulation 3D Camera Camera model with lens. Includes parameters for

image size, focal length, distortion, and skew.
Simulation 3D Fisheye Camera Fisheye camera that can be described using the

Scaramuzza camera model. Includes parameters
for distortion center, image size, and mapping
coefficients.

Simulation 3D Lidar Scanning lidar sensor model. Includes
parameters for detection range, resolution, and
fields of view.

Simulation 3D Probabilistic Radar Probabilistic radar model that returns a list of
detections. Includes parameters for radar
accuracy, radar bias, detection probability, and
detection reporting. It does not simulate radar at
an electromagnetic wave propagation level.

Simulation 3D Probabilistic Radar Configuration Configures radar signatures for all actors
detected by the Simulation 3D Probabilistic
Radar blocks in a model.

Simulation 3D Vision Detection Generator Camera model that returns a list of object and
lane boundary detections. Includes parameters
for modeling detection accuracy, measurement
noise, and camera intrinsics.

For more details on choosing a sensor, see “Choose a Sensor for Unreal Engine Simulation” on page
6-17.

6 3D Simulation – User's Guide

6-4

Algorithm Testing and Visualization
Automated Driving Toolbox simulation blocks provide the tools for testing and visualizing path
planning, vehicle control, and perception algorithms.

Path Planning and Vehicle Control

You can use the Unreal Engine simulation environment to visualize the motion of a vehicle in a
prebuilt scene. This environment provides you with a way to analyze the performance of path
planning and vehicle control algorithms. After designing these algorithms in Simulink, you can use
the drivingsim3d library to visualize vehicle motion in one of the prebuilt scenes.

For an example of path planning and vehicle control algorithm visualization, see “Visualize
Automated Parking Valet Using Unreal Engine Simulation” on page 8-904.

Perception

Automated Driving Toolbox provides several blocks for detailed camera, radar, and lidar sensor
modeling. By mounting these sensors on vehicles within the virtual environment, you can generate
synthetic sensor data or sensor detections to test the performance of your sensor models against
perception algorithms. For an example of generating radar detections, see “Simulate Vision and
Radar Sensors in Unreal Engine Environment” on page 8-916.

You can also output and visualize ground truth data to validate depth estimation algorithms and train
semantic segmentation networks. For an example, see “Depth and Semantic Segmentation
Visualization Using Unreal Engine Simulation” on page 6-30.

Localization

Developing a localization algorithm and evaluating its performance in varying conditions is a
challenging task. One of the biggest challenges is obtaining ground truth. Although you can capture
ground truth using expensive, high-precision inertial navigation systems (INS), virtual simulation is a
cost-effective alternative. The use of simulation enables testing under a variety of scenarios and
sensor configurations. It also enables a rapid development iteration, and provides precise ground
truth. For an example develop and evaluate a lidar localization algorithm using synthetic lidar data
from the Unreal Engine simulation environment, see “Lidar Localization with Unreal Engine
Simulation” on page 8-972.

Closed-Loop Systems

After you design and test a perception system within the simulation environment, you can use this
system to drive a control system that actually steers a vehicle. In this case, rather than manually set
up a trajectory, the vehicle uses the perception system to drive itself. By combining perception and
control into a closed-loop system in the 3D simulation environment, you can develop and test more
complex algorithms, such as lane keeping assist and adaptive cruise control.

For an example of a closed-loop system in the Unreal Engine environment, see “Highway Lane
Following” on page 8-922.

 Unreal Engine Simulation for Automated Driving

6-5

See Also

More About
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 6-7
• “Simulate Simple Driving Scenario and Sensor in Unreal Engine Environment” on page 6-21
• “Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox” on page 6-

11
• “Customize Unreal Engine Scenes for Automated Driving” on page 6-44

6 3D Simulation – User's Guide

6-6

Unreal Engine Simulation Environment Requirements and
Limitations

Automated Driving Toolbox provides an interface to a simulation environment that is visualized using
the Unreal Engine from Epic Games. This visualization engine comes installed with the toolbox. When
simulating in this environment, keep these requirements and limitations in mind.

Software Requirements
• Windows® 64-bit platform
• Visual Studio®

• Microsoft® DirectX® — If this software is not already installed on your machine and you try to
simulate in the environment, the toolbox prompts you to install it. Once you install the software,
you must restart the simulation.

In you are customizing scenes, verify that Visual Studio and your Unreal Engine project is compatible
with the Unreal Engine version supported by your MATLAB release.

MATLAB Release Unreal Engine Version Visual Studio Version
R2019b 4.19 2017
R2020a–R2021a 4.23 2019
R2021b 4.25 2019
R2022a 4.26 2019

Note Mac and Linux® platforms are not yet supported for Unreal Engine simulation.

Minimum Hardware Requirements
• Graphics card (GPU) — Virtual reality-ready with 8 GB of on-board RAM
• Processor (CPU) — 2.60 GHz
• Memory (RAM) — 12 GB

Limitations
The Unreal Engine simulation environment blocks do not support:

• Code generation
• Model reference
• Multiple instances of the Simulation 3D Scene Configuration block
• Multiple Unreal Engine instances in the same MATLAB session
• Parallel simulations
• Rapid accelerator mode

In addition, when using these blocks in a closed-loop simulation, all Unreal Engine simulation
environment blocks must be in the same subsystem.

 Unreal Engine Simulation Environment Requirements and Limitations

6-7

See Also

More About
• “Unreal Engine Scenario Simulation”

External Websites
• Unreal Engine 4 Documentation

6 3D Simulation – User's Guide

6-8

https://docs.unrealengine.com/en-US/index.html

How Unreal Engine Simulation for Automated Driving Works
Automated Driving Toolbox provides a co-simulation framework that you can use to model driving
algorithms in Simulink and visualize their performance in a virtual simulation environment. This
environment uses the Unreal Engine by Epic Games.

Understanding how this simulation environment works can help you troubleshoot issues and
customize your models.

Communication with 3D Simulation Environment
When you use Automated Driving Toolbox to run your algorithms, Simulink co-simulates the
algorithms in the visualization engine.

In the Simulink environment, Automated Driving Toolbox:

• Configures the visualization environment, specifically the ray tracing, scene capture from
cameras, and initial object positions

• Determines the next position of the objects by using the simulation environment feedback

The diagram summarizes the communication between Simulink and the visualization engine.

Block Execution Order
During simulation, the Unreal Engine simulation blocks follow a specific execution order:

1 The Simulation 3D Vehicle with Ground Following blocks initialize the vehicles and send their X,
Y, and Yaw signal data to the Simulation 3D Scene Configuration block.

2 The Simulation 3D Scene Configuration block receives the vehicle data and sends it to the sensor
blocks.

3 The sensor blocks receive the vehicle data and use it to accurately locate and visualize the
vehicles.

The Priority property of the blocks controls this execution order. To access this property for any
block, right-click the block, select Properties, and click the General tab. By default, Simulation 3D
Vehicle with Ground Following blocks have a priority of -1, Simulation 3D Scene Configuration blocks
have a priority of 0, and sensor blocks have a priority of 1.

The diagram shows this execution order.

 How Unreal Engine Simulation for Automated Driving Works

6-9

If your sensors are not detecting vehicles in the scene, it is possible that the Unreal Engine
simulation blocks are executing out of order. Try updating the execution order and simulating again.
For more details on execution order, see “Control and Display Execution Order” (Simulink).

Also be sure that all 3D simulation blocks are located in the same subsystem. Even if the blocks have
the correct Priority settings, if they are located in different subsystems, they still might execute out
of order.

See Also

More About
• “Unreal Engine Simulation for Automated Driving” on page 6-2
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 6-7
• “Choose a Sensor for Unreal Engine Simulation” on page 6-17
• “Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox” on page 6-

11

6 3D Simulation – User's Guide

6-10

Coordinate Systems for Unreal Engine Simulation in
Automated Driving Toolbox

Automated Driving Toolbox enables you to simulate your driving algorithms in a virtual environment
that uses the Unreal Engine from Epic Games. In general, the coordinate systems used in this
environment follow the conventions described in “Coordinate Systems in Automated Driving Toolbox”
on page 1-2. However, when simulating in this environment, it is important to be aware of the specific
differences and implementation details of the coordinate systems.

World Coordinate System
As with other Automated Driving Toolbox functionality, the simulation environment uses the right-
handed Cartesian world coordinate system defined in ISO 8855. The following 2D top-view image of
the Virtual Mcity scene shows the X- and Y-coordinates of the scene.

 Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox

6-11

In this coordinate system, when looking in the positive direction of the X-axis, the positive Y-axis
points left. The positive Z-axis points from the ground up. The yaw, pitch, and roll angles are
clockwise-positive, when looking in the positive directions of the Z-, Y-, and X-axes, respectively. If
you view a scene from a 2D top-down perspective, then the yaw angle is counterclockwise-positive,
because you are viewing the scene in the negative direction of the Z-axis.

6 3D Simulation – User's Guide

6-12

Placing Vehicles in a Scene

Vehicles are placed in the world coordinate system of the scenes. The figure shows how specifying the
X, Y, and Yaw ports in the Simulation 3D Vehicle with Ground Following blocks determines their
placement in a scene.

The elevation and banking angle of the ground determine the Z-axis, roll angle, and pitch angle of the
vehicles.

Difference from Unreal Editor World Coordinates

The Unreal® Editor uses a left-handed world Cartesian coordinate system in which the positive Y-axis
points right. If you are converting from the Unreal Editor coordinate system to the coordinate system
of the 3D environment, you must flip the sign of the Y-axis and pitch angle. The X-axis, Z-axis, roll
angle, and yaw angle are the same in both coordinate systems.

Vehicle Coordinate System
The vehicle coordinate system is based on the world coordinate system. In this coordinate system:

• The X-axis points forward from the vehicle.
• The Y-axis points to the left of the vehicle.
• The Z-axis points up from the ground.
• Roll, pitch, and yaw are clockwise-positive when looking in the forward direction of the X-, Y-, and

Z-axes, respectively. As with the world coordinate system, when looking at a vehicle from the top
down, then the yaw angle is counterclockwise-positive.

The vehicle origin is on the ground, at the geometric center of the vehicle. In this figure, the blue dot
represents the vehicle origin.

 Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox

6-13

Mounting Sensors on a Vehicle

When you add a sensor block, such as a Simulation 3D Camera block, to your model, you can mount
the sensor to a predefined vehicle location, such as the front bumper of the root center. These
mounting locations are in the vehicle coordinate system. When you specify an offset from these
locations, you offset from the origin of the mounting location, not from the vehicle origin.

These equations define the vehicle coordinates for a sensor with location (X, Y, Z) and orientation
(Roll, Pitch, Yaw):

• (X, Y, Z) = (Xmount + Xoffset, Ymount + Yoffset, Zmount + Zoffset)
• (Roll, Pitch, Yaw) = (Rollmount + Rolloffset, Pitchmount + Pitchoffset, Yawmount + Yawoffset)

The "mount" variables refer to the predefined mounting locations relative to the vehicle origin. You
define these mounting locations in the Mounting location parameter of the sensor block.

The "offset" variables refer to the amount of offset from these mounting locations. You define these
offsets in the Relative translation [X, Y, Z] (m) and Relative rotation [Roll, Pitch, Yaw] (deg)
parameters of the sensor block.

For example, consider a sensor mounted to the Rear bumper location. Relative to the vehicle origin,
the sensor has an orientation of (0, 0, 180). In other words, when looking at the vehicle from the top
down, the yaw angle of the sensor is rotated counterclockwise 180 degrees.

6 3D Simulation – User's Guide

6-14

To point the sensor 90 degrees further to the right, you need to set the Relative rotation [Roll,
Pitch, Yaw] (deg) parameter to [0,0,90]. In other words, the sensor is rotated 270 degrees
counterclockwise relative to the vehicle origin, but it is rotated only 90 degrees counterclockwise
relative to the origin of the predefined rear bumper location.

Difference from Cuboid Vehicle Origin

In the cuboid simulation environment, as described in “Cuboid Scenario Simulation”, the origin is on
the ground, below the center of the rear axle of the vehicle.

 Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox

6-15

Cuboid Vehicle Origin 3D Simulation Vehicle Origin

If you are converting sensor positions between coordinate systems, then you need to account for this
difference in origin by using a Cuboid To 3D Simulation block. For an example model that uses this
block, see “Highway Lane Following” on page 8-922.

Difference from Unreal Editor Vehicle Coordinates

The Unreal Editor uses a left-handed Cartesian vehicle coordinate system in which the positive Y-axis
points right. If you are converting from the Unreal Editor coordinate system to the coordinate system
of the Unreal Engine environment, you must flip the sign of the Y-axis and pitch angle. The X-axis, Z-
axis, roll angle, and yaw angle are the same in both coordinate systems.

See Also
Simulation 3D Vehicle with Ground Following | Cuboid To 3D Simulation

More About
• “How Unreal Engine Simulation for Automated Driving Works” on page 6-9
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Coordinate Systems in Vehicle Dynamics Blockset” (Vehicle Dynamics Blockset)

6 3D Simulation – User's Guide

6-16

Choose a Sensor for Unreal Engine Simulation
In Automated Driving Toolbox, you can obtain high-fidelity sensor data from a virtual environment.
This environment is rendered using the Unreal Engine from Epic Games.

The table summarizes the sensor blocks that you can simulate in this environment.

Sensor Block Descripti
on

Visualization Example

Simulation 3D
Camera

• Camera
with
lens
that is
based
on the
ideal
pinhole
camera
. See
“What
Is
Camera
Calibra
tion?”

• Include
s
parame
ters for
image
size,
focal
length,
distorti
on, and
skew

• Include
s
options
to
output
ground
truth
for
depth
estimat
ion and
semanti
c
segmen
tation

Display camera images by using a Video Viewer or
To Video Display block. Sample visualization:

“Design Lane
Marker Detector
Using Unreal
Engine
Simulation
Environment” on
page 8-885

Display depth maps by using a Video Viewer or To
Video Display block. Sample visualization:

“Depth and
Semantic
Segmentation
Visualization
Using Unreal
Engine
Simulation” on
page 6-30

Display semantic segmentation maps by using a
Video Viewer or To Video Display block. Sample
visualization:

“Depth and
Semantic
Segmentation
Visualization
Using Unreal
Engine
Simulation” on
page 6-30

 Choose a Sensor for Unreal Engine Simulation

6-17

Sensor Block Descripti
on

Visualization Example

Simulation 3D
Fisheye Camera

• Fisheye
camera
that
can be
describ
ed
using
the
Scaram
uzza
camera
model.
See
“Fishey
e
Calibra
tion
Basics”

• Include
s
parame
ters for
distorti
on
center,
image
size,
and
mappin
g
coeffici
ents

Display camera images by using a Video Viewer or
To Video Display block. Sample visualization:

“Simulate Simple
Driving Scenario
and Sensor in
Unreal Engine
Environment” on
page 6-21

Simulation 3D
Lidar

• Scanni
ng lidar
sensor
model

• Include
s
parame
ters for
detecti
on
range,
resoluti
on, and
fields of
view

Display point cloud data by using pcplayer
within a MATLAB Function block. Sample
visualization:

“Design Lidar
SLAM Algorithm
Using Unreal
Engine
Simulation
Environment” on
page 8-962

6 3D Simulation – User's Guide

6-18

Sensor Block Descripti
on

Visualization Example

Display lidar coverage areas and detections by
using the Bird's-Eye Scope. Sample visualization:

“Visualize
Sensor Data
from Unreal
Engine
Simulation
Environment” on
page 6-36

Simulation 3D
Probabilistic
Radar

• Probabi
listic
radar
model
that
returns
a list of
detecti
ons

• Include
s
parame
ters for
radar
accurac
y, radar
bias,
detecti
on
probabi
lity, and
detecti
on
reporti
ng

Display radar coverage areas and detections by
using the Bird's-Eye Scope. Sample visualization:

“Simulate Vision
and Radar
Sensors in
Unreal Engine
Environment” on
page 8-916

“Visualize
Sensor Data
from Unreal
Engine
Simulation
Environment” on
page 6-36

 Choose a Sensor for Unreal Engine Simulation

6-19

Sensor Block Descripti
on

Visualization Example

Simulation 3D
Vision Detection
Generator

• Camera
model
that
returns
a list of
object
and
lane
bounda
ry
detecti
ons

• Include
s
parame
ters for
detecti
on
accurac
y,
measur
ement
noise,
and
camera
intrinsi
cs

Display vision coverage areas and detections by
using the Bird's-Eye Scope. Sample visualization:

“Simulate Vision
and Radar
Sensors in
Unreal Engine
Environment” on
page 8-916

See Also
Blocks
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Simulation 3D
Probabilistic Radar Configuration

More About
• “Unreal Engine Simulation for Automated Driving” on page 6-2

6 3D Simulation – User's Guide

6-20

Simulate Simple Driving Scenario and Sensor in Unreal Engine
Environment

Automated Driving Toolbox™ provides blocks for visualizing sensors in a simulation environment that
uses the Unreal Engine® from Epic Games®. This model simulates a simple driving scenario in a
prebuilt scene and captures data from the scene using a fisheye camera sensor. Use this model to
learn the basics of configuring and simulating scenes, vehicles, and sensors. For more background on
the Unreal Engine simulation environment, see “Unreal Engine Simulation for Automated Driving” on
page 6-2.

Model Overview

The model consists of these main components:

• Scene — A Simulation 3D Scene Configuration block configures the scene in which you simulate.
• Vehicles — Two Simulation 3D Vehicle with Ground Following blocks configure the vehicles within

the scene and specify their trajectories.
• Sensor — A Simulation 3D Fisheye Camera configures the mounting position and parameters of

the fisheye camera used to capture simulation data. A Video Viewer block visualizes the simulation
output of this sensor.

 Simulate Simple Driving Scenario and Sensor in Unreal Engine Environment

6-21

Inspect Scene

In the Simulation 3D Scene Configuration block, the Scene name parameter determines the scene
where the simulation takes place. This model uses the Large Parking Lot scene, but you can choose
among several prebuilt scenes. To explore a scene, you can open the 2D image corresponding to the
3D scene.

data = load('sim3d_SpatialReferences.mat');
spatialRef = data.spatialReference.LargeParkingLot;
figure; imshow('sim3d_LargeParkingLot.jpg',spatialRef)
set(gca,'YDir','normal')

6 3D Simulation – User's Guide

6-22

To learn how to explore other scenes, see the corresponding scene reference pages.

The Scene view parameter of this block determines the view from which the Unreal Engine window
displays the scene. In this block, Scene view is set to EgoVehicle, which is the name of the ego
vehicle (the vehicle with the sensor) in this scenario. During simulation, the Unreal Engine window
displays the scene from behind the ego vehicle. You can also change the scene view to the other
vehicle. To display the scene from the root of the scene (the scene origin), select root.

The Weather tab of the block controls the sun position and scene weather. This scene is configured
to take place at noon and is cloudy with light rain.

 Simulate Simple Driving Scenario and Sensor in Unreal Engine Environment

6-23

Inspect Vehicles

The Simulation 3D Vehicle with Ground Following blocks model the vehicles in the scenario.

• The Ego Vehicle block vehicle contains the fisheye camera sensor. This vehicle is modeled as a red
hatchback.

• The Target Vehicle block is the vehicle from which the sensor captures data. This vehicle is
modeled as a green SUV.

During simulation, both vehicles travel straight in the parking lot for 50 meters. The target vehicle is
10 meters directly in front of the ego vehicle.

6 3D Simulation – User's Guide

6-24

The X, Y, and Yaw input ports control the trajectories of these vehicles. X and Y are in the world
coordinates of the scene, which are in meters. Yaw is the orientation angle of the vehicle and is in
degrees.

The ego vehicle travels from a position of (45,0) to (45,50), oriented 90 degrees counterclockwise
from the origin. To model this position, the input port values are as follows:

• X is a constant value of 45.
• Y is a multiple of the simulation time. A Digital Clock block outputs the simulation time every 0.1

second for 5 seconds, which is the stop time of the simulation. These simulation times are then
multiplied by 10 to produce Y values of [0 1 2 3 ... 50], or 1 meter for up to a total of 50
meters.

• Yaw is a constant value of 90.

The target vehicle has the same X and Yaw values as the ego vehicle. The Y value of the target
vehicle is always 10 meters more than the Y value of the ego vehicle.

In both vehicles, the Initial position [X, Y, Z] (m) and Initial rotation [Roll, Pitch, Yaw] (deg)
parameters reflect the initial [X, Y, Z] and [Yaw, Pitch, Roll] values of the vehicles at the
beginning of simulation.

To create more realistic trajectories, you can obtain waypoints from a scene interactively and specify
these waypoints as inputs to the Simulation 3D Vehicle with Ground Following blocks. See “Select
Waypoints for Unreal Engine Simulation” on page 8-894.

Both vehicles also have the optional Light controls input port enabled. This port enables you to
specify a logical vector specifying whether the headlights, brake lights, reverse lights, or turn signal
lights are on. Both vehicles have a 1 in the second position of the vector, which turns on their low
beam headlights. For more details on enabling and controlling vehicle lights, see the Simulation 3D
Vehicle with Ground Following block reference page.

Inspect Sensor

The Simulation 3D Fisheye Camera block models the sensor used in the scenario. Open this block and
inspect its parameters.

• The Mounting tab contains parameters that determine the mounting location of the sensor. The
fisheye camera sensor is mounted to the center of the roof of the ego vehicle.

• The Parameters tab contains the intrinsic camera parameters of a fisheye camera. These
parameters are set to their default values, with the exception of the Mapping coefficients
parameter. In this parameter, the second coefficient is decreased from 0 to -0.0005 to model lens
distortion.

• The Ground Truth tab contains a parameter for outputting the location and orientation of the
sensor in meters and radians. In this model, the block outputs these values so you can see how
they change during simulation.

The block outputs images captured from the simulation. During simulation, the Video Viewer block
displays these images.

Simulate Model

Simulate the model. When the simulation begins, it can take a few seconds for the visualization
engine to initialize, especially when you are running it for the first time. The AutoVrtlEnv window
shows a view of the scene in the 3D environment.

 Simulate Simple Driving Scenario and Sensor in Unreal Engine Environment

6-25

The Video Viewer block shows the output of the fisheye camera.

6 3D Simulation – User's Guide

6-26

To change the view of the scene during simulation, use the numbers 1–9 on the numeric keypad.

 Simulate Simple Driving Scenario and Sensor in Unreal Engine Environment

6-27

For a bird's-eye view of the scene, press 0.

After simulating the model, try modifying the intrinsic camera parameters and observe the effects on
simulation. You can also change the type of sensor block. For example, try substituting the 3D
Simulation Fisheye Camera with a 3D Simulation Camera block. For more details on the available
sensor blocks, see “Choose a Sensor for Unreal Engine Simulation” on page 6-17.

See Also
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Simulation 3D
Camera | Simulation 3D Fisheye Camera | Simulation 3D Probabilistic Radar | Simulation 3D Lidar |
Simulation 3D Vision Detection Generator

More About
• “Unreal Engine Simulation for Automated Driving” on page 6-2
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 6-7
• “How Unreal Engine Simulation for Automated Driving Works” on page 6-9
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2

6 3D Simulation – User's Guide

6-28

• “Select Waypoints for Unreal Engine Simulation” on page 8-894
• “Design Lane Marker Detector Using Unreal Engine Simulation Environment” on page 8-885

 Simulate Simple Driving Scenario and Sensor in Unreal Engine Environment

6-29

Depth and Semantic Segmentation Visualization Using Unreal
Engine Simulation

This example shows how to visualize depth and semantic segmentation data captured from a camera
sensor in a simulation environment. This environment is rendered using the Unreal Engine® from
Epic Games®.

You can use depth visualizations to validate depth estimation algorithms for your sensors. You can use
semantic segmentation visualizations to analyze the classification scheme used for generating
synthetic semantic segmentation data from the Unreal Engine environment.

Model Setup

The model used in this example simulates a vehicle driving in a city scene.

• A Simulation 3D Scene Configuration block sets up simulation with the US City Block scene.
• A Simulation 3D Vehicle with Ground Following block specifies the driving route of the vehicle.

The waypoint poses that make up this route were obtained using the technique described in the
“Select Waypoints for Unreal Engine Simulation” on page 8-894 example.

• A Simulation 3D Camera block mounted to the rearview mirror of the vehicle captures data from
the driving route. This block outputs the camera, depth, and semantic segmentation displays by
using To Video Display blocks.

Load the MAT-file containing the waypoint poses. Add timestamps to the poses and then open the
model.

load smoothedPoses.mat;

refPosesX = [linspace(0,20,1000)', smoothedPoses(:,1)];
refPosesY = [linspace(0,20,1000)', smoothedPoses(:,2)];
refPosesYaw = [linspace(0,20,1000)', smoothedPoses(:,3)];

open_system('DepthSemanticSegmentation.slx')

6 3D Simulation – User's Guide

6-30

Depth Visualization

A depth map is a grayscale representation of camera sensor output. These maps visualize camera
images in grayscale, with brighter pixels indicating objects that are farther away from the sensor. You
can use depth maps to validate depth estimation algorithms for your sensors.

The Depth port of the Simulation 3D Camera block outputs a depth map of values in the range of 0 to
1000 meters. In this model, for better visibility, a Saturation block saturates the depth output to a
maximum of 150 meters. Then, a Gain block scales the depth map to the range [0, 1] so that the To
Video Display block can visualize the depth map in grayscale.

Semantic Segmentation Visualization

Semantic segmentation describes the process of associating each pixel of an image with a class label,
such as road, building, or traffic sign. In the 3D simulation environment, you generate synthetic
semantic segmentation data according to a label classification scheme. You can then use these labels
to train a neural network for automated driving applications, such as road segmentation. By
visualizing the semantic segmentation data, you can verify your classification scheme.

The Labels port of the Simulation 3D Camera block outputs a set of labels for each pixel in the
output camera image. Each label corresponds to an object class. For example, in the default
classification scheme used by the block, 1 corresponds to buildings. A label of 0 refers to objects of
an unknown class and appears as black. For a complete list of label IDs and their corresponding
object descriptions, see the Labels port description on the Simulation 3D Camera block reference
page.

The MATLAB Function block uses the label2rgb function to convert the labels to a matrix of RGB
triplets for visualization. The colormap is based on the colors used in the CamVid dataset, as shown in
the example “Semantic Segmentation Using Deep Learning”. The colors are mapped to the
predefined label IDs used in the default 3D simulation scenes. The helper function sim3dColormap
defines the colormap. Inspect these colormap values.

 Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation

6-31

open sim3dColormap.m

Model Simulation

Run the model.

sim('DepthSemanticSegmentation.slx');

When the simulation begins, it can take a few seconds for the visualization engine to initialize,
especially when you are running it for the first time. The AutoVrtlEnv window displays the scene
from behind the ego vehicle. In this scene, the vehicle drives several blocks around the city. Because
this example is mainly for illustrative purposes, the vehicle does not always follow the direction of
traffic or the pattern of the changing traffic lights.

6 3D Simulation – User's Guide

6-32

The Camera Display, Depth Display, and Semantic Segmentation Display blocks display the outputs
from the camera sensor.

 Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation

6-33

To change the visualization range of the output depth data, try updating the values in the Saturation
and Gain blocks.

6 3D Simulation – User's Guide

6-34

To change the semantic segmentation colors, try modifying the color values defined in the
sim3dColormap function. Alternatively, in the sim3dlabel2rgb MATLAB Function block, try
replacing the input colormap with your own colormap or a predefined colormap. See colormap.

See Also
Simulation 3D Camera | Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground
Following

More About
• “Simulate Simple Driving Scenario and Sensor in Unreal Engine Environment” on page 6-21
• “Select Waypoints for Unreal Engine Simulation” on page 8-894
• “Semantic Segmentation Using Deep Learning”
• “Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data” (Deep

Learning Toolbox)

 Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation

6-35

Visualize Sensor Data from Unreal Engine Simulation
Environment

This example shows how to visualize sensor coverages and detections obtained from high-fidelity
radar and lidar sensors in a 3D simulation environment. In this example, you learn how to:

1 Configure Simulink® models to simulate within the 3D environment. This environment is
rendered using the Unreal Engine® from Epic Games®.

2 Read ground truth data and vehicle trajectories from a scenario authored using the Driving
Scenario Designer app, and then recreate this scenario in the Simulink model.

3 Add radar and lidar sensors to these models by using Simulation 3D Probabilistic Radar and
Simulation 3D Lidar blocks.

4 Visualize the driving scenario and generated sensor data in the Bird's-Eye Scope.

You can use these visualizations and sensor data to test and improve your automated driving
algorithms. You can also extend this example to fuse detections and visualize object tracking results,
as shown in the “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” on page 8-295
example.

Inspect Cuboid Driving Scenario

In this example, the ground truth (roads, lanes, and actors) and vehicle trajectories come from a
scenario that was authored in the Driving Scenario Designer app. In this app, vehicles and other
actors are represented as simple box shapes called cuboids. For more details about authoring cuboid
scenarios, see the “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on
page 5-2 example.

Open the cuboid driving scenario file in the app.

drivingScenarioDesigner('StraightRoadScenario.mat')

In the app, run the scenario simulation. In this scenario, the ego vehicle (a blue car) travels north
along a straight road at a constant speed. In the adjacent lane, an orange car travels north at a
slightly higher constant speed. In the opposite lane, a yellow truck drives south at a constant speed.

6 3D Simulation – User's Guide

6-36

When authoring driving scenarios that you later recreate in the 3D simulation environment, you must
use a road network identical to one from the default 3D scenes. Otherwise, in the recreated scenario,
the positions of vehicles and sensors are inaccurate. This driving scenario uses a recreation of the
Straight Road scene. To select a different cuboid version of a 3D scene, on the app toolstrip, select
Open > Prebuilt Scenario > Simulation3D and choose from the available scenes. Not all 3D
scenes have corresponding versions in the app.

• For a list of supported scenes and additional details about each scene, see “Cuboid Versions of 3D
Simulation Scenes in Driving Scenario Designer” on page 5-65.

• To generate vehicle trajectories for scenes that are not available in the app, use the process
described in the “Select Waypoints for Unreal Engine Simulation” on page 8-894 example instead.

The dimensions of vehicles in the cuboid scenarios must also match the dimensions of one of the
predefined 3D simulation vehicle types. On the app toolstrip, under 3D Display, the Use 3D
Simulation Actor Dimensions selection sets each cuboid vehicle to have the dimensions of a 3D
vehicle type. In this scenario, the vehicles have these 3D display types and corresponding vehicle
dimensions.

• Ego Vehicle — Sedan vehicle dimensions
• Vehicle in Adjacent Lane — Muscle Car vehicle dimensions
• Vehicle in Opposite Lane — Box Truck vehicle dimensions

 Visualize Sensor Data from Unreal Engine Simulation Environment

6-37

To change a vehicle to a different display type, on the Actors tab in the left pane of the app, update
the 3D Display Type parameter for that vehicle. To change the color of a vehicle, select the color
patch next to the selected vehicle and choose a new color.

To preview how the vehicles display in the 3D environment, use the 3D display window available from
the app. On the app toolstrip, select 3D Display > View Simulation in 3D Display and rerun the
simulation.

Open 3D Simulation Model

The model used in this example recreates the cuboid driving scenario. The model also defines high-
fidelity sensors that generate synthetic detections from the environment. Open the model.

open_system('Visualize3DSimulationSensorCoveragesDetections')

6 3D Simulation – User's Guide

6-38

Inspect Scene Configuration

The Simulation 3D Scene Configuration block configures the model to simulate in the 3D
environment.

• The Scene name parameter is set to the default Straight road scene. This scene corresponds
to the cuboid version defined in the app scenario file.

• The Scene view parameter is set to Ego Vehicle. During simulation, the 3D simulation window
displays the scene from behind the ego vehicle.

The Scenario Reader block reads the ground truth data (road boundaries, lane markings, and actor
poses) from the app scenario file. The Bird's-Eye Scope visualizes this ground truth data, not the
ground truth data of the 3D simulation environment. To use the same scene for the cuboid and 3D
simulation environments, the ground truth data for both environments must match. If you are
creating a new scenario, you can generate a Scenario Reader block that reads data from your
scenario file. First, open the scenario file in the Driving Scenario Designer app. Then, on the app
toolstrip, select Export > Export Simulink Model. If you update the scenario, you do not need to
generate a new Scenario Reader block.

The Simulation 3D Scene Configuration block and Scenario Reader block both have their Sample
time parameter set to 0.1. In addition, all other 3D simulation vehicle and sensor blocks inherit their
sample time from the Simulation 3D Scene Configuration block. By setting a single sample time
across the entire model, the Bird's-Eye Scope displays data from all blocks at a constant rate. If the
ground truth and sensor data have different sample times, then the scope visualizes them at different
time intervals. This process causes the ground truth and sensor data visualizations to flicker.

 Visualize Sensor Data from Unreal Engine Simulation Environment

6-39

Inspect Vehicle Configuration

The Simulation 3D Vehicle with Ground Following blocks specify the appearances and trajectories of
the vehicles in the 3D simulation environment. Each vehicle is a direct counterpart to one of the
vehicles defined in the Driving Scenario Designer app scenario file.

In the 3D environment, vehicle positions are in world coordinates. However, the Scenario Reader
block outputs the poses of non-ego actors in ego vehicle coordinates. A Vehicle To World block
converts these non-ego actor poses into world coordinates. Because the ego vehicle is output in world
coordinates, this conversion is not necessary for the ego vehicle. For more details about the vehicle
and world coordinate systems, see “Coordinate Systems in Automated Driving Toolbox” on page 1-2.

Locations of vehicle origins differ between cuboid and 3D scenarios.

• In cuboid scenarios, the vehicle origin is on the ground, at the center of the rear axle.
• In 3D scenarios, the vehicle origin is on ground, at the geometric center of the vehicle.

The Cuboid To 3D Simulation blocks convert the cuboid origin positions to the 3D simulation origin
positions. In the ActorID used for conversion parameters of these blocks, the specified ActorID of
each vehicle determines which vehicle origin to convert. The Scenario Reader block outputs ActorID
values in its Actors output port. In the Driving Scenario Designer app, you can find the
corresponding ActorID values on the Actors tab, in the actor selection list. The ActorID for each
vehicle is the value that precedes the colon.

Each Cuboid To 3D Simulation block outputs X, Y, and Yaw values that feed directly into their
corresponding vehicle blocks. In the 3D simulation environment, the ground terrain of the 3D scene
determines the Z-position (elevation), roll angle, and pitch angle of the vehicles.

In each Simulation 3D Vehicle with Ground Following block, the Type parameter corresponds to the
3D Display Type selected for that vehicle in the app. In addition, the Color parameter corresponds
to the vehicle color specified in the app. To maintain similar vehicle visualizations between the
Bird's-Eye Scope and the 3D simulation window, the specified type and color must match. To change
the color of a vehicle in the app, on the Actors tab, click the color patch to the right of the actor
name in the actor selection list. Choose the color that most closely matches the colors available in the
Color parameter of the Simulation 3D Vehicle with Ground Following block.

Inspect Sensor Configuration

The model includes two sensor blocks with default parameter settings. These blocks generate
detections from the 3D simulation environment.

• The Simulation 3D Probabilistic Radar sensor block generates object detections based on a
statistical model. This sensor is mounted to the front bumper of the ego vehicle.

• The Simulation 3D Lidar sensor block generates detections in the form of a point cloud. This
sensor is mounted to the center of the roof of the ego vehicle.

Although you can specify sensors in the Driving Scenario Designer app and export them to
Simulink, the exported blocks are not compatible with the 3D simulation environment. You must
specify 3D simulation sensors in the model directly.

Simulate and Visualize Scenario

During simulation, you can visualize the scenario in both the 3D simulation window and the Bird's-
Eye Scope.

6 3D Simulation – User's Guide

6-40

First, open the scope. On the Simulink toolstrip, under Review Results, click Bird's-Eye Scope.
Then, to find signals that the scope can display, click Find Signals.

To run the simulation, click Run in either the model or scope. When the simulation begins, it can take
a few seconds for the 3D simulation window to initialize, especially when you run it for the first time
in a Simulink session. When this window opens, it displays the scenario with high-fidelity graphics but
does not display detections or sensor coverages.

The Bird's-Eye Scope displays detections and sensor coverages by using a cuboid representation.
The radar coverage area and detections are in red. The lidar coverage area is in gray, and its point
cloud detections display as a parula colormap.

 Visualize Sensor Data from Unreal Engine Simulation Environment

6-41

The model runs the simulation at a pace of 0.5 seconds per wall-clock second. To adjust the pacing,
from the Simulink toolstrip, select Run > Simulation Pacing, and then move the slider to increase
or decrease the speed of the simulation.

Modify the Driving Scenario

When modifying your driving scenario, you might need to update the scenario in the Driving
Scenario Designer app, the Simulink model, or in both places, depending on what you change.

• Modify the road network — In the app, select a new prebuilt scene from the Simulation3D
folder. Do not modify these road networks or the roads will not match the roads in the selected 3D
scene. In the model, in the Simulation 3D Scene Configuration block, select the corresponding
scene in the Scene name parameter.

• Modify vehicle trajectories — In the app, modify the vehicle trajectories and resave the
scenario. In the model, you do not need to update anything to account for this change. The
Scenario Reader block automatically picks up these changes.

• Modify vehicle appearances — In the app, update the color and 3D Display Type parameter of
the vehicles. Also make sure that the 3D Display > Use 3D Simulation Actor Dimensions
option is selected. In the model, update the Color and Type parameters of the corresponding
Simulation 3D Vehicle with Ground Following blocks.

• Add a new vehicle — In the app, create a new vehicle and specify a trajectory, color, and 3D
display type. In the model, add a new Simulation 3D Vehicle with Ground Following block and
corresponding Cuboid To 3D Simulation block. Set up these blocks similar to how the existing non-
ego vehicles are set up. In the Cuboid To 3D Simulation block, set the ActorID of the new vehicle.

6 3D Simulation – User's Guide

6-42

• Set a new ego vehicle — In the app, on the Actors tab, select the vehicle that you want to set as
the ego vehicle and click Set As Ego Vehicle. In the model, in the Cuboid To 3D Simulation
blocks, update the ActorID used for conversion parameters to account for which vehicle is the
new ego vehicle. In the sensor blocks, set the Parent name parameters such that the sensors are
mounted to the new ego vehicle.

• Modify or add sensors — In the app, you do not need to make any changes. In the model, modify
or add sensor blocks. When adding sensor blocks, set the Parent name of all sensors to the ego
vehicle.

To visualize any updated scenario in the Bird's-Eye Scope, you must click Find Signals again. If you
modify a scenario or are interested in only visualizing sensor data, consider turning off the 3D
window during simulation. In the Simulation 3D Scene Configuration block, clear the Display 3D
simulation window parameter.

See Also
Apps
Driving Scenario Designer | Bird's-Eye Scope

Blocks
Scenario Reader | Vehicle To World | Cuboid To 3D Simulation | Simulation 3D Scene Configuration |
Simulation 3D Vehicle with Ground Following

More About
• “Choose a Sensor for Unreal Engine Simulation” on page 6-17
• “Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer” on page 5-65
• “Highway Lane Following” on page 8-922

 Visualize Sensor Data from Unreal Engine Simulation Environment

6-43

Customize Unreal Engine Scenes for Automated Driving
Automated Driving Toolbox contains prebuilt scenes in which to simulate and visualize the
performance of driving algorithms modeled in Simulink. These scenes are visualized using a
standalone Unreal Engine executable within the toolbox. If you have the Unreal Editor from Epic
Games and the Automated Driving Toolbox Interface for Unreal Engine 4 Projects installed, you can
customize these scenes. You can also use the Unreal Editor and the support package to simulate
within scenes from your own custom project.

With custom scenes, you can co-simulate in both Simulink and the Unreal Editor so that you can
modify your scenes between simulation runs. You can also package your scenes into an executable file
so that you do not have to open the editor to simulate with these scenes.

To customize Unreal Engine scenes for automated driving, follow these steps:

1 “Install Support Package for Customizing Scenes” on page 6-45
2 “Migrate Projects Developed Using Prior Support Packages” on page 6-49
3 “Customize Scenes Using Simulink and Unreal Editor” on page 6-50
4 “Package Custom Scenes into Executable” on page 6-57

See Also
Simulation 3D Scene Configuration

More About
• “Unreal Engine Simulation for Automated Driving” on page 6-2

6 3D Simulation – User's Guide

6-44

https://www.mathworks.com/matlabcentral/fileexchange/74555-automated-driving-toolbox-interface-for-unreal-engine-4-projects

Install Support Package for Customizing Scenes
To customize scenes in your installation of the Unreal Editor and simulate within these scenes in
Simulink, you must first install the Automated Driving Toolbox Interface for Unreal Engine 4 Projects.

Note These installation instructions apply to R2022a. If you are using a previous release, see the
documentation for Other Releases.

Verify Software and Hardware Requirements
Before installing the support package, make sure that your environment meets the minimum software
and hardware requirements described in “Unreal Engine Simulation Environment Requirements and
Limitations” on page 6-7.

Install Support Package
To install the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package,
follow these steps:

1 On the MATLAB Home tab, in the Environment section, select Add-Ons > Get Add-Ons.

2 In the Add-On Explorer window, search for the Automated Driving Toolbox Interface for Unreal
Engine 4 Projects support package. Click Install.

Note You must have write permission for the installation folder.

Set Up Scene Customization Using Support Package
The Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package includes
these components:

• AutoVrtlEnv folder — An Unreal Engine project folder containing the AutoVrtlEnv.uproject
file and corresponding supporting files. This project contains editable versions of the prebuilt
scenes that you can select from the Scene name parameter of the Simulation 3D Scene
Configuration block.

 Install Support Package for Customizing Scenes

6-45

https://www.mathworks.com/matlabcentral/fileexchange/74555-automated-driving-toolbox-interface-for-unreal-engine-4-projects
https://www.mathworks.com/help/doc-archives.html

• MathWorkSimulation — A plugin that establishes the connection between Simulink and the
Unreal Editor. It is required for co-simulation.

• RoadRunnerScenes folder — A folder containing the Unreal Engine project and corresponding
executable for a scene that was created by using the RoadRunner scene editing software. This
folder contains these subfolders:

• RRScene — An Unreal Engine project folder containing the RRScene.uproject file and
corresponding supporting files. This project contains an editable version of the scene used in
the “Highway Lane Following with RoadRunner Scene” on page 8-1049 example.

• WindowsPackage — A folder containing the executable RRScene.exe and supporting files.
Use this executable to co-simulate the Simulink models explained in the “Highway Lane
Following with RoadRunner Scene” on page 8-1049 example.

To set up scene customization, you must copy the AutoVrtlEnv project and MathWorksSimulation
plugin folder onto your local machine. To customize the RoadRunner scene used in the “Highway
Lane Following with RoadRunner Scene” on page 8-1049 example, you must also copy the RRScene
project onto your local machine and download the RoadRunnerMaterials plugin and copy it into
your local project.

Copy AutoVrtlEnv Project to Local Folder

Copy the AutoVrtlEnv project folder into a folder on your local machine.

1 Specify the path to the support package folder that contains the project. If you previously
downloaded the support package, specify only the latest download path, as shown here. Also
specify a local folder destination in which to copy the project. This code specifies the local folder
of C:\Local.

supportPackageFolder = fullfile(...
 matlabshared.supportpkg.getSupportPackageRoot, ...
 "toolbox","shared","sim3dprojects","spkg");
localFolder = "C:\Local";

2 Copy the AutoVrtlEnv project from the support package folder to the local destination folder.

projectFolderName = "AutoVrtlEnv";
projectSupportPackageFolder = fullfile(supportPackageFolder,"project",projectFolderName);
projectLocalFolder = fullfile(localFolder,projectFolderName);
if ~exist(projectLocalFolder,"dir")
 copyfile(projectSupportPackageFolder,projectLocalFolder);
end

The AutoVrtlEnv.uproject file and all of its supporting files are now located in a folder
named AutoVrtlEnv within the specified local folder. For example: C:\Local\AutoVrtlEnv.

Copy MathWorksSimulation and MathWorksAutomotiveContent Plugin to Unreal Editor

Copy the MathWorksSimulation and MathWorksAutomotiveContent plugin folders into the
Plugins folder of your Unreal Engine installation.

1 Specify the local folder containing your Unreal Engine installation. This code shows the default
installation location for the editor on a Windows machine.

ueInstallFolder = "C:\Program Files\Epic Games\UE_4.26";
2 Copy the plugin from the support package into the Plugins folder.

6 3D Simulation – User's Guide

6-46

mwSimPluginName = "MathWorksSimulation.uplugin";
mwAutoPluginName = "MathWorksAutomotiveContent.uplugin";
mwPluginFolder = fullfile(supportPackageFolder,"plugins");
uePluginFolder = fullfile(ueInstallFolder,"Engine","Plugins");
uePluginDestination = fullfile(uePluginFolder,"Marketplace","MathWorks");

cd(uePluginFolder)
foundPlugins = [dir("**/" + mwSimPluginName); dir("**/" + mwAutoPluginName)]

if ~isempty(foundPlugins)
 numPlugins = size(foundPlugins,1);
 msg2 = cell(1,numPlugins);
 pluginCell = struct2cell(foundPlugins);

 msg1 = "Plugin(s) already exist here:" + newline + newline;
 for n = 1:numPlugins
 msg2{n} = " " + pluginCell{2,n} + newline;
 end
 msg3 = newline + "Please remove plugin folder(s) and try again.";
 msg = msg1 + msg2 + msg3;
 warning(msg);
else
 copyfile(fullfile(mwPluginFolder,'mw_simulation'),uePluginDestination);
 copyfile(fullfile(mwPluginFolder,'mw_automotive'),uePluginDestination);
 disp("Successfully copied MathWorksSimulation and MathWorksAutomotiveContent plugins to UE4 engine plugins!")
end

(Optional) Copy RRScene Project to Local Folder

To customize the scene in the RRScene project folder, copy the project onto your local machine.

1 Specify the path to the support package folder that contains the project. Also specify a local
folder destination to copy the project. This code uses the support package path and local folder
path from previous sections.

rrProjectSupportPackageFolder = fullfile(...
 matlabshared.supportpkg.getSupportPackageRoot, ...
 "toolbox","shared","sim3dprojects","driving", ...
 "RoadRunnerScenes","RRScene");
rrProjectLocalFolder = fullfile(localFolder,"RRScene");

2 Copy the RRScene project from the support package folder to the local destination folder.

if ~exist(rrProjectLocalFolder,"dir")
 copyfile(rrProjectSupportPackageFolder,rrProjectLocalFolder);
end

The RRScene.uproject file and all of its supporting files are now located in a folder named
RRScene within the specified local folder. For example: C:\Local\RRScene.

(Optional) Copy RoadRunnerMaterials Plugin to Unreal Editor

When customizing the scene in the RRScene project folder, you must also copy the
RoadRunnerMaterials plugin to your plugin project folder.

1 Download the ZIP file containing the latest RoadRunner plugins. See “Downloading Plugins”
(RoadRunner). Extract the contents of the ZIP file to your local machine. The extracted folder
name is of the form RoadRunner Plugins x.x.x, where x.x.x is the plugin version number.

 Install Support Package for Customizing Scenes

6-47

2 Specify the path to the RoadRunnerMaterials plugin. This plugin is located in the Unreal/
Plugins folder of the extracted folder. Update this code to match the location where you
downloaded the plugin and the plugin version number.

rrMaterialsPluginFolder = fullfile("C:","Local","RoadRunner Plugins 1.0.3", ...
 "Unreal","Plugins","RoadRunnerMaterials");

3 In your local RRScene project, create a Plugins folder in which to copy the plugin. This code
uses the path to the local RRScene project specified in the previous section.

rrProjectPluginFolder = fullfile(rrProjectLocalFolder,"Plugins","RoadRunnerMaterials");
4 Copy the RoadRunnerMaterials plugin to the Plugins folder of your local project.

copyStatus = copyfile(rrMaterialsPluginFolder,rrProjectPluginFolder);
if copyStatus
 disp("Successfully copied RoadRunnerMaterials plugin to RRScene project plugins folder.")
else
 disp("Unable to copy RoadRunnerMaterials plugin to RRScene project plugins folder.")
end

After you install and set up the support package, you can begin customizing scenes. If you want to
use a project developed using a prior release of the Automated Driving Toolbox Interface for Unreal
Engine 4 Projects support package, you must migrate the project to make it compatible with the
currently supported Unreal Editor version. See “Migrate Projects Developed Using Prior Support
Packages” on page 6-49. Otherwise, see “Customize Scenes Using Simulink and Unreal Editor” on
page 6-50.

See Also

More About
• “Unreal Engine Simulation for Automated Driving” on page 6-2
• “Unreal Engine Simulation Environment Requirements and Limitations” on page 6-7

6 3D Simulation – User's Guide

6-48

Migrate Projects Developed Using Prior Support Packages
After you install the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support
package as described in “Install Support Package for Customizing Scenes” on page 6-45, you may
need to migrate your project. If your Simulink model uses an Unreal Engine executable or project
developed using a prior release of the support package, you must migrate the project to make it
compatible with Unreal Editor 4.26. Follow these steps:

1 Open Unreal Engine 4.26. For example, navigate to C:\Program Files\Epic Games
\UE_4.26\Engine\Binaries\Win64 and open UE4Editor.exe.

2 Use the Unreal Project Browser to open the project that you want to migrate.
3 Follow the prompts to open a copy of the project. The editor creates a new project folder in the

same location as the original, appended with 4.26. Close the editor.
4 In a file explorer, remove any spaces in the migrated project folder name. For example, rename

MyProject 4.26 to MyProject4.26.
5 Use MATLAB to open the migrated project in Unreal Editor 4.26. For example, if you have a

migrated project saved to the C:/Local folder, use this MATLAB code:

path = fullfile('C:','Local','MyProject4.26','MyProject.uproject');
editor = sim3d.Editor(path);
open(editor);

Note The support package may includes changes in the implementation of some actors.
Therefore, if the original project contains actors that are placed in the scene, some of them might
not fully migrate to Unreal Editor 4.26. To check, examine the Output Log.

The log might contain error messages. For more information, see the Unreal Engine 4
Documentation or contact MathWorks Technical Support.

6 Optionally, after you migrate the project, you can use the project to create an Unreal Engine
executable. See “Package Custom Scenes into Executable” on page 6-57.

After you migrate the project, you can create custom scenes. See “Customize Scenes Using Simulink
and Unreal Editor” on page 6-50.

See Also
Simulation 3D Scene Configuration

More About
• “Customize Unreal Engine Scenes for Automated Driving” on page 6-44

 Migrate Projects Developed Using Prior Support Packages

6-49

https://docs.unrealengine.com/en-us
https://docs.unrealengine.com/en-us
https://www.mathworks.com/support/contact_us.html

Customize Scenes Using Simulink and Unreal Editor
After you install the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support
package as described in “Install Support Package for Customizing Scenes” on page 6-45, you can
simulate in custom scenes simultaneously from both the Unreal Editor and Simulink. By using this co-
simulation framework, you can add vehicles and sensors to a Simulink model and then run this
simulation in your custom scene.

To use a project that you developed using a prior release of the support package, first migrate the
project to be compatible with the currently supported Unreal Engine version. See “Migrate Projects
Developed Using Prior Support Packages” on page 6-49.

Open Unreal Editor from Simulink
If you open the Unreal Editor from outside of MATLAB or Simulink, then Simulink fails to establish a
connection with the editor. To establish this connection, you must open your project from a Simulink
model.

1 Open a Simulink model configured to simulate in the Unreal Engine environment. At a minimum,
the model must contain a Simulation 3D Scene Configuration block. For example, open a simple
model that simulates a vehicle driving on a straight highway. This model is used in the “Design
Lane Marker Detector Using Unreal Engine Simulation Environment” on page 8-885 example.

openExample('driving/VisualPerceptionIn3DSimulationExample')
open_system('straightRoadSim3D')

2 In the Simulation 3D Scene Configuration block of this model, set the Scene source parameter
to Unreal Editor.

3 In the Project parameter, browse for the project file that contains the scenes that you want to
customize.

For example, this sample path specifies the AutoVrtlEnv project that comes installed with the
Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package.

6 3D Simulation – User's Guide

6-50

C:\Local\AutoVrtlEnv\AutoVrtlEnv.uproject

This sample path specifies a custom project.

Z:\UnrealProjects\myProject\myProject.uproject
4 Click Open Unreal Editor. The Unreal Editor opens and loads a scene from your project.

The first time that you open the Unreal Editor from Simulink, you might be asked to rebuild
UE4Editor DLL files or the AutoVrtlEnv module. Click Yes to rebuild these files or modules. The
editor also prompts you that new plugins are available. Click Manage Plugins and verify that the
MathWorks Interface plugin is installed. This plugin is the MathWorksSimulation.uplugin file
that you copied into your Unreal Editor installation in “Install Support Package for Customizing
Scenes” on page 6-45.

Messages about files with the name '_BuiltData' indicate missing lighting data for the associated
level. Before shipping an executable, rebuild the level lighting.

If you receive a warning that the lighting needs to be rebuilt, from the toolbar above the editor
window, select Build > Build Lighting Only. The editor issues this warning the first time you open
a scene or when you add new elements to a scene. To use the lighting that comes installed with
AutoVrtlEnv in Automated Driving Toolbox, see “Use AutoVrtlEnv Project Lighting in Custom
Scene” on page 6-54.

Reparent Actor Blueprint

Note If you are using a scene from the AutoVtrlEnv or RRScene project that is part of the
Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package, skip this section.
However, if you create a new scene based off of one of the scenes in this project, then you must
complete this section.

The first time that you open a custom scene from Simulink, you need to associate, or reparent, this
project with the Sim3dLevelScriptActor level blueprint used in Automated Driving Toolbox. The
level blueprint controls how objects interact with the Unreal Engine environment once they are
placed in it. Simulink returns an error at the start of simulation if the project is not reparented. You
must reparent each scene in a custom project separately.

To reparent the level blueprint, follow these steps:

1 In the Unreal Editor toolbar, select Blueprints > Open Level Blueprint.
2 In the Level Blueprint window, select File > Reparent Blueprint.
3 Click the Sim3dLevelScriptActor blueprint. If you do not see the Sim3dLevelScriptActor

blueprint listed, use these steps to check that you have the MathWorksSimulation plugin
installed and enabled:

a In the Unreal Editor toolbar, select Settings > Plugins.
b In the Plugins window, verify that the MathWorks Interface plugin is listed in the installed

window. If the plugin is not already enabled, select the Enabled check box.

If you do not see the MathWorks Interface plugin in this window, repeat the steps under
“Copy MathWorksSimulation and MathWorksAutomotiveContent Plugin to Unreal Editor” on
page 6-46 and reopen the editor from Simulink.

 Customize Scenes Using Simulink and Unreal Editor

6-51

c Close the editor and reopen it from Simulink.
4 Close the Level Blueprint window.

Create or Modify Scenes in Unreal Editor
After you open the editor from Simulink, you can modify the scenes in your project or create new
scenes.

Open Scene

In the Unreal Editor, scenes within a project are referred to as levels. Levels come in several types,
and scenes have a level type of map.

• To open a prebuilt scene from the AutoVrtlEnv.uproject or RRScene.uproject file, in the
Content Browser pane below the editor window, navigate to the Content > Maps folder. Then,
select the map that corresponds to the scene you want to modify.

This table shows the map names in the AutoVrtlEnv project as they appear in the Unreal Editor.
It also shows their corresponding scene names as they appear in the Scene name parameter of
the Simulation 3D Scene Configuration block.

Unreal Editor Map Automated Driving Toolbox Scene
HwCurve Curved Road
DblLnChng Double Lane Change
BlackLake Open Surface
LargeParkingLot Large Parking Lot
SimpleLot Parking Lot
HwStrght Straight Road
USCityBlock US City Block
USHighway US Highway

Note The AutoVrtlEnv.uproject file does not include the Virtual Mcity scene.

The RRScene project contains only one scene: RRHighway. This scene is used in the “Highway
Lane Following with RoadRunner Scene” on page 8-1049 example and is not selectable from the
Scene name parameter of the Simulation 3D Scene Configuration block.

• To open a scene within your own project, in the Content Browser pane, navigate to the folder
that contains your scenes.

Create New Scene

To create a new scene in your project, from the top-left menu of the editor, select File > New Level.

Alternatively, you can create a new scene from an existing one. This technique is useful, for example,
if you want to use one of the prebuilt scenes in the AutoVtrlEnv project as a starting point for
creating your own scene. To save a version of the currently opened scene to your project, from the
top-left menu of the editor, select File > Save Current As. The new scene is saved to the same
location as the existing scene.

6 3D Simulation – User's Guide

6-52

Specify Vehicle Trajectories

In your scenes, you can specify trajectory waypoints that the vehicles in your scene can follow.

• If your scene is based off one of the prebuilt scenes in the AutoVrtlEnv project, then specify
waypoints using the process described in the “Select Waypoints for Unreal Engine Simulation” on
page 8-894 example. This example shows how to interactively draw waypoints on 2-D top-down
maps of the prebuilt scenes.

• If your scene is not based off of a prebuilt scene, then before using the “Select Waypoints for
Unreal Engine Simulation” on page 8-894 example, you must first generate a map of your scene.
See “Create Top-Down Map of Unreal Engine Scene” on page 6-66.

Add Assets to Scene

In the Unreal Editor, elements within a scene are referred to as assets. To add assets to a scene, you
can browse or search for them in the Content Browser pane at the bottom and drag them into the
editor window.

When adding assets to a scene that is in the AutoVrtlEnv project, you can choose from a library of
driving-related assets. These assets are built as static meshes and begin with the prefix SM_. Search
for these objects in the Content Browser pane.

For example, add a stop sign to a scene in the AutoVrtlEnv project.

1 In the Content Browser pane at the bottom of the editor, navigate to the Content folder.
2 In the search bar, search for SM_StopSign. Drag the stop sign from the Content Browser into

the editing window. You can then change the position of the stop sign in the editing window or on
the Details pane on the right, in the Transform section.

If you want to override the default weather or use enhanced fog conditions in the scene, add the
Exponential Height Fog actor.

The Unreal Editor uses a left-hand Z-up coordinate system, where the Y-axis points to the right.
Automated Driving Toolbox uses a right-hand Z-up coordinate system, where the Y-axis points to the
left. When positioning objects in a scene, keep this coordinate system difference in mind. In the two
coordinate systems, the positive and negative signs for the Y-axis and pitch angle values are reversed.

For more information on modifying scenes and adding assets, see Unreal Engine 4 Documentation.

To migrate assets from the AutoVrtlEnv project into your own project file, see the Unreal Engine
documentation.

To obtain semantic segmentation data from a scene, then you must apply stencil IDs to the objects
added to a scene. For more information, see “Apply Labels to Unreal Scene Elements for Semantic
Segmentation and Object Detection” on page 6-60.

 Customize Scenes Using Simulink and Unreal Editor

6-53

https://docs.unrealengine.com/en-US/index.html

Use AutoVrtlEnv Project Lighting in Custom Scene

To use the lighting that comes installed with the AutoVrtlEnv project in Automated Driving Toolbox,
follow these steps.

1 On the World Settings tab, clear Force No Precomputed Lighting.

2 Under Build, select Lighting Quality > Production to rebuild the maps with production
quality. Rebuilding large maps can take time.

Run Simulation
Verify that the Simulink model and Unreal Editor are configured to co-simulate by running a test
simulation.

1 In the Simulink model, click Run.

Because the source of the scenes is the project opened in the Unreal Editor, the simulation does
not start. Instead, you must start the simulation from the editor.

2 Verify that the Diagnostic Viewer window in Simulink displays this message:

In the Simulation 3D Scene Configuration block, you set the scene source
to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the scene.

This message confirms that Simulink has instantiated vehicles and other objects in the Unreal
Engine environment.

6 3D Simulation – User's Guide

6-54

3 In the Unreal Editor, click Play. The simulation runs in the scene currently open in the Unreal
Editor.

• If your Simulink model contains vehicles, these vehicles drive through the scene that is open
in the editor.

• If your Simulink model includes sensors, these sensors capture data from the scene that is
open in the editor.

To control the view of the scene during simulation, in the Simulation 3D Scene Configuration block,
select the vehicle name from the Scene view parameter. To change the scene view as the simulation
runs, use the numeric keypad in the editor. The table shows the position of the camera displaying the
scene, relative to the vehicle selected in the Scene view parameter.

Key Camera View
1 Back left
2 Back
3 Back

right
4 Left
5 Internal
6 Right
7 Front left
8 Front
9 Front

right
0 Overhead

To restart a simulation, click Run in the Simulink model, wait until the Diagnostic Viewer displays the
confirmation message, and then click Play in the editor. If you click Play before starting the
simulation in your model, the connection between Simulink and the Unreal Editor is not established,
and the editor displays an empty scene.

If you are co-simulating a custom project, to enable the numeric keypad, copy the
DefaultInput.ini file from the support package installation folder to your custom project folder.
For example, copy DefaultInput.ini from:

C:\ProgramData\MATLAB\SupportPackages\<MATLABRelease>\toolbox\shared\sim3dprojects\driving\AutoVrtlEnv\Config

to:

C:\<yourproject>.project\Config

After tuning your custom scene based on simulation results, you can then package the scene into an
executable. For more details, see “Package Custom Scenes into Executable” on page 6-57.

See Also
Simulation 3D Scene Configuration

 Customize Scenes Using Simulink and Unreal Editor

6-55

More About
• “Apply Labels to Unreal Scene Elements for Semantic Segmentation and Object Detection” on

page 6-60
• “Create Top-Down Map of Unreal Engine Scene” on page 6-66
• “Place Cameras on Actors in the Unreal Editor” on page 6-69
• “Select Waypoints for Unreal Engine Simulation” on page 8-894

6 3D Simulation – User's Guide

6-56

Package Custom Scenes into Executable
When you finish modifying a custom scene, you can package the project file containing this scene into
an executable. You can then configure your model to simulate from this executable by using the
Simulation 3D Scene Configuration block. Executable files can improve simulation performance and
do not require opening the Unreal Editor to simulate your scene. Instead, the scene runs by using the
Unreal Engine that comes installed with Automated Driving Toolbox.

Package Scene into Executable Using Unreal Editor
1 Open the project containing the scene in the Unreal Editor. You must open the project from a

Simulink model that is configured to co-simulate with the Unreal Editor. For more details on this
configuration, see “Customize Scenes Using Simulink and Unreal Editor” on page 6-50.

2 Ensure the plugin content is visible in the Content Browser. Under View Options, check the
Show Engine Content and Show Plugin Content check boxes.

3 In the Unreal Editor toolbar, select Settings > Project Settings to open the Project Settings
window.

4 In the left pane, in the Project section, click Packaging.
5 In the Packaging section, set or verify the options in the table. If you do not see all these

options, at the bottom of the Packaging section, click the Show Advanced expander

.

Packaging Option Enable or Disable
Use Pak File Enable
Cook everything in the project content
directory (ignore list of maps below)

Disable

 Package Custom Scenes into Executable

6-57

Packaging Option Enable or Disable
Cook only maps (this only affects
cookall)

Enable

Create compressed cooked packages Enable
Exclude editor content while cooking Enable

6 Specify the scene from the project that you want to package into an executable.

a In the List of maps to include in a packaged build option, click the Adds Element
button .

b Specify the path to the scene that you want to include in the executable. By default, the
Unreal Editor saves maps to the /Game/Maps folder. For example, if the /Game/Maps folder
has a scene named myScene that you want to include in the executable, enter /Game/Maps/
myScene.

c Add or remove additional scenes as needed.
7 Specify the required asset directories to include in the executable. These directories are located

in the MathWorksSimulation and MathWorksAutomotiveContent plugins.

Under Additional Asset Directories to Cook, click the Adds Element button to add
elements and specify these directories:

• /MathWorksSimulation/Characters
• /MathWorksAutomotiveContent/VehiclesCommon
• /MathWorksAutomotiveContent/Vehicles
• /MathWorksSimulation/Weather

8 Rebuild the lighting in your scenes. If you do not rebuild the lighting, the shadows from the light
source in your executable file are incorrect and a warning about rebuilding the lighting displays
during simulation. In the Unreal Editor toolbar, select Build > Build Lighting Only.

9 (Optional) If you plan to obtain semantic segmentation data from the scene by using a Simulation
3D Camera block, enable rendering of the stencil IDs. In the left pane, in the Engine section,
click Rendering. Then, in the main window, in the Postprocessing section, set Custom Depth-
Stencil Pass to Enabled with Stencil. For more details on applying stencil IDs for semantic
segmentation, see “Apply Labels to Unreal Scene Elements for Semantic Segmentation and
Object Detection” on page 6-60.

10 Close the Project Settings window.
11 In the top-left menu of the editor, select File > Package Project > Windows > Windows (64-

bit). Select a local folder in which to save the executable, such as to the root of the project file
(for example, C:/Local/myProject).

Note Packaging a project into an executable can take several minutes. The more scenes that you
include in the executable, the longer the packaging takes.

Once packaging is complete, the folder where you saved the package contains a
WindowsNoEditor folder that includes the executable file. This file has the same name as the
project file.

6 3D Simulation – User's Guide

6-58

Note If you repackage a project into the same folder, the new executable folder overwrites the
old one.

Suppose you package a scene that is from the myProject.uproject file and save the
executable to the C:/Local/myProject folder. The editor creates a file named
myProject.exe with this path:

C:/Local/myProject/WindowsNoEditor/myProject.exe

Simulate Scene from Executable in Simulink
1 In the Simulation 3D Scene Configuration block of your Simulink model, set the Scene source

parameter to Unreal Executable.
2 Set the File name parameter to the name of your Unreal Editor executable file. You can either

browse for the file or specify the full path to the file by using backslashes. For example:

C:\Local\myProject\WindowsNoEditor\myProject.exe
3 Set the Scene parameter to the name of a scene from within the executable file. For example:

 /Game/Maps/myScene
4 Run the simulation. The model simulates in the custom scene that you created.

If you are simulating a scene from a project that is not based on the AutoVtrlEnv project, then the
scene simulates in full screen mode. To use the same window size as the default scenes, copy the
DefaultGameUserSettings.ini file from the support package installation folder to your custom
project folder. For example, copy DefaultGameUserSettings.ini from:

C:\ProgramData\MATLAB\SupportPackages\<MATLABrelease>\toolbox\shared\sim3dprojects\driving\AutoVrtlEnv\Config

to:

C:\<yourproject>.project\Config

Then, package scenes from the project into an executable again and retry the simulation.

See Also
Simulation 3D Scene Configuration

 Package Custom Scenes into Executable

6-59

Apply Labels to Unreal Scene Elements for Semantic
Segmentation and Object Detection

The Simulation 3D Camera block provides an option to output semantic segmentation data from a
scene. If you add new scene elements, or assets (such as traffic signs or roads), to a custom scene,
then in the Unreal Editor, you must apply the correct ID to that element. This ID is known as a stencil
ID. Without the correct stencil ID applied, the Simulation 3D Camera block does not recognize the
scene element and does not display semantic segmentation data for it.

For example, this To Video Display window shows a stop sign that was added to a custom scene. The
Semantic Segmentation Display window does not display the stop sign, because the stop sign is
missing a stencil ID.

6 3D Simulation – User's Guide

6-60

You can also use these stencil ID labels to assign IDs to objects detected by probabilistic sensors,
such as those modeled by the Simulation 3D Probabilistic Radar and Simulation 3D Vision Detection
Generator blocks.

To apply a stencil ID label to a scene element, follow these steps:

 Apply Labels to Unreal Scene Elements for Semantic Segmentation and Object Detection

6-61

1 Open the Unreal Editor from a Simulink model that is configured to simulate in the 3D
environment. For more details, see “Customize Scenes Using Simulink and Unreal Editor” on
page 6-50.

2 In the editor window, select the scene element with the missing stencil ID.
3 On the Details pane on the right, in the Rendering section, select Render CustomDepth Pass.

If you do not see this option, click the Show Advanced expander to show all
rendering options.

4 In the CustomDepth Stencil Value box, enter the stencil ID that corresponds to the asset. If
you are adding an asset to a scene from the Automated Driving Toolbox Interface for Unreal
Engine 4 Projects support package, then enter the stencil ID corresponding to that asset type, as
shown in the table. If you are adding assets other than the ones shown, then you can assign them
to unused IDs. If you do not assign a stencil ID to an asset, then the Unreal Editor assigns that
asset an ID of 0.

Note The Simulation 3D Camera block does not support the output of semantic segmentation
data for lane markings. Even if you assign a stencil ID to lane markings, the block ignores this
setting.

ID Type
0 None/default
1 Building
2 Not used
3 Other
4 Not used
5 Pole
6 Lane Markings
7 Road
8 Sidewalk
9 Vegetation
10 Vehicle
11 Not used
12 Generic traffic sign
13 Stop sign
14 Yield sign
15 Speed limit sign
16 Weight limit sign
17-18 Not used
19 Left and right arrow warning sign
20 Left chevron warning sign

6 3D Simulation – User's Guide

6-62

ID Type
21 Right chevron warning sign
22 Not used
23 Right one-way sign
24 Not used
25 School bus only sign
26-38 Not used
39 Crosswalk sign
40 Not used
41 Traffic signal
42 Curve right warning sign
43 Curve left warning sign
44 Up right arrow warning sign
45-47 Not used
48 Railroad crossing sign
49 Street sign
50 Roundabout warning sign
51 Fire hydrant
52 Exit sign
53 Bike lane sign
54-56 Not used
57 Sky
58 Curb
59 Flyover ramp
60 Road guard rail
61-66 Not used
67 Deer
68-70 Not used
71 Barricade
72 Motorcycle
73-255 Not used

For example, for a stop sign that is missing a stencil ID, enter 13.

Tip If you are adding stencil ID for scene elements of the same type, you can copy (Ctrl+C) and
paste (Ctrl+V) the element with the added stencil ID. The copied scene element includes the
stencil ID.

5 Visually verify that the correct stencil ID shows by using the custom stencil view. In the top-left

corner of the editor window, click and select Buffer Visualization > Custom Stencil.

 Apply Labels to Unreal Scene Elements for Semantic Segmentation and Object Detection

6-63

The scene displays the stencil IDs specified for each scene element. For example, if you added
the correct stencil ID to a stop sign (13) then the editor window, the stop sign displays a stencil
ID value of 13.

• If you did not set a stencil ID value for a scene element, then the element appears in black
and displays no stencil ID.

• If you did not select CustomDepth Stencil Value, then the scene element does not appear at
all in this view.

6 Turn off the custom stencil ID view. In the top-left corner of the editor window, click Buffer
Visualization and then select Lit.

To display semantic segmentation data for your custom labels, follow these steps:

1 Set up your Simulink model to display semantic segmentation data from a Simulation 3D Camera
block. For an example setup, see “Depth and Semantic Segmentation Visualization Using Unreal
Engine Simulation” on page 6-30.

2 Run the simulation and verify that the Simulation 3D Camera block outputs the correct data. For
example, here is the Semantic Segmentation Display window with the correct stencil ID applied
to a stop sign.

6 3D Simulation – User's Guide

6-64

See Also
Simulation 3D Camera | Simulation 3D Scene Configuration | Simulation 3D Vision Detection
Generator | Simulation 3D Probabilistic Radar | Simulation 3D Probabilistic Radar Configuration

More About
• “Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation” on page 6-30
• “Customize Scenes Using Simulink and Unreal Editor” on page 6-50

 Apply Labels to Unreal Scene Elements for Semantic Segmentation and Object Detection

6-65

Create Top-Down Map of Unreal Engine Scene
3-D scenes developed for the Unreal Engine simulation environment can be large and complex. Using
the Unreal Editor, you can create a 2-D, top-down map of the scene to get a big-picture view of your
scene. You can also use this map to select waypoints of vehicles traveling along a path in your scene.

Capture Screenshot
To create your 2-D map, first capture a high-resolution screenshot of your 3-D scene from a top-down
perspective.

1 Open the Unreal Editor from a Simulink model that is configured to co-simulate with the Unreal
Editor. For more details, see “Customize Scenes Using Simulink and Unreal Editor” on page 6-50.

2 Open your scene in the Unreal Editor.
3 Switch to a top-down view of the scene. In the top-left corner of the editing window, click

Perspective, and then click Top.

4 Verify that the scene is lit by the standard lighting. In the top-left corner of the editing window,
click Lit.

5 Open the control panel for taking high-resolution screenshots of the scene. The screenshot acts

as a 2-D scene map. In the top-left corner of the editing window, click the down arrow and
select High Resolution Screenshot.

6 In the left corner of the control panel, click Specify the region which will be captured by the
screenshot.

7 Manually select a region of the scene, and then click Take a screenshot.

The Unreal Editor displays a message that the screenshot is saved to a folder in your project. Click
the folder location to access the image file. The folder containing screenshots is a path similar to this
path:

6 3D Simulation – User's Guide

6-66

myProject\Saved\Screenshots\Windows

Convert Screenshot to Map
After you create your high-resolution screenshot, you can convert it to a map by creating a 2-D spatial
referencing object, imref2d. This object describes the relationship between the pixels in the image
and the world coordinates of the scene. To use this object to create a map, you must know the X-axis
and Y-axis limits of the scene in world coordinates. For example, in this code, the scene captured by
image myScene.png has X-coordinates of –80 to 60 meters and Y-coordinates of –75 to 65 meters.

sceneImage = imread('myScene.png');
imageSize = size(sceneImage);
xlims = [-80 60]; % in meters
ylims = [-75 65]; % in meters

sceneRef = imref2d(imageSize,xlims,ylims);

You can use the scene image and spatial referencing object to select waypoints for vehicles to follow
in your scene. For details on this process, see the “Select Waypoints for Unreal Engine Simulation” on
page 8-894 example. This code shows helper function calls in that example. These function calls
enable you to display your scene and interactively specify waypoints for vehicles to follow. The image
shows a sample map and drawn waypoints in blue that are from the example.

helperShowSceneImage(sceneImage, sceneRef);
hFig = helperSelectSceneWaypoints(sceneImage, sceneRef);

 Create Top-Down Map of Unreal Engine Scene

6-67

See Also
imref2d

More About
• “Select Waypoints for Unreal Engine Simulation” on page 8-894
• “Customize Scenes Using Simulink and Unreal Editor” on page 6-50

6 3D Simulation – User's Guide

6-68

Place Cameras on Actors in the Unreal Editor
To visualize objects in an Unreal Editor scene, you can place cameras on static or custom actors in
the scene. To start, you need the Automated Driving Toolbox Interface for Unreal Engine 4 Projects
support package. See “Install Support Package for Customizing Scenes” on page 6-45.

To follow this workflow, you should be comfortable using Unreal Engine. Make sure that you have
Visual Studio 2019 installed on your computer.

Place Camera on Static Actor
Follow these steps to place a Simulation 3D Camera block that is offset from a cone in the Unreal
Editor. Although this example uses the To Video Display block from Computer Vision Toolbox, you can
use a different visualization block to display the image.

1 In a Simulink model, add the Simulation 3D Scene Configuration, Simulation 3D Camera, and To
Video Display blocks.

Set these block parameters. In the Simulation 3D Scene Configuration block, select Open
Unreal Editor.

Block Parameter Settings
Simulation 3D Scene
Configuration

• Scene Source — Unreal Editor
• Project — Specify the path and name of the support

package project file. For example, C:\Local
\AutoVrtlEnv\AutoVrtlEnv.uproject

 Place Cameras on Actors in the Unreal Editor

6-69

https://www.mathworks.com/matlabcentral/fileexchange/74555-automated-driving-toolbox-interface-for-unreal-engine-4-projects

Block Parameter Settings
Simulation 3D Camera • Sensor identifier — 1

• Parent name — Scene Origin
• Mounting location — Origin
• Specify offset — on
• Relative translation [X, Y, Z] (m) — [-6, 0, 2]

This offsets the camera location from the cone mounting
location, 6 m behind, and 2 m up.

• Relative rotation [Roll, Pitch, Yaw] — [0, 15, 0]
2 In the Unreal Editor, from the Place Actors tab, add a Sim 3d Scene Cap to the world, scene,

or map.

3 In the Unreal Editor, from the Place Actors tab, add a Cone to the world, scene, or map.

4 On the World Outliner tab, right-click the Sim3DSceneCap1 and attach it to the Cone.

5 On the Details tab, under Transform, add a location offset of -500,0,100 in the X, Y, and Z
world coordinate system, respectively. This attaches the camera 500 cm behind the cone and 100
cm above it. The values match the Simulation 3D Camera block parameter Relative translation
[X, Y, Z] (m) value.

6 3D Simulation – User's Guide

6-70

6 On the Details tab, under Actor, tag the Sim3DSceneCap1 with the name Camera1.

7 Run the simulation.

a In the Simulink model, click Run.

Because the source of the scenes is the project opened in the Unreal Editor, the simulation
does not start.

b Verify that the Diagnostic Viewer window in Simulink displays this message:

 Place Cameras on Actors in the Unreal Editor

6-71

In the Simulation 3D Scene Configuration block, you set the scene
source to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the
scene.

This message confirms that Simulink has instantiated the vehicles and other assets in the
Unreal Engine 3D environment.

c In the Unreal Editor, click Play. The simulation runs in the scene currently open in the
Unreal Editor.

Observe the results in the To Video display window. The window displays the image from the
camera.

Place Camera on Vehicle in Custom Project
Follow these steps to create a custom Unreal Engine project and place a camera on a vehicle in the
project. Although the example uses the To Video Display block from Computer Vision Toolbox, you can
use a different visualization block to display the image.

To start, you need the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support
package. See “Install Support Package for Customizing Scenes” on page 6-45.

1 In a Simulink model, add the Simulation 3D Scene Configuration, Simulation 3D Camera, and To
Video Display blocks.

6 3D Simulation – User's Guide

6-72

https://www.mathworks.com/matlabcentral/fileexchange/74555-automated-driving-toolbox-interface-for-unreal-engine-4-projects

Save the model.
2 Create a new project using the Vehicle Advanced template from the Epic Games Launcher by

Epic Games.

a In the Epic Games Launcher, launch Unreal Engine 4.26.

For more information about the Epic Games Launcher, see Unreal Engine.
b In the Unreal Project Browser, select Games and Next.

 Place Cameras on Actors in the Unreal Editor

6-73

https://www.unrealengine.com/en-US/unreal

c In Select Template, select the Vehicle Advanced template and click Next.

d In Project Settings, create a Blueprint or C++ project, and select a project name and
location. Click Create Project.

6 3D Simulation – User's Guide

6-74

The Epic Games Launcher creates a new project and opens the Unreal Editor.
e Enable the MathWorks Interface plugin.

i Select Edit > Plugins.
ii On the Plugins tab, navigate to MathWorks Interface. Select Enabled.

f Save the project. Close the Unreal Editor.
3 Open the Simulink model that you saved in step 1. Set these block parameters.

Block Parameter Settings
Simulation 3D Scene
Configuration

• Scene Source — Unreal Editor
• Project — Specify the path an project that you saved in

step 2. For example, myProjectPath
\myProject.uproject

 Place Cameras on Actors in the Unreal Editor

6-75

Block Parameter Settings
Simulation 3D Camera • Sensor identifier — 1

• Parent name — Scene Origin
• Mounting location — Origin

4 In the Simulation 3D Scene Configuration block, select Open Unreal Editor.
5 In the Unreal Editor, in the Content Browser navigate to Sim3DCamera. Add it to the world,

scene, or map.

6 On the vehicle VehicleBlueprint, drag and drop the camera. Choose a vehicle socket or bone
to attach the camera to.

6 3D Simulation – User's Guide

6-76

7 On the Details tab, tag the Sim3dCamera1 with the name Camera1.

8 Set the parent class.

a Under Blueprints, click Open Level Blueprint, and select Class Settings.

 Place Cameras on Actors in the Unreal Editor

6-77

b In the Class Options, set Parent Class to Sim3dLevelScriptActor.

9 Optionally, use a level blueprint to set up a camera view that overrides the default view in the
Unreal Editor. For information about creating level blueprints, see “Set up Camera View
(Optional)” (Vehicle Dynamics Blockset).

10 Save the project.
11 Run the simulation.

a In the Simulink model, click Run.

Because the source of the scenes is the project opened in the Unreal Editor, the simulation
does not start.

b Verify that the Diagnostic Viewer window in Simulink displays this message:

In the Simulation 3D Scene Configuration block, you set the scene
source to 'Unreal Editor'. In Unreal Editor, select 'Play' to view the
scene.

This message confirms that Simulink has instantiated the vehicles and other assets in the
Unreal Engine 3D environment.

c In the Unreal Editor, click Play. The simulation runs in the scene currently open in the
Unreal Editor.

Observe the results in the To Video Display window.

6 3D Simulation – User's Guide

6-78

See Also
Simulation 3D Scene Configuration | Simulation 3D Camera

External Websites
• Unreal Engine

 Place Cameras on Actors in the Unreal Editor

6-79

https://www.unrealengine.com/en-US/unreal

Build Light in Unreal Editor
Follow these steps to build light in the Unreal Editor. You can also use the AutoVrtlEnv project
lighting in a custom scene.

1 In the editor, from the Main Toolbar, click the down-arrow next to Build to expand the options.

2 Under Build, select Lighting Quality > Production to rebuild production quality maps.
Rebuilding complex maps can be time-intensive.

3 Click the Build icon to build the game. Production-quality lighting takes the a long time to build.

Use AutoVrtlEnv Project Lighting in Custom Scene
1 On the World Settings tab, clear Force no precomputed lighting.

2 Under Build, select Lighting Quality > Production to rebuild the maps with production
quality. Rebuilding complex maps can be time-intensive.

6 3D Simulation – User's Guide

6-80

See Also

External Websites
• Unreal Engine

 Build Light in Unreal Editor

6-81

https://www.unrealengine.com/en-US/unreal

Create Empty Project in Unreal Engine
If you do not have an existing Unreal Engine project, you can create an empty project by following
these steps.

1 In Unreal Engine, select File > New Project.
2 Create a project. For example, select the Games template category. Click Next.

3 Select a Blank template. Click Next.

4 In Project Settings, create a Blueprint or C++ project, and select a project name and location.
Click Create Project.

6 3D Simulation – User's Guide

6-82

The Epic Games Launcher creates a new project and opens the Unreal Editor.
5 Enable the MathWorks Interface plugin.

a Select Edit > Plugins.
b On the Plugins tab, navigate to MathWorks Interface. Select Enabled.

6 Save the project. Close the Unreal Editor.
7 Launch Simulink. In the Simulation 3D Scene Configuration block, select Open Unreal Editor.

See Also

External Websites
• Unreal Engine

 Create Empty Project in Unreal Engine

6-83

https://www.unrealengine.com/en-US/unreal

Prepare Custom Vehicle Mesh for the Unreal Editor
This example shows you how to create a vehicle mesh that is compatible with the project in the
Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package. You can specify
the mesh in the Simulation 3D Vehicle with Ground Following block block to visualize the vehicle in
the Unreal Editor when you run a simulation.

Before you start, install the Automated Driving Toolbox Interface for Unreal Engine 4 Projects
support package. See “Install Support Package for Customizing Scenes” on page 6-45.

To create a compatible custom vehicle mesh, follow these workflow steps.

Step Description
“Step 1: Setup Bone
Hierarchy” on page 6-84

In a 3D creation environment, setup the vehicle mesh bone hierarchy and
specify part names.

“Step 2: Assign Materials”
on page 6-85

Optionally, assign materials to the vehicle parts.

“Step 3: Export Mesh and
Armature” on page 6-85

Export the vehicle mesh and armature in .fbx file format.

“Step 4: Import Mesh to
Unreal Editor” on page 6-
86

Import the vehicle mesh into the Unreal Editor.

“Step 5: Set Block
Parameters” on page 6-
86

Set up the Simulation 3D Vehicle with Ground Following block block
parameters.

Note To create the mesh, this example uses the 3D creation software Blender® Version 2.80.

Step 1: Setup Bone Hierarchy
1 Import a vehicle mesh into a 3D modeling tool, for example Blender.
2 To ensure that this mesh is compatible with the animation components in the Automated Driving

Toolbox Interface for Unreal Engine 4 Projects support package, use this naming convention for
the vehicle parts in the mesh.

Vehicle Part Name
Chassis VehicleBody
Front left wheel Wheel_FL
Front right wheel Wheel_FR
Rear left wheel Wheel_RL
Rear right wheel Wheel_RR
Steering wheel Wheel_Steering
Left headlight Lights_Headlight_Left
Right headlight Lights_Headlight_Right

6 3D Simulation – User's Guide

6-84

Vehicle Part Name
Left indicator light Indicator_L
Right indicator light Indicator_R
Number plate Vehicle_Plate
Brake lights Lights_Brake
Reverse lights Lights_Reverse
Front left brake caliper BrakeCaliper_FL
Front right brake caliper BrakeCaliper_FR
Rear left brake caliper BrakeCaliper_RL
Rear right brake caliper BrakeCaliper_RR

3 Set the vehicle body object, VehicleBody as the parent of the wheel objects and other vehicle
objects.

Step 2: Assign Materials
Optionally, assign material slots to vehicle parts. In this example, the mesh uses one material for the
chassis and one for the four wheels.

1 Create and assign material slots to the vehicle chassis. Confirm that the first vehicle slot
corresponds to the vehicle body.

2 Create and assign material slots to the wheels.

Step 3: Export Mesh and Armature
Export the mesh and armature in the .fbx file format. For example, in Blender:

1 On the Object Types pane, select Armature and Mesh.
2 On the Transform pane, set:

• Scale to 1.00
• Apply Scalings to All Local
• Forward to X Forward
• Up to Z Up

Select Apply Unit.
3 On the Geometry pane:

• Set Smoothing to Face
• Select Apply Modifiers

4 On the Armature pane, set:

• Primary Bone Axis to X Axis
• Secondary Bone Axis to Z Axis

Select Export FBX.

 Prepare Custom Vehicle Mesh for the Unreal Editor

6-85

Step 4: Import Mesh to Unreal Editor
1 Open the Unreal Engine AutoVrtlEnv.uproject project in the Unreal Editor.
2 In the editor, import the FBX® file as a skeletal mesh. Assign the Skeleton to the

SK_PassengenerVehicle_Skeleton asset.

Step 5: Set Block Parameters
In your Simulink model, set these Simulation 3D Vehicle with Ground Following block parameters:

• Type to Custom.
• Path to the path in the Unreal Engine project that contains the imported mesh.

See Also
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following

6 3D Simulation – User's Guide

6-86

RoadRunner Scenario Scenario
Simulation

7

Overview of Simulating RoadRunner Scenarios with MATLAB
and Simulink

This topic describes the workflow to simulate RoadRunner scenarios with MATLAB and Simulink.
RoadRunner is an interactive editor that enables you to design scenarios for simulating and testing
automated driving systems. Automated Driving Toolbox provides a cosimulation framework for
simulating scenarios in RoadRunner with actors modeled in MATLAB and Simulink. These are the
steps of the workflow:

• Author RoadRunner actors in MATLAB and Simulink.
• Associate actor behavior in RoadRunner.
• Optionally, publish an actor behavior.
• Tune the parameters defined in MATLAB or Simulink for RoadRunner simulations.
• Simulate a scenario using the RoadRunner user interface or control simulations programmatically

from MATLAB.
• Inspect simulation results using data logging.

This workflow assumes that:

• You have a RoadRunner license and the product is installed.
• You have a RoadRunner Scenario license and the product is installed.
• You have created a RoadRunner project folder.
• You have created and saved a scene and a scenario file, MyExampleScene and

MyExampleScenario, respectively.

Author RoadRunner Actor Using Simulink or MATLAB System Objects
You can define custom behaviors for your actors in RoadRunner using Simulink or a MATLAB System
object.

7 RoadRunner Scenario Scenario Simulation

7-2

For example, this model SimulinkVehicle.slx is created using Simulink and RoadRunner scenario
blocks from the Automated Driving Toolbox library. The model reads the actor data, increases its
velocity, and then writes the data back to the actor in RoadRunner scenario. For more information
about creating Simulink behaviors for RoadRunner, see “Simulate RoadRunner Scenarios with Actors
Modeled in Simulink” on page 7-16.

This example shows the hVehicle.m behavior that is created as a MATLAB System object file. In this
behavior, the code reads the initial pose and velocity of an actor and updates the values to make the
actor follow a lane. For more information about creating actor behaviors using MATLAB, see
“Simulate RoadRunner Scenarios with Actors Modeled in MATLAB” on page 7-20.
classdef hVehicle < matlab.System

 % Copyright 2021 The MathWorks, Inc.
 properties (Access = private)
 mActorSimulationHdl;
 mScenarioSimulationHdl;
 mActor;
 end

 methods (Access=protected)
 function sz = getOutputSizeImpl(~)
 sz = [1 1];
 end

 function st = getSampleTimeImpl(obj)
 st = createSampleTime(...
 obj, 'Type', 'Discrete', 'SampleTime', 0.02);
 end

 function t = getOutputDataTypeImpl(~)
 t = "double";
 end

 function resetImpl(~)
 end

 function setupImpl(obj)

 obj.mScenarioSimulationHdl = ...
 Simulink.ScenarioSimulation.find(...
 'ScenarioSimulation', 'SystemObject', obj);

 obj.mActorSimulationHdl = Simulink.ScenarioSimulation.find(...

 Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink

7-3

 'ActorSimulation', 'SystemObject', obj);

 obj.mActor.pose = ...
 obj.mActorSimulationHdl.getAttribute('Pose');

 obj.mActor.velocity = ...
 obj.mActorSimulationHdl.getAttribute('Velocity');
 end

 function stepImpl(obj, ~)

 velocity = obj.mActor.velocity;
 dTimeUnit = obj.getSampleTimeImpl.SampleTime;
 pose = obj.mActor.pose;

 pose(1,4) = pose(1,4) + velocity(1) * dTimeUnit; % x
 pose(2,4) = pose(2,4) + velocity(2) * dTimeUnit; % y
 pose(3,4) = pose(3,4) + velocity(3) * dTimeUnit; % z

 obj.mActor.pose = pose;

 obj.mActorSimulationHdl.setAttribute('Pose', pose);
 end

 function releaseImpl(~)
 end
 end
end

Associate Actor Behavior in RoadRunner Scenario
This section describes how to associate a custom behavior to your actors in RoadRunner. The
workflow is the same for MATLAB and Simulink behaviors.

1 In your RoadRunner scenario, select the Library Browser and then the Vehicles folder. Then,
right-click an empty space to create a new behavior. For this step, you can select any folder in the
Library Browser.

7 RoadRunner Scenario Scenario Simulation

7-4

2 Select New, then select Behavior.

 Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink

7-5

3 On the Attributes pane, set Platform to MATLAB/Simulink. Use the location of your file
hVehicle.m as File Name.

This action creates a new behavior that you can attach to actors in your scenario. Rename the
behavior as MyNewBehavior.

7 RoadRunner Scenario Scenario Simulation

7-6

4 Add a new CompactCar to your scenario MyExampleScenario.
5 To associate the new behavior to an actor, select CompactCar. On the Attributes pane, in the

Behavior box, add MyNewBehavior to CompactCar by clicking and dragging the behavior icon
to the box.

Publish Actor Behavior
After you create your custom behavior, you can attach your behavior to actors in your scenario.
Optionally, you can publish your actor behaviors as proto files or packages using the
Simulink.publish.publishActorBehavior() and Simulink.publish.publishActor()
functions.

Proto files are specific to RoadRunner and have a .slprotodata extension. This data interface
allows you to combine your behavior model, its parameters, and their values and share them with
RoadRunner.

You can also publish your behavior as a package in a .zip file. Publishing in a .zip file will allow you
to create a package that includes the proto file along with other supporting files for your model.

For more information on the behavior publishing workflow, see “Publish Actor Behavior as Proto File
or Package” on page 7-24.

 Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink

7-7

Tune Actor Parameters
You can tune the parameters you define for your custom MATLAB and Simulink behaviors in
RoadRunner.

For example, suppose that you have a Simulink model foo01.slx with a gain parameter gain01.
The parameter value is 2. You can associate your model in two different ways to tune model
parameters in RoadRunner.

• You can publish your model as a proto file and tune the parameters in RoadRunner.
• You can directly associate your MATLAB or Simulink model to a behavior in RoadRunner then tune

the parameters in RoadRunner.

Tune Parameters of a Proto File in RoadRunner

Publish the model as a proto file, foo01.slprotodata. The published proto file has the model, its
parameters, and the values. For more information see, “Publish Actor Behavior as Proto File or
Package” on page 7-24.

To tune the gain01 parameter in a RoadRunner scenario:

1 Drag the foo01.slprotodata proto file into any folder under MyProject/Assets.

2 Double-click the behavior foo01 and observe that the gain parameter and its value appears in
RoadRunner. This display is read-only for the value of the parameter. To tune the parameter,
continue with these steps.

7 RoadRunner Scenario Scenario Simulation

7-8

3 Attach the proto file to your vehicle in your scenario.

4 Select the action phase for the Sedan and click Add Action. Then, select Change Behavior
Parameter.

 Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink

7-9

5 Observe that the model parameter gain01 appears. You can now tune the parameter for your
simulations.

7 RoadRunner Scenario Scenario Simulation

7-10

Tune Parameters of Model Associated as Behavior without Publishing

You can also associate a Simulink behavior directly to an actor in a scenario without publishing.

In this case, you create a new behavior then add a new parameter to your behavior with a name that
is identical to the Simulink parameter gain01. Then, you can tune the parameter without any
additional steps.

1 Create a new behavior by following the previous steps.

 Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink

7-11

2 Select Add Parameter.

3 Create the parameter that has the same name as the model parameter gain01.

7 RoadRunner Scenario Scenario Simulation

7-12

4 The remainder of the workflow is the same as when you publish your file. Attach the behavior to
your vehicle, and from the action phase, tune the parameter for your simulations.

Simulate Scenario in RoadRunner
Use the Scenario Editor in RoadRunner to simulate your scenario with the custom behavior and
control the progression of the simulation and perform start, pause, step, continue, stop actions.

You can also control the pace of the simulation and the simulation step size and observe the current
simulation time during simulation.

 Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink

7-13

Control Scenario Simulation Using MATLAB
Instead of using the Scenario Editor in RoadRunner you can also use MATLAB to control your
simulations.

• Start RoadRunner and RoadRunner Scenario. For more information, see roadrunner.
• Load and save a pre-defined scenario file (.rrScenario). For more information, see

openScenario and saveScenario.
• Configure and manage a simulation. For more information, see

Simulink.ScenarioSimulation.

• From MATLAB, prepare a simulation by getting or setting simulation step size and simulation
pace.

• Use MATLAB to control the simulation and to start, stop, pause, resume, and single-step.
• Get the current playback status.

• Use MATLAB functions, and MATLAB System objects.

• Read actor static specifications or scenario logic models. For more information, see
Simulink.ActorModel.

• Read and write runtime values such as actor runtime attributes, For more information, see
Simulink.ActorSimulation.

• Report or be notified with simulation results and diagnostics such as warnings and errors, or
receive and send scenario logic events. For more information, see
Simulink.ScenarioSimulation.

This example shows how to simulate a scenario using MATLAB code.

1 Use these commands to specify the RoadRunner installation path and create the connection
between MATLAB and RoadRunner for only the first MATLAB installation.
RRInstallationFolder = "MyInstalationFolder";
s = settings;
s.roadrunner.application.InstallationFolder.PersonalValue = RRInstallationFolder;
s.roadrunner.application.InstallationFolder.TemporaryValue = RRInstallationFolder;

2 To open the RoadRunner project MyRoadRunnerProject from MATLAB, use this command.

rrapp = roadrunner('MyProjectLocation');
3 Open the scenario MyExampleScenario.

rrapp.openScenario('MyExampleScenario');
4 Get the simulation object to control simulation from MATLAB.

ss = rrapp.createSimulation();
5 Start the simulation from the command line.

ss.set('SimulationCommand','Start');

This code contains all of the commands.
RRInstallationFolder = "MyInstalationFolder";
s = settings;
s.roadrunner.application.InstallationFolder.PersonalValue = RRInstallationFolder;
s.roadrunner.application.InstallationFolder.TemporaryValue = RRInstallationFolder;
rrapp = roadrunner('MyProjectLocation');
rrapp.openScenario('MyExampleScenario');

7 RoadRunner Scenario Scenario Simulation

7-14

ss = rrapp.createSimulation();
ss.set('SimulationCommand','Start');

Inspect Simulation Results Using Data Logging
You can inspect simulation results using data logging. This example code logs the simulation data,
runs the simulation, and then gets the logged simulation data. For more information about logging,
see Simulink.ScenarioLog.
% Turn logging on
ss.set('Logging', 'On')

% Run simulation
ss.set('SimulationCommand', 'Start')

% Get logged simulation data
log = ss.get('SimulationLog');

See Also

More About
• “Simulate RoadRunner Scenarios with Actors Modeled in Simulink” on page 7-16
• “Simulate RoadRunner Scenarios with Actors Modeled in MATLAB” on page 7-20
• “Publish Actor Behavior as Proto File or Package” on page 7-24

 Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink

7-15

Simulate RoadRunner Scenarios with Actors Modeled in
Simulink

This example shows how to author RoadRunner actors in Simulink, associate actor behavior in
RoadRunner, and simulate the scenario.

This example assumes that:

• You have a RoadRunner license and the product is installed.
• You have a RoadRunner Scenario license and the product is installed.
• You have created a RoadRunner project folder named MyRoadRunnerProject.
• You have created and saved a RoadRunner scene named MyExampleScene and a scenario named

MyExampleScenario.

Author RoadRunner Actor Using Simulink
Create a model using the RoadRunner Scenario block, the RoadRunner Scenario Reader block, and
the RoadRunner Scenario Writer block.

• RoadRunner Scenario block — Establish the model interface with a scenario.
• RoadRunner Scenario Reader block — Read the world state, including actor pose, velocity, color,

and supervisory actions.
• RoadRunner Scenario Writer block — Write an actor state to the scenario and report errors and

warnings.

This example shows the Simulink model SimulinkVehicle.slx that contains these three blocks.
The model reads ActorID, Pose, Velocity, and AngularVelocity values. Then, a constant value
gainArg is added to the Pose value. The updated values are then sent back to the actor in the
scenario.

Associate Actor Behavior in RoadRunner and Simulate Scenario
1 In the Library Browser, select the Vehicles folder, then right-click an empty space to create a

new behavior.

7 RoadRunner Scenario Scenario Simulation

7-16

2 Set the Platform to MATLAB/Simulink and use the location of your file
SimulinkVehicle.slx as the File Name.

This action creates a new behavior that you can attach to actors in your scenario.

 Simulate RoadRunner Scenarios with Actors Modeled in Simulink

7-17

3 Add a new CompactCar to your scenario MyExampleScenario.
4 To associate the MATLAB System object behavior to a RoadRunner actor, select CompactCar.

Then, in the Attributes section, in the Behavior box, add MyNewBehavior to CompactCar by
clicking and dragging the behavior icon to the box.

5 Use the Scenario Editor in RoadRunner to simulate your scenario with the custom behavior.

7 RoadRunner Scenario Scenario Simulation

7-18

See Also

More About
• “Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink” on page 7-2
• “Simulate RoadRunner Scenarios with Actors Modeled in MATLAB” on page 7-20
• “Publish Actor Behavior as Proto File or Package” on page 7-24

 Simulate RoadRunner Scenarios with Actors Modeled in Simulink

7-19

Simulate RoadRunner Scenarios with Actors Modeled in
MATLAB

You can use the Simulink.ActorSimulation class for actor modeling and runtime data exchanges
RoadRunner. In this example you create a custom behavior, hVehicle.m as a MATLAB System object
file. In this behavior, the code reads the initial pose and velocity of an actor and updates them to
make the actor follow a lane. The example explains the code and shows how to associate the behavior
to your scenario.

This example assumes that:

• You have a RoadRunner license and the product is installed.
• You have a RoadRunner Scenario license and the product is installed.
• You have created RoadRunner project folder named MyRoadRunnerProject.
• You have created and saved a RoadRunner scene named MyExampleScene and a scenario named

MyExampleScenario.

Build Custom MATLAB System Object Behavior
In this example, an actor named hVehicle.m is modeled as a MATLAB System object using the
Simulink.ActorSimulation object.

MATLAB System object Code for Custom Lane Following Behavior
classdef hVehicle < matlab.System

 % Copyright 2021 The MathWorks, Inc.
 properties (Access = private)
 mActorSimulationHdl;
 mScenarioSimulationHdl;
 mActor;
 end

 methods (Access=protected)
 function sz = getOutputSizeImpl(~)
 sz = [1 1];
 end

 function st = getSampleTimeImpl(obj)
 st = createSampleTime(...
 obj, 'Type', 'Discrete', 'SampleTime', 0.02);
 end

 function t = getOutputDataTypeImpl(~)
 t = "double";
 end

 function resetImpl(~)
 end

 function setupImpl(obj)

 obj.mScenarioSimulationHdl = ...
 Simulink.ScenarioSimulation.find(...
 'ScenarioSimulation', 'SystemObject', obj);

 obj.mActorSimulationHdl = Simulink.ScenarioSimulation.find(...
 'ActorSimulation', 'SystemObject', obj);

 obj.mActor.pose = ...
 obj.mActorSimulationHdl.getAttribute('Pose');

7 RoadRunner Scenario Scenario Simulation

7-20

 obj.mActor.velocity = ...
 obj.mActorSimulationHdl.getAttribute('Velocity');
 end

 function stepImpl(obj, ~)

 velocity = obj.mActor.velocity;
 dTimeUnit = obj.getSampleTimeImpl.SampleTime;
 pose = obj.mActor.pose;

 pose(1,4) = pose(1,4) + velocity(1) * dTimeUnit; % x
 pose(2,4) = pose(2,4) + velocity(2) * dTimeUnit; % y
 pose(3,4) = pose(3,4) + velocity(3) * dTimeUnit; % z

 obj.mActor.pose = pose;

 obj.mActorSimulationHdl.setAttribute('Pose', pose);
 end

 function releaseImpl(~)
 end
 end
end

In the custom behavior:

• This code defines the sample time.

 function st = getSampleTimeImpl(obj)
 st = createSampleTime(...
 obj, 'Type', 'Discrete', 'SampleTime', 0.02);
 end

• This code in the setupImpl is called only once at the simulation start.

• This code finds the scenario simulation object, which is the scenario with the actors in it.

 obj.mScenarioSimulationHdl = ...
 Simulink.ScenarioSimulation.find(...
 'ScenarioSimulation', 'SystemObject', obj);

• This code uses Simulink.ScenarioSimulation.find function and finds the actor object
and reflects the actor to which the behavior is attached.
 obj.mActorSimulationHdl = Simulink.ScenarioSimulation.find(...
 'ActorSimulation', 'SystemObject', obj);

• This code gets the initial pose and velocity of the actor in the scenario.

 velocity = obj.mActor.velocity;
 dTimeUnit = obj.getSampleTimeImpl.SampleTime;
 pose = obj.mActor.pose;

• This code updates the pose.

 pose(1,4) = pose(1,4) + velocity(1) * dTimeUnit;
 pose(2,4) = pose(2,4) + velocity(2) * dTimeUnit;
 pose(3,4) = pose(3,4) + velocity(3) * dTimeUnit;

 obj.mActor.pose = pose;

• This code updates RoadRunner actor in the scenario with the new pose values.

obj.mActorSimulationHdl.setAttribute('Pose', pose);

 Simulate RoadRunner Scenarios with Actors Modeled in MATLAB

7-21

Associate Actor Behavior in RoadRunner
This section describes how to associate custom behavior to your actor.

1 In your scenario, select the Library Browser and then the Vehicles folder. Right-click an
empty space to create a new behavior.

2 Set the Platform to MATLAB/Simulink. Use the location of your file hVehicle.m as the File
Name.

This action creates a new behavior that you can attach to actors in your scenario.

7 RoadRunner Scenario Scenario Simulation

7-22

3 For example, add a new CompactCar to your scenario MyExampleScenario.
4 To associate the MATLAB System object behavior to a RoadRunner actor, select CompactCar.

Then, in the Attributes section, in the Behavior box, add MyNewBehavior to CompactCar by
clicking and dragging the behavior icon to the box.

See Also

More About
• “Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink” on page 7-2
• “Simulate RoadRunner Scenarios with Actors Modeled in Simulink” on page 7-16
• “Publish Actor Behavior as Proto File or Package” on page 7-24

 Simulate RoadRunner Scenarios with Actors Modeled in MATLAB

7-23

Publish Actor Behavior as Proto File or Package
This topic explains how to publish your Simulink or MATLAB System object actor behaviors as proto
files or packages using the publishActorBehavior and publishActor functions.

Proto files are specific to RoadRunner and have a .slprotodata extension. This data interface
allows you to combine your behavior model and its parameters and share them with RoadRunner. You
can then tune these parameters in the RoadRunner environment.

Generate Behavior Proto File for Simulink or MATLAB System Object
Behavior
Use the publishActorBehavior function to generate a behavior proto file from your Simulink
behavior.

1 For demonstration purposes, suppose you create the Simulink model, foo01.slx. This code
below initiates the model and then assigns a new workspace variable gain with value 2.0.

% ---------------------- Setup a SL Model -----------------------
model = 'foo01';
new_system(model);
modelWorkspace = get_param(model,'ModelWorkspace');

var_name = 'gain01';
var_value = 2.0;

% Assign to model workspace
assignin(modelWorkspace,var_name,var_value);

% Set model argument
set_param(model,'ParameterArgumentNames',var_name);
params = Simulink.internal.getModelParameterInfo(model);

save_system(model);
close_system(model,0);

2 To create a proto file for foo01.slx, use this command.

Simulink.publish.publishActorBehavior('foo01.slx');

This command creates the foo01.slprotodata file in your current directory.
3 You can now drag foo01.slprotodata into any folder under MyProject/Assets. For this

example, the file is placed in the Vehicles folder.

7 RoadRunner Scenario Scenario Simulation

7-24

4 Double-click the foo01 behavior and observe that the gain parameter and its value appears. You
can now tune this parameter for simulation purposes.

5 Attach the proto file to your vehicle in your scenario.

 Publish Actor Behavior as Proto File or Package

7-25

You can also use this workflow to generate a behavior proto file from a MATLAB System object
behavior.

For example, suppose that you create the behavior MySystemObjectBehavior.m. To publish your
behavior as a proto file, use this command.

Simulink.publish.publishActorBehavior('MySystemObjectBehavior.m');

Generate Package from Simulink Model or MATLAB System Object
You can also publish your behavior as a package in a .zip file. Publishing in a .zip file allows you to
create a package that includes the supporting files for your model, for example, a .mat file. To
publish your Simulink model, Simulink project, or MATLAB System object behavior as a package, use
the publishActor function.

For example, to publish your MySystemObjectBehavior.m behavior as a package, use this
command.
Simulink.publish.publishActor('MySystemObjectBehavior.m','OutputFile = "packageoutput.zip");

The package includes:

• Metadata folder — Stores the actor files. packageInfo.json contains the package type,
MATLAB version, and publish date to identify the package.

7 RoadRunner Scenario Scenario Simulation

7-26

• Model files — An .slx or .m file.
• Data files — Dependent data files for use in setup and cleanup scripts, such as model

callbacks, .mat files, and .sldd files.

See Also
publishActor | publishActorBehavior

More About
• “Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink” on page 7-2
• “Simulate RoadRunner Scenarios with Actors Modeled in Simulink” on page 7-16
• “Simulate RoadRunner Scenarios with Actors Modeled in MATLAB” on page 7-20

 Publish Actor Behavior as Proto File or Package

7-27

Featured Examples

• “Configure Monocular Fisheye Camera” on page 8-5
• “Annotate Video Using Detections in Vehicle Coordinates” on page 8-11
• “Read Data From ADTF DAT Files” on page 8-19
• “Read Sensor Messages from IDC file” on page 8-25
• “Automate Ground Truth Labeling Across Multiple Signals” on page 8-26
• “Automate Ground Truth Labeling of Lane Boundaries” on page 8-46
• “Automate Ground Truth Labeling for Semantic Segmentation” on page 8-58
• “Automate Attributes of Labeled Objects” on page 8-68
• “Evaluate Lane Boundary Detections Against Ground Truth Data” on page 8-82
• “Evaluate and Visualize Lane Boundary Detections Against Ground Truth” on page 8-94
• “Visual Perception Using Monocular Camera” on page 8-107
• “Create 360° Bird's-Eye-View Image Around a Vehicle” on page 8-129
• “Perception-Based Parking Spot Detection Using Unreal Engine Simulation” on page 8-148
• “Train a Deep Learning Vehicle Detector” on page 8-162
• “Ground Plane and Obstacle Detection Using Lidar” on page 8-172
• “Build Map and Localize Using Segment Matching” on page 8-181
• “Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation”

on page 8-199
• “Code Generation for Tracking and Sensor Fusion” on page 8-211
• “Forward Collision Warning Using Sensor Fusion” on page 8-218
• “Adaptive Cruise Control with Sensor Fusion” on page 8-231
• “Forward Collision Warning Application with CAN FD and TCP/IP” on page 8-249
• “Multiple Object Tracking Tutorial” on page 8-255
• “Track Multiple Vehicles Using a Camera” on page 8-261
• “Track Vehicles Using Lidar: From Point Cloud to Track List” on page 8-268
• “Sensor Fusion Using Synthetic Radar and Vision Data” on page 8-286
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” on page 8-295
• “Autonomous Emergency Braking with Sensor Fusion” on page 8-303
• “Visualize Sensor Coverage, Detections, and Tracks” on page 8-319
• “Extended Object Tracking of Highway Vehicles with Radar and Camera” on page 8-327
• “Track-to-Track Fusion for Automotive Safety Applications” on page 8-347
• “Track-to-Track Fusion for Automotive Safety Applications in Simulink” on page 8-360
• “Visual-Inertial Odometry Using Synthetic Data” on page 8-364
• “Lane Following Control with Sensor Fusion and Lane Detection” on page 8-373
• “Track-Level Fusion of Radar and Lidar Data” on page 8-384

8

• “Track-Level Fusion of Radar and Lidar Data in Simulink” on page 8-404
• “Track Vehicles Using Lidar Data in Simulink” on page 8-414
• “Grid-Based Tracking in Urban Environments Using Multiple Lidars” on page 8-422
• “Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker” on page 8-436
• “Generate Code for a Track Fuser with Heterogeneous Source Tracks” on page 8-444
• “Highway Vehicle Tracking with Multipath Radar Reflections” on page 8-454
• “Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink”

on page 8-465
• “Grid-based Tracking in Urban Environments Using Multiple Lidars in Simulink” on page 8-479
• “Object Tracking and Motion Planning Using Frenet Reference Path” on page 8-484
• “Asynchronous Sensor Fusion and Tracking with Retrodiction” on page 8-495
• “Extended Target Tracking with Multipath Radar Reflections in Simulink” on page 8-498
• “Processor-in-the-Loop Verification of JPDA Tracker for Automotive Applications” on page 8-508
• “Scenario Generation from Recorded Vehicle Data” on page 8-518
• “Generate Lane Information from Recorded Data” on page 8-533
• “Improve Ego Vehicle Localization” on page 8-541
• “Lane Keeping Assist with Lane Detection” on page 8-563
• “Model Radar Sensor Detections” on page 8-581
• “Model Vision Sensor Detections” on page 8-597
• “Radar Signal Simulation and Processing for Automated Driving” on page 8-615
• “Simulate Radar Ghosts Due to Multipath Return” on page 8-627
• “Create Driving Scenario Programmatically” on page 8-644
• “Create Actor and Vehicle Trajectories Programmatically” on page 8-663
• “Define Road Layouts Programmatically” on page 8-674
• “Simulate Vehicle Parking Maneuver in Driving Scenario” on page 8-688
• “Automated Parking Valet” on page 8-696
• “Automated Parking Valet in Simulink” on page 8-724
• “Visualize Automated Parking Valet Using Cuboid Simulation” on page 8-731
• “Highway Trajectory Planning Using Frenet Reference Path” on page 8-744
• “Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map” on page 8-758
• “Code Generation for Path Planning and Vehicle Control” on page 8-772
• “Use HERE HD Live Map Data to Verify Lane Configurations” on page 8-781
• “Localization Correction Using Traffic Sign Data from HERE HD Maps” on page 8-795
• “Build a Map from Lidar Data” on page 8-807
• “Build a Map from Lidar Data Using SLAM” on page 8-827
• “Create Occupancy Grid Using Monocular Camera and Semantic Segmentation” on page 8-843
• “Lateral Control Tutorial” on page 8-858
• “Highway Lane Change” on page 8-867
• “Visual Localization in a Parking Lot” on page 8-879

8 Featured Examples

8-2

• “Design Lane Marker Detector Using Unreal Engine Simulation Environment” on page 8-885
• “Select Waypoints for Unreal Engine Simulation” on page 8-894
• “Visualize Automated Parking Valet Using Unreal Engine Simulation” on page 8-904
• “Simulate Vision and Radar Sensors in Unreal Engine Environment” on page 8-916
• “Highway Lane Following” on page 8-922
• “Automate Testing for Highway Lane Following” on page 8-938
• “Traffic Light Negotiation” on page 8-948
• “Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment” on page 8-962
• “Lidar Localization with Unreal Engine Simulation” on page 8-972
• “Develop Visual SLAM Algorithm Using Unreal Engine Simulation” on page 8-983
• “Automatic Scenario Generation” on page 8-997
• “Automatic Scenario Variant Generation for Testing AEB Systems” on page 8-1011
• “Generate Scenario from Recorded GPS and Lidar Data” on page 8-1034
• “Highway Lane Following with RoadRunner Scene” on page 8-1049
• “Export Multiple Scenes Using MATLAB” on page 8-1063
• “Convert Scenes Between Formats Using MATLAB Functions” on page 8-1066
• “Simulate a RoadRunner Scenario Using MATLAB Functions” on page 8-1068
• “Traffic Light Negotiation with Unreal Engine Visualization” on page 8-1074
• “Generate Code for Lane Marker Detector” on page 8-1085
• “Highway Lane Following with Intelligent Vehicles” on page 8-1103
• “Forward Vehicle Sensor Fusion” on page 8-1121
• “Generate Code for Vision Vehicle Detector” on page 8-1129
• “Automate Testing for Lane Marker Detector” on page 8-1145
• “Generate Code for Highway Lane Following Controller” on page 8-1156
• “Automate Testing for Highway Lane Following Controls and Sensor Fusion” on page 8-1168
• “Generate Code for Highway Lane Change Planner” on page 8-1180
• “Surround Vehicle Sensor Fusion” on page 8-1202
• “Build Occupancy Map from 3-D Lidar Data using SLAM” on page 8-1211
• “Automate Testing for Vision Vehicle Detector” on page 8-1232
• “Automate Testing for Forward Vehicle Sensor Fusion” on page 8-1243
• “Automate Testing for Highway Lane Following Controller” on page 8-1254
• “Automate Testing for Highway Lane Change” on page 8-1267
• “Visualize Logged Data from Unreal Engine Simulation” on page 8-1277
• “Automate Real-Time Testing for Highway Lane Following Controller” on page 8-1289
• “Generate C++ Message Interfaces for Lane Following Controls and Sensor Fusion”

on page 8-1311
• “Automate Testing for Autonomous Emergency Braking” on page 8-1322
• “Autonomous Emergency Braking with Vehicle Variants” on page 8-1331
• “Automate Real-Time Testing for Forward Vehicle Sensor Fusion” on page 8-1344

 Publish Actor Behavior as Proto File or Package

8-3

• “Highway Lane Change Planner and Controller” on page 8-1361
• “Intersection Movement Assist Using Vehicle-to-Vehicle Communication” on page 8-1372
• “Traffic Light Negotiation Using Vehicle-to-Everything Communication” on page 8-1384
• “Trajectory Follower with RoadRunner Scenario” on page 8-1396
• “Speed Action Follower with RoadRunner Scenario” on page 8-1410
• “Highway Lane Change Planner with RoadRunner Scenario” on page 8-1421

8 Featured Examples

8-4

Configure Monocular Fisheye Camera
This example shows how to convert a fisheye camera model to a pinhole model and construct a
corresponding monocular camera sensor simulation. In this example, you learn how to calibrate a
fisheye camera and configure a monoCamera object.

Overview

To simulate a monocular camera sensor mounted in a vehicle, follow these steps:

1 Estimate the intrinsic camera parameters by calibrating the camera using a checkerboard. The
intrinsic parameters describe the properties of the fisheye camera itself.

2 Estimate the extrinsic camera parameters by calibrating the camera again, using the same
checkerboard from the previous step. The extrinsic parameters describe the mounting position of
the fisheye camera in the vehicle coordinate system.

3 Remove image distortion by converting the fisheye camera intrinsics to pinhole camera intrinsics.
These intrinsics describe a synthetic pinhole camera that can hypothetically generate undistorted
images.

4 Use the intrinsic pinhole camera parameters and the extrinsic parameters to configure the
monocular camera sensor for simulation. You can then use this sensor to detect objects and lane
boundaries.

Estimate Fisheye Camera Intrinsics

To estimate the intrinsic parameters, use a checkerboard for camera calibration. Alternatively, to
better visualize the results, use the Camera Calibrator app. For fisheye camera, it is useful to place
the checkerboard close to the camera, in order to capture large noticeable distortion in the image.

 % Gather a set of calibration images.
images = imageDatastore(fullfile(toolboxdir('vision'), 'visiondata', ...
 'calibration', 'gopro'));
imageFileNames = images.Files;

% Detect calibration pattern.
[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);

% Generate world coordinates of the corners of the squares.
squareSize = 0.029; % Square size in meters
worldPoints = generateCheckerboardPoints(boardSize, squareSize);

% Calibrate the camera.
I = readimage(images, 1);
imageSize = [size(I, 1), size(I, 2)];
params = estimateFisheyeParameters(imagePoints, worldPoints, imageSize);

Estimate Fisheye Camera Extrinsics

To estimate the extrinsic parameters, use the same checkerboard to estimate the mounting position
of the camera in the vehicle coordinate system. The following step estimates the parameters from one
image. You can also take multiple checkerboard images to obtain multiple estimations, and average
the results.

% Load a different image of the same checkerboard, where the checkerboard
% is placed on the flat ground. Its X-axis is pointing to the right of the
% vehicle, and its Y-axis is pointing to the camera. The image includes

 Configure Monocular Fisheye Camera

8-5

% noticeable distortion, such as along the wall next to the checkerboard.

imageFileName = fullfile(toolboxdir('driving'), 'drivingdata', 'checkerboard.png');
I = imread(imageFileName);
imshow(I)
title('Distorted Checkerboard Image');

[imagePoints, boardSize] = detectCheckerboardPoints(I);

% Generate coordinates of the corners of the squares.
squareSize = 0.029; % Square size in meters
worldPoints = generateCheckerboardPoints(boardSize, squareSize);

% Estimate the parameters for configuring the monoCamera object.
% Height of the checkerboard is zero here, since the pattern is
% directly on the ground.
originHeight = 0;
[pitch, yaw, roll, height] = estimateMonoCameraParameters(params.Intrinsics, ...
 imagePoints, worldPoints, originHeight);

8 Featured Examples

8-6

Construct a Synthetic Pinhole Camera for the Undistorted Image

% Undistort the image and extract the synthetic pinhole camera intrinsics.
[J1, camIntrinsics] = undistortFisheyeImage(I, params.Intrinsics, 'Output', 'full');
imshow(J1)
title('Undistorted Image');

% Set up monoCamera with the synthetic pinhole camera intrinsics.
% Note that the synthetic camera has removed the distortion.
sensor = monoCamera(camIntrinsics, height, 'pitch', pitch, 'yaw', yaw, 'roll', roll);

Plot Bird's Eye View

Now you can validate the monoCamera by plotting a bird's-eye view.

% Define bird's-eye-view transformation parameters
distAheadOfSensor = 6; % in meters
spaceToOneSide = 2.5; % look 2.5 meters to the right and 2.5 meters to the left
bottomOffset = 0.2; % look 0.2 meters ahead of the sensor
outView = [bottomOffset, distAheadOfSensor, -spaceToOneSide, spaceToOneSide];
outImageSize = [NaN,1000]; % output image width in pixels

 Configure Monocular Fisheye Camera

8-7

birdsEyeConfig = birdsEyeView(sensor, outView, outImageSize);

% Transform input image to bird's-eye-view image and display it
B = transformImage(birdsEyeConfig, J1);

% Place a 2-meter marker ahead of the sensor in bird's-eye view
imagePoint0 = vehicleToImage(birdsEyeConfig, [2, 0]);
offset = 5; % offset marker from text label by 5 pixels
annotatedB = insertMarker(B, imagePoint0 - offset);
annotatedB = insertText(annotatedB, imagePoint0, '2 meters');

figure
imshow(annotatedB)
title('Bird''s-Eye View')

8 Featured Examples

8-8

 Configure Monocular Fisheye Camera

8-9

The plot above shows that the camera measures distances accurately. Now you can use the
monocular camera for object and lane boundary detection. See the “Visual Perception Using
Monocular Camera” on page 8-107 example.

See Also
Apps
Camera Calibrator

Functions
estimateMonoCameraParameters | estimateFisheyeParameters |
detectCheckerboardPoints | generateCheckerboardPoints | undistortFisheyeImage

Objects
monoCamera | birdsEyeView

More About
• “Calibrate a Monocular Camera” on page 1-8
• “Visual Perception Using Monocular Camera” on page 8-107

8 Featured Examples

8-10

Annotate Video Using Detections in Vehicle Coordinates
Configure and use a monoCamera object to display information provided in vehicle coordinates on a
video display.

Overview

Displaying data recorded in vehicle coordinates on a recorded video is an integral part of ground
truth labeling and analyzing tracking results. Using a two-dimensional bird's-eye view can help you
understand the overall environment, but it is sometimes hard to correlate the video with the bird's-
eye view display. In particular, this problem becomes worse when using a third-party sensor where
you cannot access the raw video captured by the sensor, and you need to use a video captured by a
separate camera.

Automated Driving Toolbox™ provides the monoCamera object that facilitates the conversion between
vehicle coordinates and image coordinates. This example reads data recorded by a video sensor
installed on a test vehicle. Then it displays the data on a video captured by a separate video camera
installed on the same car. The data and video were recorded at the following rates:

• Reported lane information: 20 times per second
• Reported vision objects: 10 times per second
• Video frame rate: 20 frames per second

Display a Frame with Video Annotations

The selected frame corresponds to 5.9 seconds into the video clip, when there are several objects to
show on the video.

% Set up video reader and player
videoFile = '01_city_c2s_fcw_10s.mp4';
videoReader = VideoReader(videoFile);
videoPlayer = vision.DeployableVideoPlayer;

% Jump to the desired frame
time = 5.9;
videoReader.CurrentTime = time;
frameWithoutAnnotations = readFrame(videoReader);

imshow(frameWithoutAnnotations);
title('Original Video Frame')

 Annotate Video Using Detections in Vehicle Coordinates

8-11

Get the corresponding recorded data.

recordingFile = '01_city_c2s_fcw_10s_sensor.mat';
[visionObjects, laneReports, timeStep, numSteps] = readDetectionsFile(recordingFile);
currentStep = round(time / timeStep) + 1;
videoDetections = processDetections(visionObjects(currentStep));
laneBoundaries = processLanes(laneReports(currentStep));

% Set up the monoCamera object for on-video display
sensor = setupMonoCamera(videoReader);

frameWithAnnotations = updateDisplay(frameWithoutAnnotations, sensor, videoDetections, laneBoundaries);

imshow(frameWithAnnotations);
title('Annotated Video Frame')

8 Featured Examples

8-12

Display a Clip with Video Annotations

To display the video clip with annotations, simply repeat the annotation frame-by-frame. The video
shows that the car pitches slightly up and down, which changes the pitch angle. No attempt has been
made to compensate for this pitch motion. As a result, the conversion from vehicle coordinates to
image coordinates is a little inaccurate on some of the frames.

% Reset the time back to zero
currentStep = 0; % Reset the recorded data timestep
videoReader.CurrentTime = 0; % Reset the video reader time
while currentStep < numSteps && hasFrame(videoReader)
 % Update scenario counters
 currentStep = currentStep + 1;

 % Get the current time
 tic

 % Prepare the detections to the tracker
 videoDetections = processDetections(visionObjects(currentStep), videoDetections);

 % Process lanes
 laneBoundaries = processLanes(laneReports(currentStep));

 Annotate Video Using Detections in Vehicle Coordinates

8-13

 % Update video frame with annotations from the reported objects
 frameWithoutAnnotations = readFrame(videoReader);
 frameWithAnnotations = updateDisplay(frameWithoutAnnotations, sensor, videoDetections, laneBoundaries);

 % The recorded data was obtained at a rate of 20 frames per second.
 % Pause for 50 milliseconds for a more realistic display rate. If you
 % process data and form tracks in this loop, you do not need this
 % pause.
 pause(0.05 - toc);

 % Display annotated frame
 videoPlayer(frameWithAnnotations);
end

Create the Mono Camera for On-Video Display

The setupMonoCamera function returns a monoCamera sensor object, which is used for converting
positions in vehicle coordinates to image coordinates.

Knowing the camera's intrinsic and extrinsic calibration parameters is critical to accurate conversion
between pixel and vehicle coordinates.

Start by defining the camera intrinsic parameters. The parameters in this function were estimated
based on the camera model. To obtain the parameters for your camera, use the Camera Calibrator
app.

Because the data in this example has little distortion, this function ignores the lens distortion
coefficients. The parameters are next stored in a cameraIntrinsics object.

Next, define the camera extrinsics. Camera extrinsics relate to the way the camera is mounted on the
car. The mounting includes the following properties:

• Height: Mounting height above the ground, in meters.
• Pitch: Pitch of the camera, in degrees, where positive is angled below the horizon and toward the

ground. In most cases, the camera is pitched slightly below the horizon.
• Roll: Roll of the camera about its axis. For example, if the video is flipped upside down, use roll =

180.
• Yaw: Angle of the camera sideways, where positive is in the direction of the positive y-axis (to the

left). For example, a forward-facing camera has a yaw angle of 0 degrees, and a backward-facing
camera has a yaw angle of 180 degrees.

function sensor = setupMonoCamera(vidReader)
% Define the camera intrinsics from the video information
focalLength = [1260 1100]; % [fx, fy] % pixels
principalPoint = [360 245]; % [cx, cy] % pixels
imageSize = [vidReader.height, vidReader.width]; % [numRows, numColumns] % pixels
intrinsics = cameraIntrinsics(focalLength, principalPoint, imageSize);

% Define the camera mounting (camera extrinsics)
mountingHeight = 1.45; % height in meters from the ground
mountingPitch = 1.25; % pitch of the camera in degrees
mountingRoll = 0.15; % roll of the camera in degrees
mountingYaw = 0; % yaw of the camera in degrees
sensor = monoCamera(intrinsics, mountingHeight, ...
 'Pitch', mountingPitch, ...
 'Roll', mountingRoll, ...

8 Featured Examples

8-14

 'Yaw', mountingYaw);
end

Using the Mono Camera Object to Update the Display

The updateDisplay function displays all the object annotations on top of the video frame.

The display update includes the following steps:

1 Using the monoCamera sensor to convert reported detections into bounding boxes and
annotating the frame.

2 Using the insertLaneBoundary method of the parabolicLaneBoundary object to insert the
lane annotations.

function frame = updateDisplay(frame, sensor, videoDetections, laneBoundaries)

% Allocate memory for bounding boxes
bboxes = zeros(numel(videoDetections), 4);

% Create the bounding boxes
for i = 1:numel(videoDetections)
 % Use monoCamera sensor to convert the position in vehicle coordinates
 % to the position in image coordinates.
 % Notes:
 % 1. The width of the object is reported and is used to calculate the
 % size of the bounding box around the object (half width on each
 % side). The height of the object is not reported. Instead, the
 % function uses a height/width ratio of 0.85 for cars and 3 for
 % pedestrians.
 % 2. The reported location is at the center of the object at ground
 % level, i.e., the bottom of the bounding box.
 xyLocation1 = vehicleToImage(sensor, videoDetections(i).positions' + [0,videoDetections(i).widths/2]);
 xyLocation2 = vehicleToImage(sensor, videoDetections(i).positions' - [0,videoDetections(i).widths/2]);
 dx = xyLocation2(1) - xyLocation1(1);

 % Define the height/width ratio based on object class
 if strcmp(videoDetections(i).labels, 'Car')
 dy = dx * 0.85;
 elseif strcmp(videoDetections(i).labels, 'Pedestrian')
 dy = dx * 3;
 else
 dy = dx;
 end

 % Estimate the bounding box around the vehicle. Subtract the height of
 % the bounding box to define the top-left corner.
 bboxes(i,:) =[(xyLocation1 - [0, dy]), dx, dy];
end

% Add labels
labels = {videoDetections(:).labels}';

% Add bounding boxes to the frame
if ~isempty(labels)
 frame = insertObjectAnnotation(frame, 'rectangle', bboxes, labels,...
 'Color', 'yellow', 'FontSize', 10, 'TextBoxOpacity', .8, 'LineWidth', 2);
end

 Annotate Video Using Detections in Vehicle Coordinates

8-15

% Display the lane boundary on the video frame
xRangeVehicle = [1, 100];
xPtsInVehicle = linspace(xRangeVehicle(1), xRangeVehicle(2), 100)';
frame = insertLaneBoundary(frame, laneBoundaries(1), sensor, xPtsInVehicle, ...
 'Color', 'red');
frame = insertLaneBoundary(frame, laneBoundaries(2), sensor, xPtsInVehicle, ...
 'Color', 'green');
end

Summary

This example showed how to create a monoCamera sensor object and use it to display objects
described in vehicle coordinates on a video captured by a separate camera. Try using recorded data
and a video camera of your own. Try calibrating your camera to create a monoCamera that allows for
transformation from vehicle to image coordinates, and vice versa.

Supporting Functions

readDetectionsFile - Reads the recorded sensor data file. The recorded data is in a single structure
that is divided into four struct arrays. This example uses only the following two arrays:

1 laneReports, a struct array that reports the boundaries of the lane. It has these fields: left
and right. Each element of the array corresponds to a different timestep. Both left and right
are structures with these fields: isValid, confidence, boundaryType, offset,
headingAngle, and curvature.

2 visionObjects, a struct array that reports the detected vision objects. It has the fields
numObjects (integer) and object (struct). Each element of the array corresponds to a
different timestep. object is a struct array, where each element is a separate object with these
fields: id, classification, position (x;y;z), velocity(vx;vy;vz), size(dx;dy;dz).
Note: z=vy=vz=dx=dz=0

function [visionObjects, laneReports, timeStep, numSteps] = readDetectionsFile(filename)
A = load(strcat(filename));
visionObjects = A.vision;
laneReports = A.lane;

% Prepare some time variables
timeStep = 0.05; % Lane data is provided every 50 milliseconds
numSteps = numel(visionObjects); % Number of recorded timesteps
end

processDetections - Reads the recorded vision detections. This example extracts only the following
properties:

1 Position: A two-dimensional [x, y] array in vehicle coordinates
2 Width: The width of the object as reported by the video sensor (Note: The sensor does not report

any other dimension of the object size.)
3 Labels: The reported classification of the object

function videoDetections = processDetections(visionData, videoDetections)
% The video sensor reports a classification value as an integer
% according to the following enumeration (starting from 0)
ClassificationValues = {'Unknown', 'Unknown Small', 'Unknown Big', ...
 'Pedestrian', 'Bike', 'Car', 'Truck', 'Barrier'};

% The total number of objects reported by the sensor in this frame

8 Featured Examples

8-16

numVideoObjects = visionData.numObjects;

% The video objects are reported only 10 times per second, but the video
% has a frame rate of 20 frames per second. To prevent the annotations from
% flickering on and off, this function returns the values from the previous
% timestep if there are no video objects.
if numVideoObjects == 0
 if nargin == 1 % Returning a result even if there is no previous value
 videoDetections = struct('positions', {}, 'labels', {}, 'widths', {});
 end
 return;
else
 % Prepare a container for the relevant properties of video detections
 videoDetections = struct('positions', [], 'labels', [], 'widths', []);
 for i = 1:numVideoObjects
 videoDetections(i).widths = visionData.object(i).size(2);
 videoDetections(i).positions = visionData.object(i).position(1:2);
 videoDetections(i).labels = ClassificationValues{visionData.object(i).classification + 1};
 end
end
end

processLanes - Reads reported lane information and converts it into parabolicLaneBoundary
objects.

Lane boundaries are updated based on the laneReports from the recordings. The sensor reports
the lanes as parameters of a parabolic model: % y = ax2 + bx + c

function laneBoundaries = processLanes(laneReports)
% Return processed lane boundaries

% Boundary type information
types = {'Unmarked', 'Solid', 'Dashed', 'Unmarked', 'BottsDots', ...
 'Unmarked', 'Unmarked', 'DoubleSolid'};

% Read the recorded lane reports for this frame
leftLane = laneReports.left;
rightLane = laneReports.right;

% Create parabolicLaneBoundary objects for left and right lane boundaries
leftParams = cast([leftLane.curvature, leftLane.headingAngle, leftLane.offset], 'double');
leftBoundaries = parabolicLaneBoundary(leftParams);
leftBoundaries.BoundaryType = types{leftLane.boundaryType};

rightParams = cast([rightLane.curvature, rightLane.headingAngle, rightLane.offset], 'double');
rightBoundaries = parabolicLaneBoundary(rightParams);
rightBoundaries.BoundaryType = types{rightLane.boundaryType};

laneBoundaries = [leftBoundaries, rightBoundaries];
end

See Also
Apps
Camera Calibrator

 Annotate Video Using Detections in Vehicle Coordinates

8-17

Functions
insertObjectAnnotation | insertLaneBoundary

Objects
VideoReader | monoCamera | vision.DeployableVideoPlayer

More About
• “Calibrate a Monocular Camera” on page 1-8
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Visual Perception Using Monocular Camera” on page 8-107

8 Featured Examples

8-18

Read Data From ADTF DAT Files
This example shows how to read data from ADTF DAT files using adtfFileReader and
adtfStreamReader objects.

To read the data, you first create an adtfFileReader object that will act as a file handler object for
the DAT file. This object gives useful information about the streams present in the DAT file and its
contents. Following are the three main ways you can create an adtfFileReader object:

• Using DAT file only on page 8-0 : Applies to image and video stream data
• Using DAT file and DDL description file on page 8-0 : Applies to structured data
• Using ADTF plugins, given a DAT file and DDL description file on page 8-0 : Applies to

data which requires some ADTF plugins

Next, you select the data to be read from the DAT file, which creates an adtfStreamReader object.
You can then use this object to read the data. Following are some of the common ways you can read
the data:

• Read data from a single stream on page 8-0
• Read data within a specified time range and index range filters, across selected streams on page

8-0
• Read data from multiple streams simultaneously on page 8-0

The data you read from the DAT file will be present in the MATLAB workspace, in raw form.

Create adtfFileReader Object

Using DAT file only

Create an adtfFileReader object by specifying ADTF DAT file name as the only argument to create
the file reader object, to read data from streams like images and videos.

datFileName = fullfile("C:","data","sample_can_video.dat");
fileReader = adtfFileReader(datFileName) %#ok

fileReader =
 DataFileName: "C:\data\sample_can_video.dat"
 DescriptionFileName: ""
 PluginDirectory: ""
 StreamCount: 2
 StreamInfo:

 StreamIndex StreamName StreamType StartTime EndTime ItemCount
 ___________ __________ _______________ _________ __________ _________

 1 {'rawcan'} {'UNSUPPORTED'} 0 sec 14.805 sec 743
 2 {'video' } {'adtf/image' } 0 sec 14.799 sec 149

From the StreamInfo property, note that

• Stream 1 is named 'rawcan'. It contains 743 data items spanning from 0 to 14.805 seconds.
However, this stream is not supported for reading as its 'StreamType' is 'UNSUPPORTED'. To read
such streams, we might need to some additional ADTF plugins, as explained here on page 8-0 .

 Read Data From ADTF DAT Files

8-19

• Stream 2 is named ‘video’. It is an 'adtf/image' stream, which is a common ADTF stream type
for video and image streams. It contains 149 image frames, recorded over an interval of 14.799
seconds.

Using DAT file and DDL description file

Some DAT files contain structured data (for example, CAN data). To read such data into MATLAB
workspace, you need a DDL description file containing details about the structure of the data within
the streams. Specify the name of the DDL description file as an additional argument while creating an
adtfFileReader object. Note that the DAT file sample_can.adtfdat contains dummy data and is
used for demonstration purposes only.

datFileName = fullfile("C:","data","sample_can.adtfdat");
ddlFileName = fullfile("C:","data","sample_can.description");
fileReader = adtfFileReader(datFileName, ddlFileName) %#ok

fileReader =
 DataFileName: "C:\data\sample_can.adtfdat"
 DescriptionFileName: "C:\data\sample_can.description"
 PluginDirectory: ""
 StreamCount: 1
 StreamInfo:

 StreamIndex StreamName StreamType StartTime EndTime ItemCount
 ___________ __________ _________________ _________ ________ _________

 1 rawcan adtf/devicetb/can 0 sec 0.98 sec 99

Note that the above output shows a different stream type, 'adtf/devicetb/can', for the CAN
stream, unlike the 'UNSUPPORTED' stream type in the previous section. This due to the fact that the
sample_can.adtfdat is in ADTF 3.0 format file whereas sample_can_video.dat is an ADTF 2.0
format file. For the 2.0 format, additional plugins may be necessary to read the data.

Use ADTF Plugins, Given a DAT File and DDL Description File

An ADTF Plugin is a compiled object that provides aditional functionality to ADTF Runtime. They are
very specific to ADTF framework and you can read more about them here.

In certain cases, ADTF Plugins are necessary to read data from streams. For such cases, specify the
path to the folder storing the plugins as an additional argument while creating an adtfFileReader
object. Replace the value of pluginFolder variable with the path on your system that contain the
plugins.

datFileName = fullfile("C:","data","sample_can_video.dat");
ddlFileName = fullfile("C:","data","sample_can_video.description");
pluginFolder = fullfile("C:",'pluginFolder');

fileReader = adtfFileReader(datFileName, ddlFileName, pluginFolder) %#ok

fileReader =
 DataFileName: "C:\data\sample_can_video.dat"
 DescriptionFileName: "C:\data\sample_can_video.description"
 PluginDirectory: "C:\pluginFolder"
 StreamCount: 2
 StreamInfo:

8 Featured Examples

8-20

https://support.digitalwerk.net/adtf/v3/adtf_html/page_plugin_description.html

 StreamIndex StreamName StreamType StartTime EndTime ItemCount
 ___________ __________ _____________________ _________ __________ _________

 1 {'rawcan'} {'adtf/devicetb/can'} 0 sec 14.805 sec 743
 2 {'video' } {'adtf/image' } 0 sec 14.799 sec 149

Note that there are different versions of same plugin for every Operating System. If plugins are
required to read streams in the DAT file, and you do not specify their path, the StreamType value for
those will be ‘UNSUPPORTED’.

Select and Read Data

Read Data from Single Stream

Create the adtfFileReader object. Note that the DAT file sample_struct.dat contains dummy
data and is used for demonstration purposes only.

datFileName = fullfile("C:","data","sample_struct.dat");
ddlFileName = fullfile("C:","data","sample_struct.description");
fileReader = adtfFileReader(datFileName, ddlFileName)

fileReader =
 DataFileName: "C:\data\sample_struct.dat"
 DescriptionFileName: "C:\data\sample_struct.description"
 PluginDirectory: ""
 StreamCount: 2
 StreamInfo:

 StreamIndex StreamName StreamType StartTime EndTime ItemCount
 ___________ ________________ ________________ _________ ________ _________

 1 {'FirstStream' } {'adtf2/legacy'} 0.09 sec 1.07 sec 99
 2 {'SecondStream'} {'adtf2/legacy'} 0.09 sec 0.98 sec 90

Select the stream to be read by specifying their stream index.

streamReader = select(fileReader, 1);

Read the first item in the selected stream.

item = readNext(streamReader)

item = struct with fields:
 StreamIndex: 1
 Data: [1×1 struct]

In the structure, dataItem, 'StreamIndex' field shows the selected stream index and the 'Data'
field contains the actual data item with the timestamp (in microseconds) at which this data is
recorded into the DAT file.

% Display timestamp
fprintf("Timestamp = %d\n",item.Data.Timestamp);

 Read Data From ADTF DAT Files

8-21

Timestamp = 90000

% Display data
disp(item.Data.Item)

 signal1: [1×1 struct]
 signal2: [2×1 double]
 Signal1: [1×1 struct]
 Signal2: [2×1 double]

You can also iterate over all the data items in the selected stream.

% Read one item at a time
while hasNext(streamReader)
 item = readNext(streamReader);
 % Process data
end

Alternatively, you can read all data items at once and iterate over it later.

% Read everythin at once
items = read(streamReader);

% Iterate over the data
for i=1:streamReader.DataCount
 timestamp = items.Data(i).Timestamp;
 data = items.Data(i).Item;
 % Process data
end

Read Data with TimeRange and IndexRange Filters

Create the adtfFileReader object.

datFileName = fullfile("C:","data","sample_can.adtfdat");
ddlFileName = fullfile("C:","data","sample_can.description");
fileReader = adtfFileReader(datFileName, ddlFileName)

fileReader =
 DataFileName: "C:\data\sample_can.adtfdat"
 DescriptionFileName: "C:\data\sample_can.description"
 PluginDirectory: ""
 StreamCount: 1
 StreamInfo:

 StreamIndex StreamName StreamType StartTime EndTime ItemCount
 ___________ __________ _________________ _________ ________ _________

 1 rawcan adtf/devicetb/can 0 sec 0.98 sec 99

Use the name-value argument, IndexRange, in the select function to filter the search to the last 10
data items in the selected stream.

streamIndex = 1;
startIndex = fileReader.StreamInfo(streamIndex).ItemCount - 9; % 10th element index from last
endIndex = fileReader.StreamInfo(streamIndex).ItemCount; % last index
streamReader = select(fileReader, streamIndex, IndexRange=[startIndex endIndex]); %#ok

8 Featured Examples

8-22

Use the name-value argument, TimeRange, to filter the search to all the data items recorded
between 1 to 2 seconds, across the selected streams.

startTime = seconds(0.1);
endTime = seconds(0.2);
streamReader = select(fileReader, TimeRange=[startTime endTime]); %#ok

INFO : All streams are selected.

Next, you can iterate through the items using the readNext and hasNext functions, or read all items
at once using readNext function. See Read Data from Single Stream section on page 8-0 for more
information.

Reading multiple streams

Create the adtfFileReader object.

datFileName = fullfile("C:","data","sample_struct.dat");
ddlFileName = fullfile("C:","data","sample_struct.description");
fileReader = adtfFileReader(datFileName, ddlFileName)

fileReader =
 DataFileName: "C:\data\sample_struct.dat"
 DescriptionFileName: "C:\data\sample_struct.description"
 PluginDirectory: ""
 StreamCount: 2
 StreamInfo:

 StreamIndex StreamName StreamType StartTime EndTime ItemCount
 ___________ ________________ ________________ _________ ________ _________

 1 {'FirstStream' } {'adtf2/legacy'} 0.09 sec 1.07 sec 99
 2 {'SecondStream'} {'adtf2/legacy'} 0.09 sec 0.98 sec 90

You can select streams by specifying their stream indices. To select all streams by default, then do not
specify any stream indices.

While reading data from multiple streams simultaneously, it is possible that there are unequal
number of data items across different streams. To illustrate, perform the following selection.

firstStreamIndex = 1;
secondStreamIndex = 2;
startTime = seconds(0.98);
endTime = seconds(2.0);

streamReader = select(fileReader, [firstStreamIndex, secondStreamIndex], TimeRange=[startTime endTime]);

fprintf("Number of elements in stream 1 = %d\n",streamReader.DataCount(firstStreamIndex));

Number of elements in stream 1 = 10

fprintf("Number of elements in stream 2 = %d\n",streamReader.DataCount(secondStreamIndex));

Number of elements in stream 2 = 1

 Read Data From ADTF DAT Files

8-23

Note that first stream has 10 items and second stream has only 1 item. If you read all data items at
once using the read function, then stream 1 will return an array of 10 structures, and stream 2 will
return a single structure.

allData = read(streamReader)

allData=2×1 struct array with fields:
 StreamIndex
 Data

When you read data one-by-one, during the first call to readNext, you get one structure for each
stream as expected.

data1 = readNext(streamReader)

data1=2×1 struct array with fields:
 StreamIndex
 Data

In the next call to readNext, we only get items for stream 1.

data2 = readNext(streamReader)

data2 = struct with fields:
 StreamIndex: 1
 Data: [1×1 struct]

Note that although one of the streams has reached end of selection, readNext still returns the data
items from the remaining streams. Similarly, the hasNext function will return true even if one of the
streams in the selection has data available to read.

hasNext(streamReader)

ans = logical
 1

8 Featured Examples

8-24

Read Sensor Messages from IDC file
Create an ibeoFileReader object, ibeoReader, to read the message headers from an IDC file.
Replace the placeholder argument sample_data.idc with the name of your IDC file as
sample_data.idc file is not provided with the toolbox.

ibeoReader = ibeoFileReader('sample_data.idc')

ibeoReader =

 ibeoFileReader with properties:

 FileName: "C:/Documents/MATLAB/ibeo_data/sample_data.idc"
 StartTime: 15-Mar-2020 11:21:04.999434999
 EndTime: 15-Mar-2020 11:25:35.030095000
 Duration: 00:04:30
 FileSummary: CAN 53 msgs [0x1002]
 scan 53 msgs [0x2205]
 object 106 msgs [0x2281]
 image 53 msgs [0x2403]
 vehicleState 53 msgs [0x2808]
 measurementList 53 msgs [0x2821]
 pointCloudPlane 53 msgs [0x7510]
 unsupported 53 msgs [0x6120]
 unsupported 53 msgs [0x6970]

Create two ibeoMessageReader objects, imgReader and objReader, to read all image and object
detection messages in the first 2 minutes, respectively, by using the select function with
appropriate message type and time range values.

timeRange = [0 minutes(2)];
imgReader = select(ibeoReader,'image',timeRange);
objReader = select(ibeoReader,'object',timeRange);

Read the first 10 images and all object detection messages in the first 2 minutes, by using the
readMessages function on the respective ibeoMessageReader objects with appropriate indices
and timeRange arguments. Reading object detection messages returns both online objects and
postprocessed objects along with their metadata.
imgs = readMessages(imgReader,1:10);
[rawObjs,procObjs,rawMetadata,procMetadata] = readMessages(objReader);

 Read Sensor Messages from IDC file

8-25

Automate Ground Truth Labeling Across Multiple Signals
This example shows how to automate the labeling of multiple signals simultaneously by using the
Ground Truth Labeler app and the AutomationAlgorithm interface. The automation algorithm
used in this example estimates the label positions of vehicles in point cloud frames based on the label
positions of vehicles in corresponding image frames using camera-to-lidar calibration parameters.

The Ground Truth Labeler App

Good ground truth data is crucial for developing driving algorithms and evaluating their
performances. However, creating a rich and diverse set of annotated driving data requires significant
time and resources. The Ground Truth Labeler app makes this process efficient. You can use this app
as a fully manual annotation tool to mark lane boundaries, vehicle bounding boxes, and other objects
of interest for a vision system. However, manual labeling requires a significant amount of time and
resources. This app also provides a framework to create algorithms to extend and automate the
labeling process. You can create and use the algorithms to quickly label entire data sets, and then
follow it up with a more efficient, shorter manual verification step. You can also edit the results of the
automation step to account for challenging scenarios that the automation algorithm might have
missed.

This example describes creating an algorithm that can be used in the Ground Truth Labeler app to
automatically detect vehicles in the image and estimate their positions in the corresponding point
cloud using camera-to-lidar calibration parameters.

Detect Vehicles Using ACF Vehicle Detector

To detect the vehicles in images, the automation algorithm uses a pretrained aggregate channel
features (ACF) vehicle detector, vehicleDetectorACF. Preview how the algorithm works by loading
a sample image and the ACF vehicle detector, detecting vehicles in the image, and inserting 2-D
bounding boxes around the vehicles in the image.

% Load the data from the MAT file and extract the image.
data = load(fullfile(toolboxdir('lidar'),'lidardata','lcc','bboxGT.mat'));
I = data.im;

% Load the pretrained detector for vehicles.
detector = vehicleDetectorACF('front-rear-view');

% Detect vehicles and show the bounding boxes.
[imBboxes,~] = detect(detector, I);
Iout = insertShape(I,'rectangle',imBboxes,'LineWidth',4);
figure
imshow(Iout)
title('Detected Vehicles')

8 Featured Examples

8-26

If you have camera calibration information available, you can improve this detector by filtering out
false positives from the detections. The “Visual Perception Using Monocular Camera” on page 8-107
example describes how to create a pretrained vehicle detector and configure it to detect vehicle
bounding boxes using the calibrated monocular camera configuration.

Estimate 3-D Bounding Box for Vehicles in Point Cloud

To estimate vehicles in the point cloud frames from the corresponding detected vehicles in the image
frames, the algorithm uses the bboxCameraToLidar (Lidar Toolbox) function. This function uses
lidar-to-camera calibration parameters to estimate 3-D bounding boxes based on 2-D bounding boxes.
To estimate the bounding boxes, the function takes as input the intrinsic camera parameters,
cameraIntrinsics, and a camera-to-lidar rigid transformation, rigid3d.

Preview how the algorithm works by loading the point cloud corresponding to the image, estimating
the 3-D bounding boxes of vehicles in the point cloud, and inserting the bounding boxes around the
vehicles in the point cloud.

% Extract the point cloud.
ptCloud = data.pc;

% Extract the intrinsic camera parameters.
intrinsics = data.cameraParams;

 Automate Ground Truth Labeling Across Multiple Signals

8-27

% Extract the camera-to-lidar rigid transformation.
tform = data.camToLidar;

% Estimate the bounding boxes in the point cloud.
pcBboxes = bboxCameraToLidar(imBboxes, ptCloud, intrinsics, tform);

% Display bounding boxes in the point cloud.
figure
ax = pcshow(ptCloud.Location);
showShape('cuboid',pcBboxes,'Parent',ax,'Opacity',0.1,'Color',[0.06 1.00 1.00],'LineWidth',0.5)
hold on
zoom(ax,1.5)
title('Estimated Bounding Box in Point Cloud')
hold off

Prepare Multisignal Vehicle Detector Automation Class

To incorporate the multisignal vehicle detector algorithm into the automation workflow of the Ground
Truth Labeler app, construct a class that inherits from the abstract base class,
vision.labeler.AutomationAlgorithm. This base class defines properties and signatures for
methods that the app uses for configuring and running the custom algorithm. The Ground Truth
Labeler app provides a convenient way to obtain an initial automation class template. For details, see
“Create Automation Algorithm for Labeling”. The MultiSignalVehicleDetector class is based on this
template and provides you with a ready-to-use automation class for vehicle detection in image and
vehicle bounding box estimation in the point cloud. The comments of the class outline the basic steps
needed to implement each API call.

8 Featured Examples

8-28

Step 1 contains properties that define the name and description of the algorithm and the directions
for using the algorithm.

 % --
 % Step 1: Define the properties required for describing the algorithm,
 % which include Name, Description, and UserDirections.
 properties(Constant)

 % Name Algorithm name
 % Character vector specifying the name of the algorithm.
 Name = 'Multisignal Vehicle Detector';

 % Description Algorithm description
 % Character vector specifying the short description of the algorithm.
 Description = ['Detect vehicles using ACF Vehicle Detector in ' ...
 'image and estimate them in point cloud.'];

 % UserDirections Algorithm usage directions
 % Cell array of character vectors specifying directions for
 % algorithm users to follow.
 UserDirections = {['Select one of the rectangle ROI labels to ' ...
 'label objects as Vehicle.'], ...
 ['Click Settings and on the Lidar Camera Calibration ' ...
 'Parameters tab, load the cameraIntrinsics and rigid3d ' ...
 'objects from the workspace.'], ...
 ['Specify additional parameters under Settings.'], ...
 ['Click Run to detect vehicles in each image and point cloud.'], ...
 ['Review automated labels manually. You can modify, delete ', ...
 'and add new labels.'], ...
 ['If you are not satisfied with the results, click Undo ' ...
 'Run. Click Settings to modify algorithm settings and click ', ...
 'Run again.'] ...
 ['When you are satisfied with the results, click Accept and ', ...
 'return to manual labeling.']};
 end

Step 2 contains the custom properties for the core algorithm.

 % ---
 % Step 2: Define properties to be used to manage algorithm execution.
 properties

 % SelectedLabelName Selected label name
 % Name of the selected label. Vehicles detected by the algorithm will
 % be assigned this variable name.
 SelectedLabelName

 % Detector Detector
 % Pretrained vehicle detector, an object of class
 % acfObjectDetector.
 Detector

 % VehicleModelName Vehicle detector model name
 % Name of pretrained vehicle detector model.
 VehicleModelName = 'full-view';

 % OverlapThreshold Overlap threshold
 % Threshold value used to eliminate overlapping bounding boxes

 Automate Ground Truth Labeling Across Multiple Signals

8-29

 % around the reference bounding box, between 0 and 1. The
 % bounding box overlap ratio denominator, 'RatioType', is set to
 % 'Min'.
 OverlapThreshold = 0.45;

 % ScoreThreshold Classification score threshold
 % Threshold value used to reject detections with low detection
 % scores.
 ScoreThreshold = 20;

 % ConfigureDetector Detection configuration flag
 % Boolean value that determines whether the detector is
 % configured using monoCamera sensor.
 ConfigureDetector = false;

 % SensorObj monoCamera sensor
 % Monocular camera sensor object, monoCamera, used to configure
 % the detector. A configured detector runs faster and can
 % potentially result in better detections.
 SensorObj = [];

 % SensorStr monoCamera sensor variable name
 % Character vector specifying the monoCamera object variable name
 % used to configure the detector.
 SensorStr = '';

 % VehicleWidth Vehicle width
 % Vehicle width used to configure the detector, specified as
 % [minWidth, maxWidth], which describes the approximate width of the
 % object in world units.
 VehicleWidth = [1.5 2.5];

 % VehicleLength Vehicle length
 % Vehicle length used to configure the detector, specified as
 % [minLength, maxLength] vector, which describes the approximate
 % length of the object in world units.
 VehicleLength = [];

 % IntrinsicsObj Camera intrinsics
 % cameraIntrinsics object, which represents a projective
 % transformation from camera to image coordinates.
 IntrinsicsObj = [];

 % IntrinsicsStr cameraIntrinsics variable name
 % cameraIntrinsics object variable name.
 IntrinsicsStr = '';

 % ExtrinsicsObj Camera-to-lidar rigid transformation
 % rigid3d object representing the 3-D rigid geometric transformation
 % from the camera to the lidar.
 ExtrinsicsObj = [];

 % ExtrinsicsStr rigid3d variable name
 % Camera-to-lidar rigid3d object variable name.
 ExtrinsicsStr = '';

 % ClusterThreshold Clustering threshold for two adjacent points
 % Threshold specifying the maximum distance between two adjacent points

8 Featured Examples

8-30

 % for those points to belong to the same cluster.
 ClusterThreshold = 1;

 end

Step 3 deals with function definitions.

The first function, supportsMultisignalAutomation, checks that the algorithm supports
multiple signals. For the multisignal vehicle detector, you load both image and point cloud signals, so
success is set to true.

 function success = supportsMultisignalAutomation(~)
 % Supports MultiSignal.
 success = true;
 end

The next function, checkSignalType, checks that only signals of the appropriate type are
supported for automation. The multisignal vehicle detector must support signals of type Image and
PointCloud, so this version of the function checks for both signal types.

 function isValid = checkSignalType(signalType)
 % Only video/image sequence and point cloud signal data
 % is valid.
 isValid = any(signalType == vision.labeler.loading.SignalType.Image) && ...
 any(signalType == vision.labeler.loading.SignalType.PointCloud);
 end

The next function, checkLabelDefinition, checks that only labels of the appropriate type are
enabled for automation. For vehicle detection in image and point cloud signals, you check that only
labels of type Rectangle/Cuboid are enabled, so this version of the function checks the Type of the
labels.

 function isValid = checkLabelDefinition(~, labelDef)
 % Only Rectangular/Cuboid ROI Label definitions are valid for the
 % Vehicle Detector.
 isValid = (labelDef.Type == labelType.Cuboid || labelDef.Type == labelType.Rectangle);
 end

The next function, checkSetup, checks that only one ROI label definition is selected to automate.

 function isReady = checkSetup(algObj, ~)
 % Is there one selected ROI Label definition to automate?
 isReady = ~isempty(algObj.SelectedLabelDefinitions);
 end

Next, the settingsDialog function obtains and modifies the properties defined in step 2. This API
call lets you create a dialog box that opens when a user clicks the Settings button in the Automate
tab. To create this dialog box, use the dialog function to create a modal window to ask the user to
specify the cameraIntrinsics object and rigid3d object. The
multiSignalVehicleDetectorSettings method contains the code for settings and also adds
input validation steps.

 function settingsDialog(algObj)
 % Invoke dialog box to input camera intrinsics and
 % camera-to-lidar rigid transformation and options for choosing
 % a pretrained model, overlap threshold, detection score

 Automate Ground Truth Labeling Across Multiple Signals

8-31

 % threshold, and clustering threshold. Optionally, input a
 % calibrated monoCamera sensor to configure the detector.
 multiSignalVehicleDetectorSettings(algObj);
 end

Step 4 specifies the execution functions. The initialize function populates the initial algorithm
state based on the existing labels in the app. In the MultiSignalVehicleDetector class, the
initialize function has been customized to store the name of the selected label definition and to
load the pretrained ACF vehicle detector and save it to the Detector property.

 function initialize(algObj, ~)

 % Store the name of the selected label definition. Use this
 % name to label the detected vehicles.
 algObj.SelectedLabelName = algObj.SelectedLabelDefinitions.Name;

 % Initialize the vehicle detector with a pretrained model.
 algObj.Detector = vehicleDetectorACF(algObj.VehicleModelName);
 end

Next, the run function defines the core vehicle detection algorithm of this automation class. The run
function is called for each frame of the image and point cloud sequence and expects the automation
class to return a set of labels. The run function in MultiSignalVehicleDetector contains the
logic described previously for detecting 2-D vehicle bounding boxes in image frames and estimating
3-D vehicle bounding boxes in point cloud frames.

 function autoLabels = run(algObj, I)
 % autoLabels a cell array of length the same as the number of
 % signals.
 autoLabels = cell(size(I,1),1);

 % Get the index of Image and PointCloud frames.
 if isa(I{1,1},"pointCloud")
 pcIdx = 1;
 imIdx = 2;
 else
 imIdx = 1;
 pcIdx = 2;
 end

 % Detect bounding boxes on image frame.
 selectedBboxes = detectVehicle(algObj, I{imIdx,1});

 % Estimate bounding boxes on point cloud frame.
 if ~isempty(selectedBboxes)

 % Store labels from the image.
 imageLabels = struct('Type', labelType.Rectangle, ...
 'Name', algObj.SelectedLabelDefinitions.Name, ...
 'Position', selectedBboxes);
 autoLabels{imIdx, 1} = imageLabels;

 % Remove the ground plane for the point cloud.
 groundPtsIndex = segmentGroundFromLidarData(I{pcIdx,1}, ...
 "ElevationAngleDelta", 15, "InitialElevationAngle", 10);

 nonGroundPts = select(I{pcIdx,1}, ~groundPtsIndex);

8 Featured Examples

8-32

 % Predict 3-D bounding boxes.
 pcBboxes = bboxCameraToLidar(selectedBboxes, nonGroundPts, algObj.IntrinsicsObj, ...
 algObj.ExtrinsicsObj, "ClusterThreshold", algObj.ClusterThreshold);

 % Store labels from the point cloud.
 if(~isempty(pcBboxes))
 pcLabels = struct('Type', labelType.Cuboid,...
 'Name', algObj.SelectedLabelDefinitions.Name,...
 'Position', pcBboxes);
 autoLabels{pcIdx, 1} = pcLabels;
 else
 autoLabels{pcIdx, 1} = {};
 end
 else
 autoLabels{imIdx, 1} = {};
 autoLabels{pcIdx, 1} = {};
 end
 end

Finally, the terminate function handles any cleanup or tear-down required after the automation is
done. This algorithm does not require any cleanup, so the function is empty.

 function terminate(~)
 end

Use Multisignal Vehicle Detector Automation Class in App

The properties and methods described in the previous section are implemented in the
MultiSignalVehicleDetector automation algorithm class file. To use this class in the app:

Create the folder structure +vision/+labeler required under the current folder, and copy the
automation class into it.

 mkdir('+vision/+labeler');
 copyfile(fullfile(matlabroot,'examples','driving','main','MultiSignalVehicleDetector.m'), ...
 '+vision/+labeler');

Download the point cloud sequence (PCD) and image sequence. For illustration purposes, this
example uses WPI lidar data collected on a highway from an Ouster OS1 lidar sensor and WPI image
data from a front-facing camera mounted on an ego vehicle. Execute the following code block to
download and save lidar and image data in a temporary folder. Depending on your Internet
connection, the download process can take some time. The code suspends MATLAB® execution until
the download process is complete. Alternatively, you can download the data set to your local disk
using your web browser and extract the file.

Download the image sequence to a temporary location.

 imageURL = 'https://www.mathworks.com/supportfiles/lidar/data/WPI_ImageData.tar.gz';
 imageDataFolder = fullfile(tempdir, 'WPI_ImageData',filesep);
 imageDataTarFile = imageDataFolder + "WPI_ImageData.tar.gz";

 if ~exist(imageDataFolder,'dir')
 mkdir(imageDataFolder)
 end

 if ~exist(imageDataTarFile, 'file')

 Automate Ground Truth Labeling Across Multiple Signals

8-33

 disp('Downloading WPI Image driving data (225 MB)...');
 websave(imageDataTarFile, imageURL);
 untar(imageDataTarFile, imageDataFolder);
 end

 % Check if image tar.gz file is downloaded, but not uncompressed.
 if ~exist(fullfile(imageDataFolder,'imageData'),'dir')
 untar(imageDataTarFile, imageDataFolder)
 end

For illustration purposes, this example uses only a subset of the WPI image sequence, from frames
920–940. To load the subset of images into the app, copy the images into a folder.

 % Create new folder and copy the images.
 imDataFolder = imageDataFolder + "imageDataSequence";
 if ~exist(imDataFolder,'dir')
 mkdir(imDataFolder);
 end

 for i = 920 : 940
 filename = strcat(num2str(i,'%06.0f'),'.jpg');
 source = fullfile(imageDataFolder,'imageData',filename);
 destination = fullfile(imageDataFolder,'imageDataSequence',filename);
 copyfile(source,destination)
 end

Download the point cloud sequence to a temporary location.

 lidarURL = 'https://www.mathworks.com/supportfiles/lidar/data/WPI_LidarData.tar.gz';
 lidarDataFolder = fullfile(tempdir,'WPI_LidarData',filesep);
 lidarDataTarFile = lidarDataFolder + "WPI_LidarData.tar.gz";

 if ~exist(lidarDataFolder)
 mkdir(lidarDataFolder)
 end

 if ~exist(lidarDataTarFile, 'file')
 disp('Downloading WPI Lidar driving data (760 MB)...');
 websave(lidarDataTarFile,lidarURL);
 untar(lidarDataTarFile,lidarDataFolder);
 end

 % Check if lidar tar.gz file is downloaded, but not uncompressed.
 if ~exist(fullfile(lidarDataFolder,'WPI_LidarData.mat'),'file')
 untar(lidarDataTarFile,lidarDataFolder);
 end

The Ground Truth Labeler app supports the loading of point cloud sequences composed of PCD or
PLY files. Save the downloaded point cloud data to PCD files. For illustration purposes, in this
example, you save only a subset of the WPI point cloud data, from frames 920–940.

 % Load downloaded lidar data into the workspace.
 load(fullfile(lidarDataFolder,'WPI_LidarData.mat'),'lidarData');
 lidarData = reshape(lidarData,size(lidarData,2),1);

 % Create new folder and write lidar data to PCD files.
 pcdDataFolder = lidarDataFolder + "lidarDataSequence";
 if ~exist(pcdDataFolder, 'dir')

8 Featured Examples

8-34

 mkdir(fullfile(lidarDataFolder,'lidarDataSequence'));
 end

 disp('Saving WPI Lidar driving data to PCD files ...');
 for i = 920:940
 filename = strcat(fullfile(lidarDataFolder,'lidarDataSequence',filesep), ...
 num2str(i,'%06.0f'),'.pcd');
 pcwrite(lidarData{i},filename);
 end

Calibration information is expected to be in the form of intrinsic and extrinsic (rigid transformation)
parameters as mentioned in “Lidar and Camera Calibration” (Lidar Toolbox). Load camera intrinsics,
which are stored in a cameraIntrinsics object, and the camera-to-lidar rigid transformation,
which is stored in a rigid3d object, to the workspace. The WPI data in this example is calibrated
and the intrinsic and extrinsic (camera-to-lidar transformation) parameters are saved in the MAT file.

 data = load(fullfile(toolboxdir('lidar'),'lidardata','lcc','bboxGT.mat'));
 cameraParams = data.cameraParams;
 camToLidar = data.camToLidar;

Open the Ground Truth Labeler app.

 imageDir = fullfile(tempdir, 'WPI_ImageData', 'imageDataSequence');
 pointCloudDir = fullfile(tempdir, 'WPI_LidarData', 'lidarDataSequence');

 groundTruthLabeler

On the app toolstrip, select Import and then Add Signals. In the Add/Remove Signal window, load
the image sequence.

1 Set Source Type to Image Sequence.
2 Browse for the image sequence folder, which is at the location specified by the imageDir

variable.
3 Use the default timestamps and click Add Source. The image sequence folder,

imageDataSequence, is added to the signal source table.

 Automate Ground Truth Labeling Across Multiple Signals

8-35

On the app toolstrip, select Import and then Add Signals. In the Add/Remove Signal window, load
the point cloud sequence.

1 Set Source Type to Point Cloud Sequence.
2 Browse for the point cloud sequence folder, which is at the location specified by the

pointCloudDir variable.
3 Use the default timestamps and click Add Source. The point cloud sequence folder,

lidarDataSequence, is added to the signal source table.

8 Featured Examples

8-36

Click OK to import the signals into the app. To view the signals side by side, on the Label tab, click
Display Grid, and display the signals in a 1-by-2 grid.

 Automate Ground Truth Labeling Across Multiple Signals

8-37

In the ROI Labels tab in the left pane, click Label, and define an ROI label with a name of Vehicle
and a type of Rectangle/Cuboid, as shown here. Optionally, select a color, and then click OK.

8 Featured Examples

8-38

Select both signals for automation. On the Label tab, select Algorithm and then Select Signals, and
select both signals. Click OK.

Under Select Algorithm, select Refresh list. Then, select Algorithm and then Multisignal
Vehicle Detector. If you do not see this option, verify that the current working folder has a folder
called +vision/+labeler, with a file named MultiSignalVehicleDetector.m in it.

 Automate Ground Truth Labeling Across Multiple Signals

8-39

Click Automate. The app opens an automation session for the selected signals and displays
directions for using the algorithm.

8 Featured Examples

8-40

Load the intrinsic camera parameters into the automation session.

1 On the Automate tab, click Settings.
2 On the Lidar-to-Camera Calibration Parameters tab, click Import camera intrinsics from

workspace.
3 Import the intrinsic camera parameters, cameraParams, from the MATLAB workspace. Click

OK.

 Automate Ground Truth Labeling Across Multiple Signals

8-41

Load the camera-to-lidar transformation into the automation session.

1 On the Lidar-to-Camera Calibration parameters tab, click Import camera-to-lidar
transformation from workspace.

2 Import the transformation, camToLidar, from the MATLAB workspace. Click OK.

8 Featured Examples

8-42

Modify additional vehicle detector settings as needed and click OK. Then, on the Automate tab, click
Run. The created algorithm executes on each frame of the sequence and detects vehicles by using
the Vehicle label type. After the app completes the automation run, use the slider or arrow keys to
scroll through the sequence to locate frames where the automation algorithm labeled incorrectly.
Manually tweak the results by adjusting the detected bounding boxes or adding new bounding boxes.

 Automate Ground Truth Labeling Across Multiple Signals

8-43

Once you are satisfied with the detected vehicle bounding boxes for the entire sequence, click
Accept. You can then continue to manually adjust labels or export the labeled ground truth to the
MATLAB workspace.

You can use the concepts described in this example to create your own custom multisignal
automation algorithms and extend the functionality of the app.

See Also
Apps
Ground Truth Labeler

Functions
bboxCameraToLidar | bboxLidarToCamera | vehicleDetectorACF

Objects

Classes
vision.labeler.AutomationAlgorithm

Related Examples
• “Get Started with the Ground Truth Labeler” on page 2-2
• “Automate Ground Truth Labeling of Lane Boundaries” on page 8-46

8 Featured Examples

8-44

• “Automate Ground Truth Labeling for Semantic Segmentation” on page 8-58
• “Create Automation Algorithm for Labeling”
• “Visual Perception Using Monocular Camera” on page 8-107
• “Lidar and Camera Calibration” (Lidar Toolbox)

 Automate Ground Truth Labeling Across Multiple Signals

8-45

Automate Ground Truth Labeling of Lane Boundaries
This example shows how to develop an algorithm for the automated marking of lane boundaries in the
Ground Truth Labeler app.

The Ground Truth Labeler App

Good ground truth data is crucial for developing driving algorithms and evaluating their
performances. However, creating a rich and diverse set of annotated driving data requires significant
time and resources. The Ground Truth Labeler app makes this process efficient. You can use this app
as a fully manual annotation tool to mark lane boundaries, vehicle bounding boxes, and other objects
of interest for a vision system. However, manual labeling requires a significant amount of time and
resources. This app also provides a framework to create algorithms to extend and automate the
labeling process. You can use the algorithms you create to quickly label entire data sets, and then
follow it up with a more efficient, shorter manual verification step. You can also edit the results of the
automation step to account for challenging scenarios that the automation algorithm might have
missed. This example describes how to insert a lane detection algorithm into the automation
workflow of the app.

Create a Lane Detection Algorithm

First, create a lane detection algorithm. The “Visual Perception Using Monocular Camera” on page 8-
107 example describes the process of detecting lane boundaries, and the helperMonoSensor class
packages that algorithm into a single, reusable class. Try out the algorithm on a single video frame to
detect the left ego lane boundary.

configData = load('birdsEyeConfig');
sensor = configData.birdsEyeConfig.Sensor;
monoSensor = helperMonoSensor(sensor);
I = imread('road.png');

sensorOut = processFrame(monoSensor, I);
lb = sensorOut.leftEgoBoundary;
figure
IwithLane = insertLaneBoundary(I, lb, sensor, [3 30], 'Color', 'blue');
imshow(IwithLane);
title('Detected Left Lane Boundary Model');

8 Featured Examples

8-46

Mark Lane Boundary Points

The lane detected in the previous step is a model and must be converted to a set of discrete points.
These points are similar to what a user might manually place on the image. In the camera view, parts
of the lane boundary closer to the vehicle (lower part of the camera image) will span more pixels than
the further parts. Consequently, a user would place more points with higher confidence in the lower
parts of the camera image. To replicate this behavior, determine the lane boundary locations from the
boundary model more densely at points closer to the vehicle.

ROI = [3 30];
xPoints = [3 3.5 4 5 7 12 30]'; % More dense closer to the vehicle
yPoints = lb.computeBoundaryModel(xPoints);

% Find corresponding image locations.
boundaryPointsOnImage = vehicleToImage(sensor, [xPoints, yPoints]);

imshow(I)
hold on
plot(boundaryPointsOnImage(:,1), boundaryPointsOnImage(:,2),...
 'o',...
 'MarkerEdgeColor','b',...
 'MarkerFaceColor','b',...
 'MarkerSize',10)

 Automate Ground Truth Labeling of Lane Boundaries

8-47

title('Automatically Marked Lane Boundary Points');
hold off

Prepare the Lane Detection Automation Class

To incorporate this lane detection algorithm into the automation workflow of the app, construct a
class that inherits from the abstract base class vision.labeler.AutomationAlgorithm. This
base class defines properties and signatures for methods that the app uses for configuring and
running the custom algorithm. The Ground Truth Labeler app provides a convenient way to obtain an
initial automation class template. For details, see “Create Automation Algorithm for Labeling”. The
AutoLaneMarking class is based off of this template and provides you with a ready-to-use
automation class for lane detection. The comments of the class outline the basic steps needed to
implement each API call.

Step 1 contains properties that define the name and description of the algorithm, and the directions
for using the algorithm.

 %--
 % Step 1: Define required properties describing the algorithm. This
 % includes Name, Description, and UserDirections.
 properties(Constant)

8 Featured Examples

8-48

 % Name: Give a name for your algorithm.
 Name = 'Lane Detector';

 % Description: Provide a one-line description for your algorithm.
 Description = 'Automatically detect lane-like features';

 % UserDirections: Provide a set of directions that are displayed
 % when this algorithm is invoked. The directions
 % are to be provided as a cell array of character
 % vectors, with each element of the cell array
 % representing a step in the list of directions.
 UserDirections = {...
 'Load a MonoCamera configuration object from the workspace using the settings panel',...
 'Specify additional parameters in the settings panel',...
 'Run the algorithm',...
 'Manually inspect and modify results if needed'};
 end

Step 2 contains the custom properties needed for the core algorithm. The necessary properties were
determined from the lane detection and lane point creation section above.

 %---
 % Step 2: Define properties to be used during the algorithm. These are
 % user-defined properties that can be defined to manage algorithm
 % execution.
 properties
 %MonoCamera
 % The monoCamera object associated with this video
 MonoCamera = [];
 %MonoCameraVarname
 % The workspace variable name of the monoCamera object
 MonoCameraVarname = '';
 %BirdsEyeConfig
 % The birdsEyeView object needed to create the bird's-eye view
 BirdsEyeConfig = [];
 %MaxNumLanes
 % The maximum number of lanes the algorithm tries to annotate
 MaxNumLanes = 2;
 %ROI
 % The region of interest around the vehicle used to search for
 % lanes
 ROI = [3, 30, -3, 3];
 %LaneMaskSensitivity
 % The sensitivity parameter used in the segmentLaneMarkerRidge function
 LaneMaskSensitivity = 0.25;
 %LaneBoundaryWidth
 % The lane boundary width, used in findParabolicLaneBoundaries
 LaneBoundaryWidth = 0.6;
 %XPoints
 % The x-axis points along which to mark the lane boundaries
 XPoints = [3 3.5 4 4.5 5 6 7 10 30];
 end

Step 3 deals with function definitions. The first function, checkLabelDefinition, ensures that only
labels of the appropriate type are enabled for automation. For lane detection, you need to ensure that
only labels of type Line are enabled, so this version of the function checks the Type of the labels:

 function TF = checkLabelDefinition(~, labelDef)
 % Lane detection only works with Line type labels

 Automate Ground Truth Labeling of Lane Boundaries

8-49

 TF = labelDef.Type == labelType.Line;
 end

The next function is checkSetup. Note that this algorithm requires a monoCamera sensor
configuration to be available. All other properties have defined reasonable defaults.

 function TF = checkSetup(algObj, ~)
 % This is the only required input
 TF = ~isempty(algObj.MonoCamera);
 end

Next, the settingsDialog function obtains and modifies the properties defined in Step 2. This API
call lets you create a dialog box that opens when a user clicks the Settings button in the Automate
tab. To create this dialog box, use the inputdlg function to quickly create a simple modal window to
ask a user to specify the monoCamera object. The following snippet of code outlines the basic syntax.
The full AutoLaneMarking code extends this logic and also adds input validation steps.

 % Describe the inputs
 prompt = {...
 'Enter the MonoCamera variable name',...
 'Maximum number of Lanes',...
 };
 defaultAnswer = {...
 '',...
 num2str(2),...
 };

 % Create an input dialog
 name = 'Settings for lane detection';
 numLines = 1;
 options.Resize = 'on';
 options.WindowStyle = 'normal';
 options.Interpreter = 'none';
 answer = inputdlg(prompt,name,numLines,defaultAnswer,options);

 % Obtain the inputs
 monoCameraVarname = answer{1};
 maxNumberOfLanes = answer{2};

Step 4 specifies the execution functions. Some automation algorithms need to implement an
initialize routine to populate the initial algorithm state based on the existing labels in the app.
This lane detection algorithm works on each frame independently, so the default version of the
template has been trimmed to take no action.

 function initialize(~, ~, ~)
 end

Next, the run function defines the core lane detection algorithm of this automation class. run gets
called for each video frame, and expects the automation class to return a set of labels. The run
function in AutoLaneMarking contains the logic introduced previously for the lane detection and
conversion to points. Code from helperMonoSensor has also been folded in for a more compact
reference.

 function autoLabels = run(algObj, I)
 Ig = im2gray(I);
 birdsEyeViewImage = transformImage(algObj.BirdsEyeConfig, Ig);
 birdsEyeViewBW = segmentLaneMarkerRidge(birdsEyeViewImage, ...

8 Featured Examples

8-50

 algObj.BirdsEyeConfig, algObj.LaneBoundaryWidth, ...
 'Sensitivity', algObj.LaneMaskSensitivity);

 % Obtain lane candidate points in world coordinates
 [imageX, imageY] = find(birdsEyeViewBW);
 boundaryPointsxy = imageToVehicle(algObj.BirdsEyeConfig, [imageY, imageX]);

 % Fit requested number of boundaries to it
 lbs = findParabolicLaneBoundaries(...
 boundaryPointsxy,algObj.LaneBoundaryWidth, ...
 'MaxNumBoundaries',algObj.MaxNumLanes);
 numDetectedLanes = numel(lbs);

 % Convert the model to discrete set of points at the specified
 % x coordinates
 boundaryPoints = cell(1,numDetectedLanes);
 xPoints = algObj.XPoints';
 for ind = 1:numel(lbs)
 yPoints = lbs(ind).computeBoundaryModel(xPoints);
 boundaryPoints{ind} = vehicleToImage(algObj.MonoCamera, [xPoints, yPoints]);
 end

 % Package up the results in a table
 autoLabels = table(...
 boundaryPoints',...
 repmat(labelType.Line, [numDetectedLanes,1]),...
 repmat(algObj.SelectedLabelDefinitions.Name, [numDetectedLanes,1]));
 autoLabels.Properties.VariableNames = {'Position','Type','Name'};
 end

Finally, the terminate function handles any cleanup or tear-down required after the automation is
done. This algorithm does not require any cleanup, so the function is empty.

 function terminate(~)
 end

Use the AutoLaneMarking Automation Class in the App

The packaged version of the lane detection algorithm is now ready for use in the AutoLaneMarking
class. To use this class in the app:

• Create the folder structure required under the current folder, and copy the automation class into
it.

 mkdir('+vision/+labeler');
 copyfile(fullfile(matlabroot,'toolbox','driving','drivingdemos','AutoLaneMarking.m'),'+vision/+labeler');

• Load the monoCamera information into the workspace.

 configData = load('birdsEyeConfig');
 sensor = configData.birdsEyeConfig.Sensor;

• Open the Ground Truth Labeler app.

 groundTruthLabeler caltech_cordova1.avi

• On the left pane, click the Define new ROI label button and define the ROI line style shown.
Then click OK.

 Automate Ground Truth Labeling of Lane Boundaries

8-51

• Click Algorithm > Select Algorithm > Refresh list.
• Click Algorithm > Auto Lane Detection. If you do not see this option, ensure that the current

working folder has a folder called +vision/+labeler, with a file named AutoLaneMarking.m
in it.

8 Featured Examples

8-52

• Click Automate. A new tab will open, displaying directions for using the algorithm.
• Click Settings, and in the dialog box that opens, enter sensor in the first text box. Modify other

parameters if needed before clicking OK.

 Automate Ground Truth Labeling of Lane Boundaries

8-53

• Click Run. The lane detection algorithm progresses on the video. Notice that the results are not
satisfactory in some of the frames.

• After the run is completed, use the slider or arrow keys to scroll across the video to locate the
frames where the algorithm failed.

8 Featured Examples

8-54

• Manually tweak the results by either moving the lane boundary points or deleting entire
boundaries.

 Automate Ground Truth Labeling of Lane Boundaries

8-55

• Once you are satisfied with the lane boundaries for the entire video, click Accept.

The auto lane detection part of labeling the video is complete. You can proceed with labeling other
objects of interest, save the session, or export the results of this labeling run.

Conclusion

This example showed the steps to incorporate a lane detection algorithm into the Ground Truth
Labeler app. You can extend this concept to other custom algorithms to simplify and extend the
functionality of the app.

See Also
Apps
Ground Truth Labeler

Objects
monoCamera | vision.labeler.AutomationAlgorithm

8 Featured Examples

8-56

More About
• “Create Automation Algorithm for Labeling”
• “Automate Ground Truth Labeling Across Multiple Signals” on page 8-26
• “Automate Ground Truth Labeling for Semantic Segmentation” on page 8-58
• “Automate Attributes of Labeled Objects” on page 8-68

 Automate Ground Truth Labeling of Lane Boundaries

8-57

Automate Ground Truth Labeling for Semantic Segmentation
This example shows how to use a pretrained semantic segmentation algorithm to segment the sky
and road in an image, and use this algorithm to automate ground truth labeling in the Ground Truth
Labeler app.

The Ground Truth Labeler App

Good ground truth data is crucial for developing automated driving algorithms and evaluating their
performance. However, creating and maintaining a diverse and high-quality set of annotated driving
data requires significant effort. The Ground Truth Labeler app makes this process easy and efficient.
This app includes features to annotate objects as rectangles, lines, or pixel labels. Pixel labeling is a
process in which each pixel in an image is assigned a class or category, which can then be used to
train a pixel-level segmentation algorithm. Although you can use the app to manually label all your
data, this process requires a significant amount of time and resources, especially for pixel labeling. As
an alternative, the app also provides a framework to incorporate algorithms to extend and automate
the labeling process. You can use the algorithms you create to automatically label entire data sets,
and then end with a more efficient, shorter manual verification step. You can also edit the results of
the automation step to account for challenging scenarios that the algorithm might have missed.

In this example, you will:

• Use a pretrained segmentation algorithm to segment pixels that belong to the categories 'Road'
and 'Sky'.

• Create an automation algorithm that can be used in the Ground Truth Labeler app to
automatically label road and sky pixels.

This ground truth data can then be used to train a new semantic segmentation network, or retrain an
existing one.

Create a Road and Sky Detection Algorithm

First, create a semantic segmentation algorithm that segments road and sky pixels in an image. The
“Semantic Segmentation Using Deep Learning” example describes how to train a deep learning
network for semantic segmentation. This network has been trained to predict 11 classes of semantic
labels including 'Road' and 'Sky'. The performance of these networks depends on how generalizable
they are. Applying the networks to situations they did not encounter during training can lead to
subpar results. Iteratively introducing custom training data to the learning process can make the
network perform better on similar data sets.

Download a network, which was pretrained on the CamVid dataset [1][2] from the University of
Cambridge.

pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/segnetVGG16CamVid.mat';
pretrainedFolder = fullfile(tempdir,'pretrainedSegNet');
pretrainedSegNet = fullfile(pretrainedFolder,'segnetVGG16CamVid.mat');
if ~exist(pretrainedSegNet,'file')
 if ~exist(pretrainedFolder,'dir')
 mkdir(pretrainedFolder);
 end
 disp('Downloading pretrained SegNet (107 MB)...');
 websave(pretrainedSegNet,pretrainedURL);
end

Downloading pretrained SegNet (107 MB)...

8 Featured Examples

8-58

https://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/

Segment an image and display it.

% Load the semantic segmentation network
data = load(pretrainedSegNet);

% Load a test image from drivingdata
roadSequenceData = fullfile(toolboxdir('driving'), 'drivingdata', 'roadSequence');
I = imread(fullfile(roadSequenceData, 'f00000.png'));

% Run the network on the image
automatedLabels = semanticseg(I, data.net);

% Display the labels overlaid on the image, choosing relevant categories
figure, imshow(labeloverlay(I, automatedLabels, 'IncludedLabels', ["Sky", "Road"]));

The output of the network is represented in MATLAB® as a categorical matrix. The categories listed
include all those that the semantic segmentation network has been trained on, not just the categories
present in the output. This information is also available from the network object itself.

 data.net.Layers(end).ClassNames

% List categories of pixels labeled
categories(automatedLabels)

 Automate Ground Truth Labeling for Semantic Segmentation

8-59

ans = 11×1 cell
 {'Sky' }
 {'Building' }
 {'Pole' }
 {'Road' }
 {'Pavement' }
 {'Tree' }
 {'SignSymbol'}
 {'Fence' }
 {'Car' }
 {'Pedestrian'}
 {'Bicyclist' }

% The blue overlay indicates the 'Sky' category, and the green overlay
% indicates 'Road'.

Review the Pixel Segmentation Automation Class

Incorporate this semantic segmentation algorithm into the automation workflow of the app by
creating a class that inherits from the abstract base class
vision.labeler.AutomationAlgorithm. This base class defines the API that the app uses to
configure and run the algorithm. The Ground Truth Labeler app provides a convenient way to obtain
an initial automation class template. For details, see “Create Automation Algorithm for Labeling”. The
RoadAndSkySegmentation class is based on this template and provides a ready-to-use automation
class for pixel label segmentation.

The first set of properties in the RoadAndSkySegmentation class specify the name of the algorithm,
provide a brief description of it, and give directions for using it.

 properties(Constant)

 %Name
 % Character vector specifying name of algorithm.
 Name = 'RoadAndSkySegmentation'

 %Description
 % Character vector specifying short description of algorithm.
 Description = 'This algorithm uses semanticseg with a pretrained network to annotate roads and sky'

 %UserDirections
 % Cell array of character vectors specifying directions for
 % algorithm users to follow in order to use algorithm.
 UserDirections = {...
 ['Automation algorithms are a way to automate manual labeling ' ...
 'tasks. This AutomationAlgorithm automatically creates pixel ', ...
 'labels for road and sky.'], ...
 ['Review and Modify: Review automated labels over the interval ', ...
 'using playback controls. Modify/delete/add ROIs that were not ' ...
 'satisfactorily automated at this stage. If the results are ' ...
 'satisfactory, click Accept to accept the automated labels.'], ...
 ['Accept/Cancel: If results of automation are satisfactory, ' ...
 'click Accept to accept all automated labels and return to ' ...
 'manual labeling. If results of automation are not ' ...
 'satisfactory, click Cancel to return to manual labeling ' ...
 'without saving automated labels.']};
 end

8 Featured Examples

8-60

The next section of the RoadAndSkySegmentation class specifies the custom properties needed by
the core algorithm. The PretrainedNetwork property holds the pretrained network. The
AllCategories property holds the names of all the categories.

 properties
 % PretrainedNetwork saves the SeriesNetwork object that does the semantic
 % segmentation.
 PretrainedNetwork

 % Categories holds the default 'background', 'road', and 'sky'
 % categorical types.
 AllCategories = {'background'};

 % Store names for 'road' and 'sky'.
 RoadName
 SkyName
 end

checkLabelDefinition, the first method defined in RoadAndSkySegmentation, checks that only
labels of type PixelLabel are enabled for automation. PixelLabel is the only type needed for
semantic segmentation.

 function TF = checkLabelDefinition(~, labelDef)
 isValid = false;

 if (strcmpi(labelDef.Name, 'road') && labelDef.Type == labelType.PixelLabel)
 isValid = true;
 algObj.RoadName = labelDef.Name;
 algObj.AllCategories{end+1} = labelDef.Name;
 elseif (strcmpi(labelDef.Name, 'sky') && labelDef.Type == labelType.PixelLabel)
 isValid = true;
 algObj.SkyName = labelDef.Name;
 algObj.AllCategories{end+1} = labelDef.Name;
 elseif(labelDef.Type == labelType.PixelLabel)
 isValid = true;
 end
 end

The next set of functions control the execution of the algorithm. The
vision.labeler.AutomationAlgorithm class includes an interface that contains methods like
'initialize', 'run', and 'terminate' for setting up and running the automation with ease. The
initialize function populates the initial algorithm state based on the existing labels in the app. In
the RoadAndSkySegmentation class, the initialize function has been customized to load the
pretrained semantic segmentation network from tempdir and save it to the PretrainedNetwork
property.

 function initialize(algObj, ~, ~)

 % Point to tempdir where pretrainedSegNet was downloaded.
 pretrainedFolder = fullfile(tempdir,'pretrainedSegNet');
 pretrainedSegNet = fullfile(pretrainedFolder,'segnetVGG16CamVid.mat');
 data = load(pretrainedSegNet);
 % Store the network in the 'PretrainedNetwork' property of this object.
 algObj.PretrainedNetwork = data.net;
 end

Next, the run function defines the core semantic segmentation algorithm of this automation class.
run is called for each video frame, and expects the automation class to return a set of labels. The run

 Automate Ground Truth Labeling for Semantic Segmentation

8-61

function in RoadAndSkySegmentation contains the logic introduced previously for creating a
categorical matrix of pixel labels corresponding to "Road" and "Sky". This can be extended to any
categories the network is trained on, and is restricted to these two for illustration only.

 function autoLabels = run(algObj, I)
 % Setup categorical matrix with categories including road and
 % sky
 autoLabels = categorical(zeros(size(I,1), size(I,2)),0:2,algObj.AllCategories,'Ordinal',true);

 pixelCat = semanticseg(I, algObj.PretrainedNetwork);
 if ~isempty(pixelCat)
 % Add the selected label at the bounding box position(s)
 autoLabels(pixelCat == "Road") = algObj.RoadName;
 autoLabels(pixelCat == "Sky") = algObj.SkyName;
 end
 end

This algorithm does not require any cleanup, so the terminate function is empty.

Use the Pixel Segmentation Automation Class in the App

The properties and methods described in the previous section have been implemented in the
RoadAndSkySegmentation automation algorithm class file. To use this class in the app:

• Create the folder structure +vision/+labeler required under the current folder, and copy the
automation class into it.

 mkdir('+vision/+labeler');
 copyfile('RoadAndSkySegmentation.m','+vision/+labeler');

• Open the groundTruthLabeler app with custom data to label. For illustration purposes, open
the caltech_cordova1.avi video.

 groundTruthLabeler caltech_cordova1.avi

• On the left pane, click the Define new ROI label button and define two ROI labels with names
Road and Sky, of type Pixel label as shown.

8 Featured Examples

8-62

• Click Algorithm > Select Algorithm > Refresh list.
• Click Algorithm > RoadAndSkySegmentation. If you do not see this option, ensure that the

current working folder has a folder called +vision/+labeler, with a file named
RoadAndSkySegmentation.m in it.

• Click Automate. A new panel opens, displaying directions for using the algorithm.

 Automate Ground Truth Labeling for Semantic Segmentation

8-63

• Click Run. The created algorithm executes on each frame of the video, segmenting "Road" and
"Sky" categories. After the run is completed, use the slider or arrow keys to scroll through the
video and verify the result of the automation algorithm.

8 Featured Examples

8-64

• It is evident that regions outside the camera field of view are incorrectly labeled as "Sky", and
parts of the ego vehicle itself are marked as "Road". These results indicate that the network has
not been previously trained on such data. This workflow allows for making manual corrections to
these results, so that an iterative process of training and labeling (sometimes called active
learning or human in the loop) can be used to further refine the accuracy of the network on
custom data sets. You can manually tweak the results by using the brush tool in the Label Pixels
tab and adding or removing pixel annotations. Other tools like flood fill and smart polygons are
also available in the Label Pixels tab and can be used when appropriate.

 Automate Ground Truth Labeling for Semantic Segmentation

8-65

• Once you are satisfied with the pixel label categories for the entire video, click Accept.

Automation for pixel labeling for the video is complete. You can now proceed with labeling other
objects of interest, save the session, or export the results of this labeling run.

Conclusion

This example showed how to use a pretrained semantic segmentation network to accelerate labeling
of road and sky pixels in the Ground Truth Labeler app using the AutomationAlgorithm interface.

References

1 Brostow, Gabriel J., Jamie Shotton, Julien Fauqueur, and Roberto Cipolla. "Segmentation and
Recognition Using Structure from Motion Point Clouds." ECCV. 2008.

2 Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic Object Classes in Video: A
High-Definition Ground Truth Database." Pattern Recognition Letters. 2008.

See Also
Apps
Ground Truth Labeler

Objects
vision.labeler.AutomationAlgorithm

8 Featured Examples

8-66

More About
• “Semantic Segmentation Using Deep Learning”
• “Create Automation Algorithm for Labeling”
• “Automate Ground Truth Labeling of Lane Boundaries” on page 8-46
• “Automate Ground Truth Labeling Across Multiple Signals” on page 8-26
• “Automate Attributes of Labeled Objects” on page 8-68
• “Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data” (Deep

Learning Toolbox)

 Automate Ground Truth Labeling for Semantic Segmentation

8-67

Automate Attributes of Labeled Objects
This example shows how to develop a vehicle detection and distance estimation algorithm and use it
to automate labeling using the Ground Truth Labeler app. In this example, you will learn how to:

• Develop a computer vision algorithm to detect vehicles in a video, and use the monocular camera
configuration to estimate distances to the detected vehicles.

• Use the AutomationAlgorithm API to create an automation algorithm. See “Create Automation
Algorithm for Labeling” for details. The created automation algorithm can be used with the
Ground Truth Labeler app to automatically label vehicles, along with attributes to store the
estimated distances.

The Ground Truth Labeler App

Good ground truth data is crucial for developing driving algorithms and evaluating their
performances. However, creating a rich and diverse set of annotated driving data requires significant
effort. The Ground Truth Labeler app makes this process efficient. You can use this app as a fully
manual labeling tool to mark vehicle bounding boxes, lane boundaries, and other objects of interest
for an automated driving system. You can also manually specify attributes of the labeled objects.
However, manual labeling requires a significant amount of time and resources. As an alternative, this
app provides a framework for creating algorithms to extend and automate the labeling process. You
can use the algorithms you create to quickly label entire data sets, automatically annotate the labels
with attributes, and then follow it up with a more efficient, shorter manual verification step. You can
also edit the results of the automation step to account for challenging scenarios that the automation
algorithm might have missed.

This example describes how to insert a vehicle detection and distance estimation automation
algorithm into the automation workflow of the app. This example reuses the ACF Vehicle Detection
automation algorithm to first detect vehicles and then automatically estimate the distances of the
detected vehicles from the camera mounted on the ego vehicle. The algorithm then creates a label for
each detected vehicle, with an attribute specifying the distance to the vehicle.

Detect Vehicles from a Monocular Camera

First, create a vehicle detection algorithm. The “Visual Perception Using Monocular Camera” on page
8-107 example describes how to create a pretrained vehicle detector and configure it to detect
vehicle bounding boxes using the calibrated monocular camera configuration. To detect vehicles, try
out the algorithm on a single video frame.

% Read a frame of interest from a video.
vidObj = VideoReader('05_highway_lanechange_25s.mp4');
vidObj.CurrentTime = 0.1;
I = readFrame(vidObj);

% Load the monoCamera object.
data = load('FCWDemoMonoCameraSensor.mat', 'sensor');
sensor = data.sensor;

% Load the pretrained detector for vehicles.
detector = vehicleDetectorACF();

% Width of a common vehicle is between 1.5 to 2.5 meters.
vehicleWidth = [1.5, 2.5];

8 Featured Examples

8-68

% Configure the detector to take into account configuration of the camera
% and expected vehicle width
detector = configureDetectorMonoCamera(detector, sensor, vehicleWidth);

% Detect vehicles and show the bounding boxes.
[bboxes, ~] = detect(detector, I);
Iout = insertShape(I, 'rectangle', bboxes);
figure;
imshow(Iout)
title('Detected Vehicles')

Estimate Distances to Detected Vehicles

Now that vehicles have been detected, estimate distances to the detected vehicles from the camera in
world coordinates. monoCamera provides an imageToVehicle method to convert points from image
coordinates to vehicle coordinates. This can be used to estimate the distance along the ground from
the camera to the detected vehicles. The example specifies the distance as the center point of the
detected vehicle, along the ground directly below it.

% Find the midpoint for each bounding box in image coordinates.
midPtsImg = [bboxes(:,1)+bboxes(:,3)/2 bboxes(:,2)+bboxes(:,4)];
midPtsWorld = imageToVehicle(sensor, midPtsImg);
x = midPtsWorld(:,1);

 Automate Attributes of Labeled Objects

8-69

y = midPtsWorld(:,2);
distance = sqrt(x.^2 + y.^2);

% Display vehicle bounding boxes and annotate them with distance in meters.
distanceStr = cellstr([num2str(distance) repmat(' m',[length(distance) 1])]);
Iout = insertObjectAnnotation(I, 'rectangle', bboxes, distanceStr);
imshow(Iout)
title('Distances of Vehicles from Camera')

Prepare the Vehicle Detection and Distance Estimation Automation Class

Incorporate the vehicle detection and distance estimation automation class into the automation
workflow of the app. See “Create Automation Algorithm for Labeling” for more details. Start with the
existing ACF Vehicle Detection automation algorithm to perform vehicle detection with a calibrated
monocular camera. Then modify the algorithm to perform attribute automation. In this example, use
the distance of the vehicle from the camera as an attribute of the detected vehicle. This section
describes the steps for making changes to the existing ACF Vehicle Detection automation algorithm
class.

Step 1 contains properties that define the name and description of the algorithm, and the directions
for using the algorithm.

8 Featured Examples

8-70

 %--
 % Define algorithm Name, Description, and UserDirections.
 properties(Constant)

 %Name: Algorithm Name
 % Character vector specifying name of algorithm.
 Name = 'Vehicle Detection and Distance Estimation';

 % Description: Provide a one-line description for your algorithm.
 Description = 'Detect vehicles using a pretrained ACF vehicle detector and compute distance of detected vehicles from camera.';

 % UserDirections: Provide a set of directions that are displayed
 % when this algorithm is invoked. The directions
 % are to be provided as a cell array of character
 % vectors, with each element of the cell array
 % representing a step in the list of directions.
 UserDirections = {...
 'Define a rectangle ROI Label to label vehicles.',...
 'For the label definition created, define an Attribute with name Distance, type Numeric Value and default value 0.', ...
 'Run the algorithm',...
 'Manually inspect and modify results if needed'};
 end

Step 2 contains the custom properties needed to support vehicle detection and distance estimation
automation

 %--
 % Vehicle Detector Properties
 %--
 properties
 %SelectedLabelName Selected label name
 % Name of selected label. Vehicles detected by the algorithm will
 % be assigned this variable name.
 SelectedLabelName

 %Detector Detector
 % Pretrained vehicle detector, an object of class
 % acfObjectDetector.
 Detector

 %VehicleModelName Vehicle detector model name
 % Name of pretrained vehicle detector model.
 VehicleModelName = 'full-view';

 %OverlapThreshold Overlap threshold
 % Threshold value used to eliminate overlapping bounding boxes
 % around the reference bounding box, between 0 and 1. The
 % bounding box overlap ratio denominator, 'RatioType' is set to
 % 'Min'
 OverlapThreshold = 0.65;

 %ScoreThreshold Classification Score Threshold
 % Threshold value used to reject detections with low detection
 % scores.
 ScoreThreshold = 30;

 %ConfigureDetector Boolean value to decide on configuring the detector
 % Boolean value which decides if the detector is configured using
 % monoCamera sensor.
 ConfigureDetector = true;

 Automate Attributes of Labeled Objects

8-71

 %SensorObj monoCamera sensor
 % Monocular Camera Sensor object used to configure the detector.
 % A configured detector will run faster and can potentially
 % result in better detections.
 SensorObj = [];

 %SensorStr monoCamera sensor variable name
 % Monocular Camera Sensor object variable name used to configure
 % the detector.
 SensorStr = '';

 %VehicleWidth Vehicle Width
 % Vehicle Width used to configure the detector, specified as
 % [minWidth, maxWidth] describing the approximate width of the
 % object in world units.
 VehicleWidth = [1.5 2.5];

 %VehicleLength Vehicle Length
 % Vehicle Length used to configure the detector, specified as
 % [minLength, maxLength] describing the approximate length of the
 % object in world units.
 VehicleLength = [];
 end

 %--
 % Attribute automation Properties
 %--
 properties (Constant, Access = private)

 % Flag to enable Distance attribute estimation automation
 AutomateDistanceAttribute = true;

 % Supported Distance attribute name.
 % The label must have an attribute with the name specified.
 SupportedDistanceAttribName = 'Distance';
 end

 properties (Access = private)

 % Actual attribute name for distance
 DistanceAttributeName;

 % Flag to check if attribute specified is a valid distance
 % attribute
 HasValidDistanceAttribute = false;
 end

Step 3 initializes properties.

 %--
 % Initialize sensor, detector and other relevant properties.
 function initialize(algObj, ~)

 % Store the name of the selected label definition. Use this
 % name to label the detected vehicles.
 algObj.SelectedLabelName = algObj.SelectedLabelDefinitions.Name;

 % Initialize the vehicle detector with a pretrained model.
 algObj.Detector = vehicleDetectorACF(algObj.VehicleModelName);

8 Featured Examples

8-72

 % Initialize parameters to compute vehicle distance
 if algObj.AutomateDistanceAttribute
 initializeAttributeParams(algObj);
 end
 end

 function initializeAttributeParams(algObj)
 % Initialize properties relevant to attribute automation.

 % The label must have an attribute with name Distance and type
 % Numeric Value.
 hasAttribute = isfield(algObj.ValidLabelDefinitions, 'Attributes') && ...
 isstruct(algObj.ValidLabelDefinitions.Attributes);
 if hasAttribute
 attributeNames = fieldnames(algObj.ValidLabelDefinitions.Attributes);
 idx = find(contains(attributeNames, algObj.SupportedDistanceAttribName));
 if ~isempty(idx)
 algObj.DistanceAttributeName = attributeNames{idx};
 algObj.HasValidDistanceAttribute = validateDistanceType(algObj);
 end
 end
 end

 function tf = validateDistanceType(algObj)
 % Validate the attribute type.

 tf = isfield(algObj.ValidLabelDefinitions.Attributes, algObj.DistanceAttributeName) && ...
 isfield(algObj.ValidLabelDefinitions.Attributes.(algObj.DistanceAttributeName), 'DefaultValue') && ...
 isnumeric(algObj.ValidLabelDefinitions.Attributes.(algObj.DistanceAttributeName).DefaultValue);
 end

Step 4 contains the updated run method to compute the distance of the detected cars and writes the
label and attribute info to the output labels.

 %--
 function autoLabels = run(algObj, I)

 autoLabels = [];

 % Configure the detector.
 if algObj.ConfigureDetector && ~isa(algObj.Detector,'acfObjectDetectorMonoCamera')
 vehicleSize = [algObj.VehicleWidth;algObj.VehicleLength];
 algObj.Detector = configureDetectorMonoCamera(algObj.Detector, algObj.SensorObj, vehicleSize);
 end

 % Detect vehicles using the initialized vehicle detector.
 [bboxes, scores] = detect(algObj.Detector, I,...
 'SelectStrongest', false);

 [selectedBbox, selectedScore] = selectStrongestBbox(bboxes, scores, ...
 'RatioType', 'Min', 'OverlapThreshold', algObj.OverlapThreshold);

 % Reject detections with detection score lower than
 % ScoreThreshold.
 detectionsToKeepIdx = (selectedScore > algObj.ScoreThreshold);
 selectedBbox = selectedBbox(detectionsToKeepIdx,:);

 if ~isempty(selectedBbox)
 % Add automated labels at bounding box locations detected
 % by the vehicle detector, of type Rectangle having name of

 Automate Attributes of Labeled Objects

8-73

 % the selected label.
 autoLabels.Name = algObj.SelectedLabelName;
 autoLabels.Type = labelType.Rectangle;
 autoLabels.Position = selectedBbox;

 if (algObj.AutomateDistanceAttribute && algObj.HasValidDistanceAttribute)
 attribName = algObj.DistanceAttributeName;
 % Attribute value is of type 'Numeric Value'
 autoLabels.Attributes = computeVehicleDistances(algObj, selectedBbox, attribName);
 end
 else
 autoLabels = [];
 end
 end

 function midPts = helperFindBottomMidpoint(bboxes)
 % Find midpoint of bottom edge of the bounding box.

 xBL = bboxes(:,1);
 yBL = bboxes(:,2);

 xM = xBL + bboxes(:,3)/2;
 yM = yBL + + bboxes(:,4);
 midPts = [xM yM];

 end

 function distances= computeDistances(algObj, bboxes)
 % Helper function to compute vehicle distance.

 midPts = helperFindBottomMidpoint(bboxes);
 xy = algObj.SensorObj.imageToVehicle(midPts);
 distances = sqrt(xy(:,1).^2 + xy(:,2).^2);

 end

 function attribS = computeVehicleDistances(algObj, bboxes, attribName)
 % Compute vehicle distance.

 numCars = size(bboxes, 1);
 attribS = repmat(struct(attribName, 0), [numCars, 1]);

 for i=1:numCars
 distanceVal = computeDistances(algObj, bboxes(i,:));
 attribS(i).(attribName) = distanceVal;
 end
 end

Use the Vehicle Detection and Distance Estimation Automation Class in the App

The packaged version of the vehicle distance computation algorithm is available in the
VehicleDetectionAndDistanceEstimation class. To use this class in the app:

• Create the folder structure required under the current folder, and copy the automation class into
it.

 mkdir('+vision/+labeler');
 copyfile(fullfile(matlabroot,'examples','driving','main','VehicleDetectionAndDistanceEstimation.m'),'+vision/+labeler');

8 Featured Examples

8-74

• Load the monoCamera information into the workspace. This camera sensor information is suitable
for the camera used in the video used in this example, 05_highway_lanechange_25s.mp4. If
you load a different video, use the sensor information appropriate for that video.

 load('FCWDemoMonoCameraSensor.mat', 'sensor')

• Open the groundTruthLabeler app.

 groundTruthLabeler 05_highway_lanechange_25s.mp4

• In the ROI Label Definition pane on the left, click Label. Define a label with name Vehicle and
type Rectangle. Optionally, add a label description. Then click OK.

• In the ROI Label Definition pane on the left, click Attribute. Define an attribute with name
Distance, type Numeric Value, and default value 0. Optionally, add an attribute description.
Then click OK.

 Automate Attributes of Labeled Objects

8-75

• Select Algorithm > Select Algorithm > Refresh list.
• Select Algorithm > Vehicle Detection and Distance Estimation. If you do not see this option,

ensure that the current working folder has a folder called +vision/+labeler, with a file named
VehicleDetectionAndDistanceEstimation.m in it.

8 Featured Examples

8-76

• Click Automate. A new tab opens, displaying directions for using the algorithm.
• Click Settings, and in the dialog box that opens, enter sensor in the first text box. Modify other

parameters if needed before clicking OK.

 Automate Attributes of Labeled Objects

8-77

• Click Run. The vehicle detection and distance computation algorithm progresses through the
video. Notice that the results are not satisfactory in some of the frames.

• After the run is completed, use the slider or arrow keys to scroll across the video to locate the
frames where the algorithm failed.

8 Featured Examples

8-78

• Manually tweak the results by either moving the vehicle bounding box or by changing the distance
value. You can also delete the bounding boxes and the associated distance values.

 Automate Attributes of Labeled Objects

8-79

• Once you are satisfied with the vehicle bounding boxes and their distances for the entire video,
click Accept.

The automated vehicle detection and distance attribute labeling on the video is complete. You can
now label other objects of interest and set their attributes, save the session, or export the results of
this labeling run.

Conclusion

This example showed the steps to incorporate a vehicle detection and distance attribute estimation
automation algorithm into the Ground Truth Labeler app. You can extend this concept to other
custom algorithms to extend the functionality of the app.

See Also
Apps
Ground Truth Labeler

Objects
vision.labeler.AutomationAlgorithm | monoCamera

More About
• “Create Automation Algorithm for Labeling”

8 Featured Examples

8-80

• “Use Sublabels and Attributes to Label Ground Truth Data”
• “Automate Ground Truth Labeling Across Multiple Signals” on page 8-26
• “Visual Perception Using Monocular Camera” on page 8-107

 Automate Attributes of Labeled Objects

8-81

Evaluate Lane Boundary Detections Against Ground Truth Data
This example shows how to compare ground truth data against results of a lane boundary detection
algorithm. It also illustrates how this comparison can be used to tune algorithm parameters to get the
best detection results.

Overview

Ground truth data is usually available in image coordinates, whereas boundaries are modeled in the
vehicle coordinate system. Comparing the two involves a coordinate conversion and thus requires
extra care in interpreting the results. Driving decisions are based on distances in the vehicle
coordinate system. Therefore, it is more useful to express and understand accuracy requirements
using physical units in the vehicle coordinates rather than pixel coordinates.

The MonoCameraExample describes the internals of a monocular camera sensor and the process of
modeling lane boundaries. This example shows how to evaluate the accuracy of these models against
manually validated ground truth data. After establishing a comparison framework, the framework is
extended to fine-tune parameters of a boundary detection algorithm for optimal performance.

Load and Prepare Ground Truth Data

You can use the Ground Truth Labeler app to mark and label lane boundaries in a video. These
annotated lane boundaries are represented as sets of points placed along the boundaries of interest.
Having a rich set of manually annotated lane boundaries for various driving scenarios is critical in
evaluating and fine-tuning automatic lane boundary detection algorithms. An example set for the
caltech_cordova1.avi video file is available with the toolbox.

Load predefined left and right ego lane boundaries specified in image coordinates. Each boundary is
represented by a set of M-by-2 numbers representing M pixel locations along that boundary. Each
video frame has at most two such sets representing the left and the right lane.

loaded = load('caltech_cordova1_EgoBoundaries.mat');
sensor = loaded.sensor; % Associated monoCamera object
gtImageBoundaryPoints = loaded.groundTruthData.EgoLaneBoundaries;

% Show a sample of the ground truth at this frame index
frameInd = 36;

% Load the video frame
frameTimeStamp = seconds(loaded.groundTruthData(frameInd,:).Time);
videoReader = VideoReader(loaded.videoName);
videoReader.CurrentTime = frameTimeStamp;
frame = videoReader.readFrame();

% Obtain the left lane points for this frame
boundaryPoints = gtImageBoundaryPoints{frameInd};
leftLanePoints = boundaryPoints{1};

figure
imshow(frame)
hold on
plot(leftLanePoints(:,1), leftLanePoints(:,2),'+','MarkerSize',10,'LineWidth',4);
title('Sample Ground Truth Data for Left Lane Boundary');

8 Featured Examples

8-82

Convert the ground truth points from image coordinates to vehicle coordinates to allow for direct
comparison with boundary models. To perform this conversion, use the imageToVehicle function
with the associated monoCamera object to perform this conversion.

gtVehicleBoundaryPoints = cell(numel(gtImageBoundaryPoints),1);
for frameInd = 1:numel(gtImageBoundaryPoints)
 boundaryPoints = gtImageBoundaryPoints{frameInd};
 if ~isempty(boundaryPoints)
 ptsInVehicle = cell(1, numel(boundaryPoints));
 for cInd = 1:numel(boundaryPoints)
 ptsInVehicle{cInd} = imageToVehicle(sensor, boundaryPoints{cInd});
 end
 gtVehicleBoundaryPoints{frameInd} = ptsInVehicle;
 end
end

Model Lane Boundaries Using a Monocular Sensor

Run a lane boundary modeling algorithm on the sample video to obtain the test data for the
comparison. Here, reuse the helperMonoSensor module introduced in the “Visual Perception Using
Monocular Camera” on page 8-107 example. While processing the video, an additional step is needed
to return the detected boundary models. This logic is wrapped in a helper function,
detectBoundaries, defined at the end of this example.

 Evaluate Lane Boundary Detections Against Ground Truth Data

8-83

monoSensor = helperMonoSensor(sensor);
boundaries = detectBoundaries(loaded.videoName, monoSensor);

Evaluate Lane Boundary Models

Use the evaluateLaneBoundaries function to find the number of boundaries that match those
boundaries in ground truth. A ground truth is assigned to a test boundary only if all points of the
ground truth are within a specified distance, laterally, from the corresponding test boundary. If
multiple ground truth boundaries satisfy this criterion, the one with the smallest maximum lateral
distance is chosen. The others are marked as false positives.

threshold = 0.25; % in vehicle coordinates (meters)
[numMatches, numMisses, numFalsePositives, assignments] = ...
 evaluateLaneBoundaries(boundaries, gtVehicleBoundaryPoints, threshold);
disp(['Number of matches: ', num2str(numMatches)]);
disp(['Number of misses: ', num2str(numMisses)]);
disp(['Number of false positives: ', num2str(numFalsePositives)]);

Number of matches: 405
Number of misses: 40
Number of false positives: 29

You can use these raw counts to compute other statistics such as precision, recall, and the F1 score:

precision = numMatches/(numMatches+numFalsePositives);
disp(['Precision: ', num2str(precision)]);

recall = numMatches/(numMatches+numMisses);
disp(['Sensitivity/Recall: ', num2str(recall)]);

f1Score = 2*(precision*recall)/(precision+recall);
disp(['F1 score: ', num2str(f1Score)]);

Precision: 0.93318
Sensitivity/Recall: 0.91011
F1 score: 0.9215

Visualize Results Using a Bird's-Eye Plot

evaluateLaneBoundaries additionally returns the assignment indices for every successful match
between the ground truth and test boundaries. This can be used to visualize the detected and ground
truth boundaries to gain a better understanding of failure modes.

Find a frame that has one matched boundary and one false positive. The ground truth data for each
frame has two boundaries. So, a candidate frame will have two assignment indices, with one of them
being 0 to indicate a false positive.

hasMatch = cellfun(@(x)numel(x)==2, assignments);
hasFalsePositive = cellfun(@(x)nnz(x)==1, assignments);
frameInd = find(hasMatch&hasFalsePositive,1,'first');
frameVehiclePoints = gtVehicleBoundaryPoints{frameInd};
frameImagePoints = gtImageBoundaryPoints{frameInd};
frameModels = boundaries{frameInd};

Use the assignments output of evaluateLaneBoundaries to find the models that matched (true
positives) and models that had no match (false positives) in ground truth.

8 Featured Examples

8-84

matchedModels = frameModels(assignments{frameInd}~=0);
fpModels = frameModels(assignments{frameInd}==0);

Set up a bird's-eye plot and visualize the ground truth points and models on it.

bep = birdsEyePlot();
gtPlotter = laneBoundaryPlotter(bep,'DisplayName','Ground Truth',...
 'Color','blue');
tpPlotter = laneBoundaryPlotter(bep,'DisplayName','True Positive',...
 'Color','green');
fpPlotter = laneBoundaryPlotter(bep,'DisplayName','False Positive',...
 'Color','red');

plotLaneBoundary(gtPlotter, frameVehiclePoints);
plotLaneBoundary(tpPlotter, matchedModels);
plotLaneBoundary(fpPlotter, fpModels);
title('Bird''s-Eye Plot of Comparison Results');

Visualize Results on a Video in Camera and Bird's-Eye View

To get a better context of the result, you can also visualize ground truth points and the boundary
models on the video.

Get the frame corresponding to the frame of interest.

videoReader = VideoReader(loaded.videoName);
videoReader.CurrentTime = seconds(loaded.groundTruthData.Time(frameInd));
frame = videoReader.readFrame();

 Evaluate Lane Boundary Detections Against Ground Truth Data

8-85

Consider the boundary models as a solid line (irrespective of how the sensor classifies it) for
visualization.

fpModels.BoundaryType = 'Solid';
matchedModels.BoundaryType = 'Solid';

Insert the matched models, false positives and the ground truth points. This plot is useful in deducing
that the presence of crosswalks poses a challenging scenario for the boundary modeling algorithm.

xVehicle = 3:20;
frame = insertLaneBoundary(frame, fpModels, sensor, xVehicle,'Color','Red');
frame = insertLaneBoundary(frame, matchedModels, sensor, xVehicle,'Color','Green');
figure
ha = axes;
imshow(frame,'Parent', ha);

% Combine the left and right boundary points
boundaryPoints = [frameImagePoints{1};frameImagePoints{2}];
hold on
plot(ha, boundaryPoints(:,1), boundaryPoints(:,2),'+','MarkerSize',10,'LineWidth',4);
title('Camera View of Comparison Results');

You can also visualize the results in the bird's-eye view of this frame.

8 Featured Examples

8-86

birdsEyeImage = transformImage(monoSensor.BirdsEyeConfig,frame);

xVehicle = 3:20;
birdsEyeImage = insertLaneBoundary(birdsEyeImage, fpModels, monoSensor.BirdsEyeConfig, xVehicle,'Color','Red');
birdsEyeImage = insertLaneBoundary(birdsEyeImage, matchedModels, monoSensor.BirdsEyeConfig, xVehicle,'Color','Green');

% Combine the left and right boundary points
ptsInVehicle = [frameVehiclePoints{1};frameVehiclePoints{2}];
gtPointsInBEV = vehicleToImage(monoSensor.BirdsEyeConfig, ptsInVehicle);

figure
imshow(birdsEyeImage);
hold on
plot(gtPointsInBEV(:,1), gtPointsInBEV(:,2),'+','MarkerSize', 10,'LineWidth',4);
title('Bird''s-Eye View of Comparison Results');

 Evaluate Lane Boundary Detections Against Ground Truth Data

8-87

Tune Boundary Modeling Parameters

You can use the evaluation framework described previously to fine-tune parameters of the lane
boundary detection algorithm. helperMonoSensor exposes three parameters that control the results
of the lane-finding algorithm.

• LaneSegmentationSensitivity - Controls the sensitivity of segmentLaneMarkerRidge
function. This function returns lane candidate points in the form of a binary lane feature mask.
The sensitivity value can vary from 0 to 1, with a default of 0.25. Increasing this number results in
more lane candidate points and potentially more false detections.

8 Featured Examples

8-88

• LaneXExtentThreshold - Specifies the minimum extent (length) of a lane. It is expressed as a
ratio of the detected lane length to the maximum lane length possible for the specified camera
configuration. The default value is 0.4. Increase this number to reject shorter lane boundaries.

• LaneStrengthThreshold - Specifies the minimum normalized strength to accept a detected
lane boundary.

LaneXExtentThreshold and LaneStrengthThreshold are derived from the XExtent and
Strength properties of the parabolicLaneBoundary object. These properties are an example of
how additional constraints can be placed on the boundary modeling algorithms to obtain acceptable
results. The impact of varying LaneStrengthThreshold has additional nuances worth exploring.
Typical lane boundaries are marked with either solid or dashed lines. When comparing to solid lines,
dashed lines have a lower number of inlier points, leading to lower strength values. This makes it
challenging to set a common strength threshold. To inspect the impact of this parameter, first
generate all boundaries by setting LaneStrengthThreshold to 0. This setting ensures it has no
impact on the output.

monoSensor.LaneStrengthThreshold = 0;
boundaries = detectBoundaries('caltech_cordova1.avi', monoSensor);

The LaneStrengthThreshold property of helperMonoSensor controls the normalized Strength
parameter of each parabolicLaneBoundary model. The normalization factor, MaxLaneStrength,
is the strength of a virtual lane that runs for the full extent of a bird's-eye image. This value is
determined solely by the birdsEyeView configuration of helperMonoSensor. To assess the impact
of LaneStrengthThreshold, first compute the distribution of the normalized lane strengths for all
detected boundaries in the sample video. Note the presence of two clear peaks, one at a normalized
strength of 0.3 and one at 0.7. These two peaks correspond to dashed and solid lane boundaries
respectively. From this plot, you can empirically determine that to ensure dashed lane boundaries are
detected, LaneStrengthThreshold should be below 0.3.

strengths = cellfun(@(b)[b.Strength], boundaries,'UniformOutput',false);
strengths = [strengths{:}];
normalizedStrengths = strengths/monoSensor.MaxLaneStrength;
figure;
hist(normalizedStrengths);
title('Histogram of Normalized Lane Strengths');

 Evaluate Lane Boundary Detections Against Ground Truth Data

8-89

You can use the comparison framework to further assess the impact of the
LaneStrengthThreshold parameters on the detection performance of the modeling algorithm.
Note that the threshold value controlling the maximum physical distance between a model and a
ground truth remains the same as before. This value is dictated by the accuracy requirements of an
ADAS system and usually does not change.

threshold = .25;
[~, ~, ~, assignments] = ...
 evaluateLaneBoundaries(boundaries, gtVehicleBoundaryPoints, threshold);

Bin each boundary according to its normalized strength. The assignments information helps classify
each boundary as either a true positive (matched) or a false positive. LaneStrengthThreshold is a
"min" threshold, so a boundary classified as a true positive at a given value will continue to be a true
positive for all lower threshold values.

nMatch = zeros(1,100); % Normalized lane strength is bucketed into 100 bins
nFP = zeros(1,100); % ranging from 0.01 to 1.00.
for frameInd = 1:numel(boundaries)
 frameBoundaries = boundaries{frameInd};
 frameAssignment = assignments{frameInd};
 for bInd = 1:numel(frameBoundaries)
 normalizedStrength = frameBoundaries(bInd).Strength/monoSensor.MaxLaneStrength;
 strengthBucket = floor(normalizedStrength*100);
 if frameAssignment(bInd)
 % This boundary was matched with a ground truth boundary,
 % record as a true positive for all values of strength above
 % its strength value.

8 Featured Examples

8-90

 nMatch(1:strengthBucket) = nMatch(1:strengthBucket)+1;
 else
 % This is a false positive
 nFP(1:strengthBucket) = nFP(1:strengthBucket)+1;
 end
 end
end

Use this information to compute the number of "missed" boundaries, that is, ground truth boundaries
that the algorithm failed to detect at the specified LaneStrengthThreshold value. And with that
information, compute the precision and recall metrics.

gtTotal = sum(cellfun(@(x)numel(x),gtVehicleBoundaryPoints));
nMiss = gtTotal - nMatch;

precisionPlot = nMatch./(nMatch + nFP);
recallPlot = nMatch./(nMatch + nMiss);

Plot the precision and recall metrics against various values of the lane strength threshold parameter.
This plot is useful in determining an optimal value for the lane strength parameter. For this video clip,
to maximize recall and precision metrics, LaneStrengthThreshold should be in the range 0.20 -
0.25.

figure;
plot(precisionPlot);
hold on;
plot(recallPlot);
xlabel('LaneStrengthThreshold*100');
ylabel('Precision and Recall');
legend('Precision','Recall');
title('Impact of LaneStrengthThreshold on Precision and Recall Metrics');

 Evaluate Lane Boundary Detections Against Ground Truth Data

8-91

Supporting Function

Detect boundaries in a video.

detectBoundaries uses a preconfigured helperMonoSensor object to detect boundaries in a
video.

function boundaries = detectBoundaries(videoName, monoSensor)
videoReader = VideoReader(videoName);
hwb = waitbar(0,'Detecting and modeling boundaries in video...');
closeBar = onCleanup(@()delete(hwb));
frameInd = 0;
boundaries = {};
while hasFrame(videoReader)
 frameInd = frameInd+1;
 frame = readFrame(videoReader);
 sensorOut = processFrame(monoSensor, frame);
 % Save the boundary models
 boundaries{end+1} =...
 [sensorOut.leftEgoBoundary, sensorOut.rightEgoBoundary]; %#ok<AGROW>
 waitbar(frameInd/(videoReader.Duration*videoReader.FrameRate), hwb);

8 Featured Examples

8-92

end
end

See Also
Apps
Ground Truth Labeler

Functions
segmentLaneMarkerRidge | evaluateLaneBoundaries | findParabolicLaneBoundaries

More About
• “Evaluate and Visualize Lane Boundary Detections Against Ground Truth” on page 8-94

 Evaluate Lane Boundary Detections Against Ground Truth Data

8-93

Evaluate and Visualize Lane Boundary Detections Against
Ground Truth

This example shows how to evaluate the performance of lane boundary detection against known
ground truth. In this example, you will characterize the performance of a lane boundary detection
algorithm on a per-frame basis by computing a goodness-of-fit measure. This measure can be used to
pinpoint, visualize, and understand failure modes in the underlying algorithm.

Overview

With increasing interest in vision-based solutions to automated driving problems, being able to
evaluate and verify the accuracy of detection algorithms has become very important. Verifying
accuracy is especially important in detection algorithms that have several parameters that can be
tuned to achieve results that satisfy predefined quality requirements. This example walks through one
such workflow, where lane boundaries can be measured for their level of accuracy. This workflow
helps pinpoint failure modes in these algorithms on a per-frame basis, as well as characterize its
overall performance. This workflow also helps you visually and quantitatively understand the
performance of the algorithm. You can then use this understanding to tune the underlying algorithm
to improve its performance.

Load Ground Truth Data

The dataset used in this example is a video file from a front-mounted camera on a vehicle driving
through a street. Ground truth for the lane boundaries has been manually marked on the video with
the Ground Truth Labeler app, using a Line ROI labeled "LaneBoundary." This video is 8 seconds, or
250 frames long. It has three intersection crossings, several vehicles (parked and moving), and lane
boundaries (double line, single, and dashed). To create a ground truth lane boundary dataset for your
own video, you can use the Ground Truth Labeler app.

% Load MAT file with ground truth data.
loaded = load('caltech_cordova1_laneAndVehicleGroundTruth.mat');

The loaded structure contains three fields:

1 groundTruthData, a timetable with two columns: LaneBoundaries and Vehicles.
LaneBoundaries contains ground truth points for the ego lane boundaries (left and right),
represented as a cell array of XY points forming a poly line. Vehicles contains ground truth
bounding boxes for vehicles in the camera view, represented as M-by-4 arrays of
[x,y,width,height].

2 sensor, a monoCamera object with properties about the calibrated camera mounted on the
vehicle. This object lets you estimate the real-world distances between the vehicle and the
objects in front of it.

3 videoName, a character array containing the file name of the video where the frames are stored.

From the data in this structure, open the video file by using VideoReader to loop through the
frames. The VideoReader object uses a helperMonoSensor object to detect lanes and objects in
the video frame, using the camera setup stored in sensor. A timetable variable stored in gtdata
holds the ground truth data. This variable contains the per-frame data that is used for analysis later
on.

% Create a VideoReader object to read frames of the video.
videoName = loaded.videoName;
fileReader = VideoReader(videoName);

8 Featured Examples

8-94

% The ground truth data is organized in a timetable.
gtdata = loaded.groundTruthData;

% Display the first few rows of the ground truth data.
head(gtdata)

ans =

 8x2 timetable

 Time Vehicles LaneBoundaries
 ____________ ____________ ______________

 0 sec {6x4 double} {2x1 cell}
 0.033333 sec {6x4 double} {2x1 cell}
 0.066667 sec {6x4 double} {2x1 cell}
 0.1 sec {6x4 double} {2x1 cell}
 0.13333 sec {6x4 double} {2x1 cell}
 0.16667 sec {6x4 double} {2x1 cell}
 0.2 sec {6x4 double} {2x1 cell}
 0.23333 sec {5x4 double} {2x1 cell}

The gtdata timetable has the columns Vehicles and LaneBoundaries. At each timestamp, the
Vehicles column holds an M-by-4 array of vehicle bounding boxes and the LaneBoundaries
column holds a two-element cell array of left and right lane boundary points.

First, visualize the loaded ground truth data for an image frame.

% Read the first frame of the video.
frame = readFrame(fileReader);

% Extract all lane points in the first frame.
lanePoints = gtdata.LaneBoundaries{1};

% Extract vehicle bounding boxes in the first frame.
vehicleBBox = gtdata.Vehicles{1};

% Superimpose the right lane points and vehicle bounding boxes.
frame = insertMarker(frame, lanePoints{2}, 'X');
frame = insertObjectAnnotation(frame, 'rectangle', vehicleBBox, 'Vehicle');

% Display ground truth data on the first frame.
figure
imshow(frame)

 Evaluate and Visualize Lane Boundary Detections Against Ground Truth

8-95

Run Lane Boundary Detection Algorithm

Using the video frames and the monoCamera parameters, you can automatically estimate locations of
lane boundaries. For illustration, the processFrame method of the helperMonoSensor class is
used here to detect lane boundaries (as parabolicLaneBoundary objects) and vehicles (as [x, y,
width, height] bounding box matrices). For the purpose of this example, this is the lane boundary
detection "algorithm under test." You can use the same pattern for evaluating a custom lane boundary
detection algorithm, where processFrame is replaced with the custom detection function. The
ground truth points in the vehicle coordinates are also stored in the LanesInVehicleCoord column
of the gtdata timetable. That way, they can be visualized in a Bird's-Eye View display later on. First,
configure the helperMonoSensor object with the sensor. The helperMonoSensor class assembles
all the necessary steps required to run the lane boundary detection algorithm.

% Set up monoSensorHelper to process video.
monoCameraSensor = loaded.sensor;
monoSensorHelper = helperMonoSensor(monoCameraSensor);

% Create new timetable with same Time vector for measurements.
measurements = timetable(gtdata.Time);

% Set up timetable columns for holding lane boundary and vehicle data.
numFrames = floor(fileReader.FrameRate*fileReader.Duration);

8 Featured Examples

8-96

measurements.LaneBoundaries = cell(numFrames, 2);
measurements.VehicleDetections = cell(numFrames, 1);
gtdata.LanesInVehicleCoord = cell(numFrames, 2);

% Rewind the video to t = 0, and create a frame index to hold current
% frame.
fileReader.CurrentTime = 0;
frameIndex = 0;

% Loop through the videoFile until there are no new frames.
while hasFrame(fileReader)
 frameIndex = frameIndex+1;
 frame = readFrame(fileReader);

 % Use the processFrame method to compute detections.
 % This method can be replaced with a custom lane detection method.
 detections = processFrame(monoSensorHelper, frame);

 % Store the estimated lane boundaries and vehicle detections.
 measurements.LaneBoundaries{frameIndex} = [detections.leftEgoBoundary ...
 detections.rightEgoBoundary];
 measurements.VehicleDetections{frameIndex} = detections.vehicleBoxes;

 % To facilitate comparison, convert the ground truth lane points to the
 % vehicle coordinate system.
 gtPointsThisFrame = gtdata.LaneBoundaries{frameIndex};
 vehiclePoints = cell(1, numel(gtPointsThisFrame));
 for ii = 1:numel(gtPointsThisFrame)
 vehiclePoints{ii} = imageToVehicle(monoCameraSensor, gtPointsThisFrame{ii});
 end

 % Store ground truth points expressed in vehicle coordinates.
 gtdata.LanesInVehicleCoord{frameIndex} = vehiclePoints;
end

Now that you have processed the video with a lane detection algorithm, verify that the ground truth
points are correctly transformed into the vehicle coordinate system. The first entry in the
LanesInVehicleCoord column of the gtdata timetable contains the vehicle coordinates for the
first frame. Plot these ground truth points on the first frame in the Bird's-Eye View.

% Rewind video to t = 0.
fileReader.CurrentTime = 0;

% Read the first frame of the video.
frame = readFrame(fileReader);
birdsEyeImage = transformImage(monoSensorHelper.BirdsEyeConfig, frame);

% Extract right lane points for the first frame in Bird's-Eye View.
firstFrameVehiclePoints = gtdata.LanesInVehicleCoord{1};
pointsInBEV = vehicleToImage(monoSensorHelper.BirdsEyeConfig, firstFrameVehiclePoints{2});

% Superimpose points on the frame.
birdsEyeImage = insertMarker(birdsEyeImage, pointsInBEV, 'X', 'Size', 6);

% Display transformed points in Bird's-Eye View.
figure
imshow(birdsEyeImage)

 Evaluate and Visualize Lane Boundary Detections Against Ground Truth

8-97

Measure Detection Errors

Computing the errors in lane boundary detection is an essential step in verifying the performance of
several downstream subsystems. Such subsystems include lane departure warning systems that
depend on the accuracy of the lane detection subsystem.

You can estimate this accuracy by measuring the goodness of fit. With the ground truth points and the
estimates computed, you can now compare and visualize them to find out how well the detection
algorithms perform.

8 Featured Examples

8-98

The goodness of fit can be measured either at the per-frame level or for the entire video. The per-
frame statistics provide detailed information about specific scenarios, such as the behavior at road
bends where the detection algorithm performance may vary. The global statistics provide a big
picture estimate of number of lanes that missed detection.

Use the evaluateLaneBoundaries function to return global detection statistics and an
assignments array. This array matches the estimated lane boundary objects with corresponding
ground truth points.

The threshold parameter in the evaluateLaneBoundaries function represents the maximum
lateral distance in vehicle coordinates to qualify as a match with the estimated parabolic lane
boundaries.

threshold = 0.25; % in meters

[numMatches, numMisses, numFalsePositives, assignments] = ...
 evaluateLaneBoundaries(measurements.LaneBoundaries, ...
 gtdata.LanesInVehicleCoord, ...
 threshold);

disp(['Number of matches: ', num2str(numMatches)]);
disp(['Number of misses: ', num2str(numMisses)]);
disp(['Number of false positives: ', num2str(numFalsePositives)]);

Number of matches: 405
Number of misses: 40
Number of false positives: 29

Using the assignments array, you can compute useful per-lane metrics, such as the average lateral
distance between the estimates and the ground truth points. Such metrics indicate how well the
algorithm is performing. To compute the average distance metric, use the helper function
helperComputeLaneStatistics, which is defined at the end of this example.

averageDistance = helperComputeLaneStatistics(measurements.LaneBoundaries, ...
 gtdata.LanesInVehicleCoord, ...
 assignments, @mean);

% Plot average distance between estimates and ground truth.
figure
stem(gtdata.Time, averageDistance)
title('Average Distance Between Estimates and Ground Truth')
grid on
ylabel('Distance in Meters')
legend('Left Boundary','Right Boundary')

 Evaluate and Visualize Lane Boundary Detections Against Ground Truth

8-99

Visualize and Review Differences Between Ground Truth and Your Algorithm

You now have a quantitative understanding of the accuracy of the lane detection algorithm. However,
it is not possible to completely understand the failures solely based on the plot in the previous
section. Viewing the video and visualizing the errors on a per-frame basis is therefore crucial in
identifying specific failure modes which can be improved by refining the algorithm.

You can use the Ground Truth Labeler app as a visualization tool to view the video containing the
ground truth data and the estimated lane boundaries. The driving.connector.Connector class
provides an interface to attach custom visualization tools to the Ground Truth Labeler.

Use the parabolicLaneBoundary array and the ground truth data to compute vehicle coordinate
locations of the estimated points. The parabolicLaneBoundary array defines a line, and the ground
truth data has discrete points marked on the road. The helperGetCorrespondingPoints function
estimates points on the estimated lines that correspond to the same Y-axis distance from the vehicle.
This helper function is defined at the end of the example.

The ground truth points and the estimated points are now included in a new timetable to be
visualized in the Ground Truth Labeler app. The created groundTruth object is then stored as a
MAT file.

% Compute the estimated point locations using the monoCamera.
[estVehiclePoints, estImagePoints] = helperGetCorrespondingPoints(monoCameraSensor, ...
 measurements.LaneBoundaries, ...
 gtdata.LanesInVehicleCoord, ...
 assignments);

8 Featured Examples

8-100

% Add estimated lanes to the measurements timetable.
measurements.EstimatedLanes = estImagePoints;
measurements.LanesInVehicleCoord = estVehiclePoints;

% Create a new timetable with all the variables needed for visualization.
names = {'LanePoints'; 'DetectedLanePoints'};
types = labelType({'Line'; 'Line'});
labelDefs = table(names, types, 'VariableNames', {'Name','Type'});

visualizeInFrame = timetable(gtdata.Time, ...
 gtdata.LaneBoundaries, ...
 measurements.EstimatedLanes, ...
 'VariableNames', names);

% Create groundTruth object.
dataSource = groundTruthDataSource(videoName);
dataToVisualize = groundTruth(dataSource, labelDefs, visualizeInFrame);

% Save all the results of the previous section in distanceData.mat in a
% temporary folder.
dataToLoad = [tempdir 'distanceData.mat'];
save(dataToLoad, 'monoSensorHelper', 'videoName', 'measurements', 'gtdata', 'averageDistance');

The helperCustomUI class creates the plot and Bird's-Eye Views using data loaded from a MAT file,
like the one you just created. The Connector interface of the Ground Truth Labeler app interacts with
the helperCustomUI class through the helperUIConnector class to synchronize the video with
the average distance plot and the Bird's-Eye View. This synchronization enables you to analyze per-
frame results both analytically and visually.

Follow these steps to visualize the results as shown in the images that follow:

• Go to the temporary directory where distanceData.mat is saved and open the Ground Truth
Labeler app. Then start the Ground Truth Labeler app, with the connector handle specified as
helperUIConnector using the following commands:

>> origdir = pwd;
>> cd(tempdir)
>> groundTruthLabeler(dataSource, 'ConnectorTargetHandle', @helperUIConnector);

• Import labels: Visualize the ground truth lane markers and the estimated lanes in the image
coordinates. From the app toolstrip, click Import Labels. Then select the From Workspace
option and load the dataToVisualize ground truth into the app. The main app window now
contains annotations for lane markers.

You can now navigate through the video and examine the errors. To return back to the original
directory, you can type:

>> cd(origdir)

 Evaluate and Visualize Lane Boundary Detections Against Ground Truth

8-101

8 Featured Examples

8-102

From this visualization, you can make several inferences about the algorithm and the quality of the
ground truth data.

• The left lane accuracy is consistently worse than the right lane accuracy. Upon closer observation
in the Bird's-Eye View display, the ground truth data is marked as the outer boundary of the
double line, whereas the estimated lane boundary lays generally at the center of the double line
marker. This indicates that the left lane estimation is likely more accurate than the numbers
portray, and that a clearly defined ground truth dataset is crucial for such observations.

• The detection gaps around 2.3 seconds and 4 seconds correspond to intersections on the road that
are preceded by crosswalks. This indicates that the algorithm does not perform well in the
presence of crosswalks.

• Around 6.8 seconds, as the vehicle approaches a third intersection, the ego lane diverges into a
left-only lane and a straight lane. Here too, the algorithm fails to capture the left lane accurately,
and the ground truth data also does not contain any information for five frames.

Conclusion

This example showed how to measure the accuracy of a lane boundary detection algorithm and
visualize it using the Ground Truth Labeler app. You can extend this concept to other custom

 Evaluate and Visualize Lane Boundary Detections Against Ground Truth

8-103

algorithms to simplify these workflows and extend the functionality of the app for custom
measurements.

Supporting Functions

helperComputeLaneStatistics

This helper function computes statistics for lane boundary detections as compared to ground truth
points. It takes in a function handle that can be used to generalize the statistic that needs to be
computed, including @mean and @median.

function stat = helperComputeLaneStatistics(estModels, gtPoints, assignments, fcnHandle)

 numFrames = length(estModels);
 % Make left and right estimates NaN by default to represent lack of
 % data.
 stat = NaN*ones(numFrames, 2);

 for frameInd = 1:numFrames
 % Make left and right estimates NaN by default.
 stat(frameInd, :) = NaN*ones(2, 1);

 for idx = 1:length(estModels{frameInd})
 % Ignore false positive assignments.
 if assignments{frameInd}(idx) == 0
 continue;
 end

 % The kth boundary in estModelInFrame is matched to kth
 % element indexed by assignments in gtPointsInFrame.
 thisModel = estModels{frameInd}(idx);
 thisGT = gtPoints{frameInd}{assignments{frameInd}(idx)};
 thisGTModel = driving.internal.piecewiseLinearBoundary(thisGT);
 if mean(thisGTModel.Points(:,2)) > 0
 % left lane
 xPoints = thisGTModel.Points(:,1);
 yDist = zeros(size(xPoints));
 for index = 1:numel(xPoints)
 gtYPoints = thisGTModel.computeBoundaryModel(xPoints(index));
 testYPoints = thisModel.computeBoundaryModel(xPoints(index));
 yDist(index) = abs(testYPoints-gtYPoints);
 end
 stat(frameInd, 1) = fcnHandle(yDist);
 else % right lane
 xPoints = thisGTModel.Points(:,1);
 yDist = zeros(size(xPoints));
 for index = 1:numel(xPoints)
 gtYPoints = thisGTModel.computeBoundaryModel(xPoints(index));
 testYPoints = thisModel.computeBoundaryModel(xPoints(index));
 yDist(index) = abs(testYPoints-gtYPoints);
 end
 stat(frameInd, 2) = fcnHandle(yDist);
 end
 end
 end
end

helperGetCorrespondingPoints

8 Featured Examples

8-104

This helper function creates vehicle and image coordinate points at X-axis locations that match the
ground truth points.

function [vehiclePoints, imagePoints] = helperGetCorrespondingPoints(monoCameraSensor, estModels, gtPoints, assignments)

 numFrames = length(estModels);
 imagePoints = cell(numFrames, 1);
 vehiclePoints = cell(numFrames, 1);

 for frameInd = 1:numFrames
 if isempty(assignments{frameInd})
 imagePointsInFrame = [];
 vehiclePointsInFrame = [];
 else
 estModelInFrame = estModels{frameInd};
 gtPointsInFrame = gtPoints{frameInd};
 imagePointsInFrame = cell(length(estModelInFrame), 1);
 vehiclePointsInFrame = cell(length(estModelInFrame), 1);
 for idx = 1:length(estModelInFrame)

 % Ignore false positive assignments.
 if assignments{frameInd}(idx) == 0
 imagePointsInFrame{idx} = [NaN NaN];
 continue;
 end

 % The kth boundary in estModelInFrame is matched to kth
 % element indexed by assignments in gtPointsInFrame.
 thisModel = estModelInFrame(idx);
 thisGT = gtPointsInFrame{assignments{frameInd}(idx)};
 xPoints = thisGT(:, 1);
 yPoints = thisModel.computeBoundaryModel(xPoints);

 vehiclePointsInFrame{idx} = [xPoints, yPoints];
 imagePointsInFrame{idx} = vehicleToImage(monoCameraSensor, [xPoints yPoints]);
 end
 end
 vehiclePoints{frameInd} = vehiclePointsInFrame;
 imagePoints{frameInd} = imagePointsInFrame;
 % Make imagePoints [] instead of {} to comply with groundTruth object.
 if isempty(imagePoints{frameInd})
 imagePoints{frameInd} = [];
 end
 if isempty(vehiclePoints{frameInd})
 vehiclePoints{frameInd} = [];
 end
 end
end

See Also
Apps
Ground Truth Labeler

Functions
evaluateLaneBoundaries | findParabolicLaneBoundaries

 Evaluate and Visualize Lane Boundary Detections Against Ground Truth

8-105

Objects
birdsEyeView | monoCamera | driving.connector.Connector

More About
• “Evaluate Lane Boundary Detections Against Ground Truth Data” on page 8-82

8 Featured Examples

8-106

Visual Perception Using Monocular Camera
This example shows how to construct a monocular camera sensor simulation capable of lane
boundary and vehicle detections. The sensor will report these detections in the vehicle coordinate
system. In this example, you will learn about the coordinate system used by Automated Driving
Toolbox™, and computer vision techniques involved in the design of a sample monocular camera
sensor.

Overview

Vehicles that contain ADAS features or are designed to be fully autonomous rely on multiple sensors.
These sensors can include sonar, radar, lidar and cameras. This example illustrates some of the
concepts involved in the design of a monocular camera system. Such a sensor can accomplish many
tasks, including:

• Lane boundary detection
• Detection of vehicles, people, and other objects
• Distance estimation from the ego vehicle to obstacles

Subsequently, the readings returned by a monocular camera sensor can be used to issue lane
departure warnings, collision warnings, or to design a lane keep assist control system. In conjunction
with other sensors, it can also be used to implement an emergency braking system and other safety-
critical features.

The example implements a subset of features found on a fully developed monocular camera system. It
detects lane boundaries and backs of vehicles, and reports their locations in the vehicle coordinate
system.

Define Camera Configuration

Knowing the camera's intrinsic and extrinsic calibration parameters is critical to accurate conversion
between pixel and vehicle coordinates.

Start by defining the camera's intrinsic parameters. The parameters below were determined earlier
using a camera calibration procedure that used a checkerboard calibration pattern. You can use the
Camera Calibrator app to obtain them for your camera.

focalLength = [309.4362, 344.2161]; % [fx, fy] in pixel units
principalPoint = [318.9034, 257.5352]; % [cx, cy] optical center in pixel coordinates
imageSize = [480, 640]; % [nrows, mcols]

Note that the lens distortion coefficients were ignored, because there is little distortion in the data.
The parameters are stored in a cameraIntrinsics object.

camIntrinsics = cameraIntrinsics(focalLength, principalPoint, imageSize);

Next, define the camera orientation with respect to the vehicle's chassis. You will use this information
to establish camera extrinsics that define the position of the 3-D camera coordinate system with
respect to the vehicle coordinate system.

height = 2.1798; % mounting height in meters from the ground
pitch = 14; % pitch of the camera in degrees

The above quantities can be derived from the rotation and translation matrices returned by the
extrinsics function. Pitch specifies the tilt of the camera from the horizontal position. For the

 Visual Perception Using Monocular Camera

8-107

camera used in this example, the roll and yaw of the sensor are both zero. The entire configuration
defining the intrinsics and extrinsics is stored in the monoCamera object.

sensor = monoCamera(camIntrinsics, height, 'Pitch', pitch);

Note that the monoCamera object sets up a very specific vehicle coordinate system, where the X-axis
points forward from the vehicle, the Y-axis points to the left of the vehicle, and the Z-axis points up
from the ground.

By default, the origin of the coordinate system is on the ground, directly below the camera center
defined by the camera's focal point. The origin can be moved by using the SensorLocation property
of the monoCamera object. Additionally, monoCamera provides imageToVehicle and
vehicleToImage methods for converting between image and vehicle coordinate systems.

Note: The conversion between the coordinate systems assumes a flat road. It is based on establishing
a homography matrix that maps locations on the imaging plane to locations on the road surface.
Nonflat roads introduce errors in distance computations, especially at locations that are far from the
vehicle.

Load a Frame of Video

Before processing the entire video, process a single video frame to illustrate the concepts involved in
the design of a monocular camera sensor.

Start by creating a VideoReader object that opens a video file. To be memory efficient,
VideoReader loads one video frame at a time.

videoName = 'caltech_cordova1.avi';
videoReader = VideoReader(videoName);

8 Featured Examples

8-108

Read an interesting frame that contains lane markers and a vehicle.

timeStamp = 0.06667; % time from the beginning of the video
videoReader.CurrentTime = timeStamp; % point to the chosen frame

frame = readFrame(videoReader); % read frame at timeStamp seconds
imshow(frame) % display frame

Note: This example ignores lens distortion. If you were concerned about errors in distance
measurements introduced by the lens distortion, at this point you would use the undistortImage
function to remove the lens distortion.

Create Bird's-Eye-View Image

There are many ways to segment and detect lane markers. One approach involves the use of a bird's-
eye-view image transform. Although it incurs computational cost, this transform offers one major
advantage. The lane markers in the bird's-eye view are of uniform thickness, thus simplifying the
segmentation process. The lane markers belonging to the same lane also become parallel, thus
making further analysis easier.

Given the camera setup, the birdsEyeView object transforms the original image to the bird's-eye
view. This object lets you specify the area that you want to transform using vehicle coordinates. Note
that the vehicle coordinate units were established by the monoCamera object, when the camera

 Visual Perception Using Monocular Camera

8-109

mounting height was specified in meters. For example, if the height was specified in millimeters, the
rest of the simulation would use millimeters.

% Using vehicle coordinates, define area to transform
distAheadOfSensor = 30; % in meters, as previously specified in monoCamera height input
spaceToOneSide = 6; % all other distance quantities are also in meters
bottomOffset = 3;

outView = [bottomOffset, distAheadOfSensor, -spaceToOneSide, spaceToOneSide]; % [xmin, xmax, ymin, ymax]
imageSize = [NaN, 250]; % output image width in pixels; height is chosen automatically to preserve units per pixel ratio

birdsEyeConfig = birdsEyeView(sensor, outView, imageSize);

Generate bird's-eye-view image.

birdsEyeImage = transformImage(birdsEyeConfig, frame);
figure
imshow(birdsEyeImage)

8 Featured Examples

8-110

The areas further away from the sensor are more blurry, due to having fewer pixels and thus
requiring greater amount of interpolation.

Note that you can complete the latter processing steps without use of the bird's-eye view, as long as
you can locate lane boundary candidate pixels in vehicle coordinates.

Find Lane Markers in Vehicle Coordinates

Having the bird's-eye-view image, you can now use the segmentLaneMarkerRidge function to
separate lane marker candidate pixels from the road surface. This technique was chosen for its
simplicity and relative effectiveness. Alternative segmentation techniques exist including semantic

 Visual Perception Using Monocular Camera

8-111

segmentation (deep learning) and steerable filters. You can substitute these techniques below to
obtain a binary mask needed for the next stage.

Most input parameters to the functions below are specified in world units, for example, the lane
marker width fed into segmentLaneMarkerRidge. The use of world units allows you to easily try
new sensors, even when the input image size changes. This is very important to making the design
more robust and flexible with respect to changing camera hardware and handling varying standards
across many countries.

% Convert to grayscale
birdsEyeImage = im2gray(birdsEyeImage);

% Lane marker segmentation ROI in world units
vehicleROI = outView - [-1, 2, -3, 3]; % look 3 meters to left and right, and 4 meters ahead of the sensor
approxLaneMarkerWidthVehicle = 0.25; % 25 centimeters

% Detect lane features
laneSensitivity = 0.25;
birdsEyeViewBW = segmentLaneMarkerRidge(birdsEyeImage, birdsEyeConfig, approxLaneMarkerWidthVehicle,...
 'ROI', vehicleROI, 'Sensitivity', laneSensitivity);

figure
imshow(birdsEyeViewBW)

8 Featured Examples

8-112

Locating individual lane markers takes place in vehicle coordinates that are anchored to the camera
sensor. This example uses a parabolic lane boundary model, ax^2 + bx + c, to represent the lane
markers. Other representations, such as a third-degree polynomial or splines, are possible.
Conversion to vehicle coordinates is necessary, otherwise lane marker curvature cannot be properly
represented by a parabola while it is affected by a perspective distortion.

The lane model holds for lane markers along a vehicle's path. Lane markers going across the path or
road signs painted on the asphalt are rejected.

 Visual Perception Using Monocular Camera

8-113

% Obtain lane candidate points in vehicle coordinates
[imageX, imageY] = find(birdsEyeViewBW);
xyBoundaryPoints = imageToVehicle(birdsEyeConfig, [imageY, imageX]);

Since the segmented points contain many outliers that are not part of the actual lane markers, use
the robust curve fitting algorithm based on random sample consensus (RANSAC).

Return the boundaries and their parabola parameters (a, b, c) in an array of
parabolicLaneBoundary objects, boundaries.

maxLanes = 2; % look for maximum of two lane markers
boundaryWidth = 3*approxLaneMarkerWidthVehicle; % expand boundary width

[boundaries, boundaryPoints] = findParabolicLaneBoundaries(xyBoundaryPoints,boundaryWidth, ...
 'MaxNumBoundaries', maxLanes, 'validateBoundaryFcn', @validateBoundaryFcn);

Notice that the findParabolicLaneBoundaries takes a function handle, validateBoundaryFcn.
This example function is listed at the end of this example. Using this additional input lets you reject
some curves based on the values of the a, b, c parameters. It can also be used to take advantage of
temporal information over a series of frames by constraining future a, b, c values based on previous
video frames.

Determine Boundaries of the Ego Lane

Some of the curves found in the previous step might still be invalid. For example, when a curve is fit
into crosswalk markers. Use additional heuristics to reject many such curves.

% Establish criteria for rejecting boundaries based on their length
maxPossibleXLength = diff(vehicleROI(1:2));
minXLength = maxPossibleXLength * 0.60; % establish a threshold

% Find short boundaries
if(numel(boundaries) > 0)
 isOfMinLength = false(1, numel(boundaries));
 for i = 1 : numel(boundaries)
 if(diff(boundaries(i).XExtent) > minXLength)
 isOfMinLength(i) = true;
 end
 end
else
 isOfMinLength = false;
end

Remove additional boundaries based on the strength metric computed by the
findParabolicLaneBoundaries function. Set a lane strength threshold based on ROI and image
size.

% To compute the maximum strength, assume all image pixels within the ROI
% are lane candidate points
birdsImageROI = vehicleToImageROI(birdsEyeConfig, vehicleROI);
[laneImageX,laneImageY] = meshgrid(birdsImageROI(1):birdsImageROI(2),birdsImageROI(3):birdsImageROI(4));

% Convert the image points to vehicle points
vehiclePoints = imageToVehicle(birdsEyeConfig,[laneImageX(:),laneImageY(:)]);

% Find the maximum number of unique x-axis locations possible for any lane
% boundary

8 Featured Examples

8-114

maxPointsInOneLane = numel(unique(single((vehiclePoints(:,1)))));

% Set the maximum length of a lane boundary to the ROI length
maxLaneLength = diff(vehicleROI(1:2));

% Compute the maximum possible lane strength for this image size/ROI size
% specification
maxStrength = maxPointsInOneLane/maxLaneLength;

% Reject short and weak boundaries
idx = 0;
strongBoundaries = parabolicLaneBoundary(zeros(nnz(isOfMinLength), 3));
for i = 1 : size(isOfMinLength,2)
 if(isOfMinLength(i) == 1)
 if(boundaries(i).Strength > 0.4*maxStrength)
 idx = idx + 1;
 strongBoundaries(idx) = boundaries(i);
 end
 end
end

The heuristics to classify lane marker type as solid/dashed are included in a helper function listed at
the bottom of this example. Knowing the lane marker type is critical for steering the vehicle
automatically. For example, crossing a solid marker is prohibited.

% Classify lane marker type when boundaryPoints are not empty
if isempty(boundaryPoints)
 strongBoundaries = repmat(strongBoundaries,1,2);
 strongBoundaries(1) = parabolicLaneBoundary(zeros(1,3));
 strongBoundaries(2) = parabolicLaneBoundary(zeros(1,3));
else
 strongBoundaries = classifyLaneTypes(strongBoundaries, boundaryPoints);
end

distancesToBoundaries = coder.nullcopy(ones(size(strongBoundaries,2),1));

% Find ego lanes
xOffset = 0; % 0 meters from the sensor
for i = 1 : size(strongBoundaries, 2)
 distancesToBoundaries(i) = strongBoundaries(i).computeBoundaryModel(xOffset);
end

% Find candidate ego boundaries
distancesToLeftBoundary = distancesToBoundaries>0;
if (numel(distancesToBoundaries(distancesToLeftBoundary)))
 minLeftDistance = min(distancesToBoundaries(distancesToLeftBoundary));
else
 minLeftDistance = 0;
end

distancesToRightBoundary = (distancesToBoundaries <= 0);
if(numel(distancesToBoundaries(distancesToRightBoundary)))
 minRightDistance = max(distancesToBoundaries(distancesToRightBoundary));
else
 minRightDistance = 0;
end

% Find left ego boundary

 Visual Perception Using Monocular Camera

8-115

if (minLeftDistance ~= 0)
 leftEgoBoundaryIndex = distancesToBoundaries == minLeftDistance;
 leftEgoBoundary = parabolicLaneBoundary(zeros(nnz(leftEgoBoundaryIndex), 3));
 idx = 0;
 for i = 1 : size(leftEgoBoundaryIndex, 1)
 if(leftEgoBoundaryIndex(i) == 1)
 idx = idx + 1;
 leftEgoBoundary(idx) = strongBoundaries(i);
 end
 end
else
 leftEgoBoundary = parabolicLaneBoundary.empty();
end

% Find right ego boundary
if (minRightDistance ~= 0)
 rightEgoBoundaryIndex = distancesToBoundaries == minRightDistance;
 rightEgoBoundary = parabolicLaneBoundary(zeros(nnz(rightEgoBoundaryIndex), 3));
 idx = 0;
 for i = 1 : size(rightEgoBoundaryIndex, 1)
 if(rightEgoBoundaryIndex(i) == 1)
 idx = idx + 1;
 rightEgoBoundary(idx) = strongBoundaries(i);
 end
 end
else
 rightEgoBoundary = parabolicLaneBoundary.empty();
end

Show the detected lane markers in the bird's-eye-view image and in the regular view.

xVehiclePoints = bottomOffset:distAheadOfSensor;
birdsEyeWithEgoLane = insertLaneBoundary(birdsEyeImage, leftEgoBoundary , birdsEyeConfig, xVehiclePoints, 'Color','Red');
birdsEyeWithEgoLane = insertLaneBoundary(birdsEyeWithEgoLane, rightEgoBoundary, birdsEyeConfig, xVehiclePoints, 'Color','Green');

frameWithEgoLane = insertLaneBoundary(frame, leftEgoBoundary, sensor, xVehiclePoints, 'Color','Red');
frameWithEgoLane = insertLaneBoundary(frameWithEgoLane, rightEgoBoundary, sensor, xVehiclePoints, 'Color','Green');

figure
subplot('Position', [0, 0, 0.5, 1.0]) % [left, bottom, width, height] in normalized units
imshow(birdsEyeWithEgoLane)
subplot('Position', [0.5, 0, 0.5, 1.0])
imshow(frameWithEgoLane)

8 Featured Examples

8-116

Locate Vehicles in Vehicle Coordinates

Detecting and tracking vehicles is critical in front collision warning (FCW) and autonomous
emergency braking (AEB) systems.

Load an aggregate channel features (ACF) detector that is pretrained to detect the front and rear of
vehicles. A detector like this can handle scenarios where issuing a collision warning is important. It is
not sufficient, for example, for detecting a vehicle traveling across a road in front of the ego vehicle.

detector = vehicleDetectorACF();

% Width of a common vehicle is between 1.5 to 2.5 meters
vehicleWidth = [1.5, 2.5];

Use the configureDetectorMonoCamera function to specialize the generic ACF detector to take
into account the geometry of the typical automotive application. By passing in this camera
configuration, this new detector searches only for vehicles along the road's surface, because there is
no point searching for vehicles high above the vanishing point. This saves computational time and
reduces the number of false positives.

monoDetector = configureDetectorMonoCamera(detector, sensor, vehicleWidth);

[bboxes, scores] = detect(monoDetector, frame);

Because this example shows how to process only a single frame for demonstration purposes, you
cannot apply tracking on top of the raw detections. The addition of tracking makes the results of
returning vehicle locations more robust, because even when the vehicle is partly occluded, the

 Visual Perception Using Monocular Camera

8-117

tracker continues to return the vehicle's location. For more information, see the “Track Multiple
Vehicles Using a Camera” on page 8-261 example.

Next, convert vehicle detections to vehicle coordinates. The computeVehicleLocations function,
included at the end of this example, calculates the location of a vehicle in vehicle coordinates given a
bounding box returned by a detection algorithm in image coordinates. It returns the center location
of the bottom of the bounding box in vehicle coordinates. Because we are using a monocular camera
sensor and a simple homography, only distances along the surface of the road can be computed
accurately. Computation of an arbitrary location in 3-D space requires use of stereo camera or
another sensor capable of triangulation.

locations = computeVehicleLocations(bboxes, sensor);

% Overlay the detections on the video frame
imgOut = insertVehicleDetections(frame, locations, bboxes);
figure;
imshow(imgOut);

Simulate a Complete Sensor with Video Input

Now that you have an idea about the inner workings of the individual steps, let's put them together
and apply them to a video sequence where we can also take advantage of temporal information.

8 Featured Examples

8-118

Rewind the video to the beginning, and then process the video. The code below is shortened because
all the key parameters were defined in the previous steps. Here, the parameters are used without
further explanation.

videoReader.CurrentTime = 0;

isPlayerOpen = true;
snapshot = [];
while hasFrame(videoReader) && isPlayerOpen

 % Grab a frame of video
 frame = readFrame(videoReader);

 % Compute birdsEyeView image
 birdsEyeImage = transformImage(birdsEyeConfig, frame);
 birdsEyeImage = im2gray(birdsEyeImage);

 % Detect lane boundary features
 birdsEyeViewBW = segmentLaneMarkerRidge(birdsEyeImage, birdsEyeConfig, ...
 approxLaneMarkerWidthVehicle, 'ROI', vehicleROI, ...
 'Sensitivity', laneSensitivity);

 % Obtain lane candidate points in vehicle coordinates
 [imageX, imageY] = find(birdsEyeViewBW);
 xyBoundaryPoints = imageToVehicle(birdsEyeConfig, [imageY, imageX]);

 % Find lane boundary candidates
 [boundaries, boundaryPoints] = findParabolicLaneBoundaries(xyBoundaryPoints,boundaryWidth, ...
 'MaxNumBoundaries', maxLanes, 'validateBoundaryFcn', @validateBoundaryFcn);

 % Reject boundaries based on their length and strength
 % Find short boundaries
 if(numel(boundaries) > 0)
 isOfMinLength = false(1, numel(boundaries));
 for i = 1 : numel(boundaries)
 if(diff(boundaries(i).XExtent) > minXLength)
 isOfMinLength(i) = true;
 end
 end
 else
 isOfMinLength = false;
 end

 % Reject short and weak boundaries
 idx = 0;
 strongBoundaries = parabolicLaneBoundary(zeros(nnz(isOfMinLength), 3));
 for i = 1 : size(isOfMinLength,2)
 if(isOfMinLength(i) == 1)
 if(boundaries(i).Strength > 0.2*maxStrength)
 idx = idx + 1;
 strongBoundaries(idx) = boundaries(i);
 end
 end
 end

 boundaries = boundaries(isOfMinLength);
 isStrong = [boundaries.Strength] > 0.2*maxStrength;
 boundaries = boundaries(isStrong);

 Visual Perception Using Monocular Camera

8-119

 % Classify lane marker type when boundaryPoints are not empty
 if isempty(boundaryPoints)
 strongBoundaries = repmat(strongBoundaries,1,2);
 strongBoundaries(1) = parabolicLaneBoundary(zeros(1,3));
 strongBoundaries(2) = parabolicLaneBoundary(zeros(1,3));
 else
 strongBoundaries = classifyLaneTypes(strongBoundaries, boundaryPoints);
 end

 % Find ego lanes
 xOffset = 0; % 0 meters from the sensor
 distancesToBoundaries = coder.nullcopy(ones(size(strongBoundaries,2),1));

 for i = 1 : size(strongBoundaries, 2)
 distancesToBoundaries(i) = strongBoundaries(i).computeBoundaryModel(xOffset);
 end
 % Find candidate ego boundaries
 distancesToLeftBoundary = distancesToBoundaries>0;
 if (numel(distancesToBoundaries(distancesToLeftBoundary)))
 minLeftDistance = min(distancesToBoundaries(distancesToLeftBoundary));
 else
 minLeftDistance = 0;
 end

 distancesToRightBoundary = (distancesToBoundaries <= 0);
 if(numel(distancesToBoundaries(distancesToRightBoundary)))
 minRightDistance = max(distancesToBoundaries(distancesToRightBoundary));
 else
 minRightDistance = 0;
 end

 % Find left ego boundary
 if (minLeftDistance ~= 0)
 leftEgoBoundaryIndex = distancesToBoundaries == minLeftDistance;
 leftEgoBoundary = parabolicLaneBoundary(zeros(nnz(leftEgoBoundaryIndex), 3));
 idx = 0;
 for i = 1 : size(leftEgoBoundaryIndex, 1)
 if(leftEgoBoundaryIndex(i) == 1)
 idx = idx + 1;
 leftEgoBoundary(idx) = strongBoundaries(i);
 end
 end
 else
 leftEgoBoundary = parabolicLaneBoundary.empty();
 end
 % Find right ego boundary
 if (minRightDistance ~= 0)
 rightEgoBoundaryIndex = distancesToBoundaries == minRightDistance;
 rightEgoBoundary = parabolicLaneBoundary(zeros(nnz(rightEgoBoundaryIndex), 3));
 idx = 0;
 for i = 1 : size(rightEgoBoundaryIndex, 1)
 if(rightEgoBoundaryIndex(i) == 1)
 idx = idx + 1;
 rightEgoBoundary(idx) = strongBoundaries(i);
 end
 end
 else

8 Featured Examples

8-120

 rightEgoBoundary = parabolicLaneBoundary.empty();
 end

 % Detect vehicles
 [bboxes, scores] = detect(monoDetector, frame);
 locations = computeVehicleLocations(bboxes, sensor);

 % Visualize sensor outputs and intermediate results. Pack the core
 % sensor outputs into a struct.
 sensorOut.leftEgoBoundary = leftEgoBoundary;
 sensorOut.rightEgoBoundary = rightEgoBoundary;
 sensorOut.vehicleLocations = locations;

 sensorOut.xVehiclePoints = bottomOffset:distAheadOfSensor;
 sensorOut.vehicleBoxes = bboxes;

 % Pack additional visualization data, including intermediate results
 intOut.birdsEyeImage = birdsEyeImage;
 intOut.birdsEyeConfig = birdsEyeConfig;
 intOut.vehicleScores = scores;
 intOut.vehicleROI = vehicleROI;
 intOut.birdsEyeBW = birdsEyeViewBW;

 closePlayers = ~hasFrame(videoReader);
 isPlayerOpen = visualizeSensorResults(frame, sensor, sensorOut, ...
 intOut, closePlayers);

 timeStamp = 7.5333; % take snapshot for publishing at timeStamp seconds
 if abs(videoReader.CurrentTime - timeStamp) < 0.01
 snapshot = takeSnapshot(frame, sensor, sensorOut);
 end
end

Display the video frame. Snapshot is taken at timeStamp seconds.

if ~isempty(snapshot)
 figure
 imshow(snapshot)
end

 Visual Perception Using Monocular Camera

8-121

Try the Sensor Design on a Different Video

The helperMonoSensor class assembles the setup and all the necessary steps to simulate the
monocular camera sensor into a complete package that can be applied to any video. Since most
parameters used by the sensor design are based on world units, the design is robust to changes in
camera parameters, including the image size. Note that the code inside the helperMonoSensor
class is different from the loop in the previous section, which was used to illustrate basic concepts.

Besides providing a new video, you must supply a camera configuration corresponding to that video.
The process is shown here. Try it on your own videos.

% Sensor configuration
focalLength = [309.4362, 344.2161];
principalPoint = [318.9034, 257.5352];
imageSize = [480, 640];
height = 2.1798; % mounting height in meters from the ground
pitch = 14; % pitch of the camera in degrees

camIntrinsics = cameraIntrinsics(focalLength, principalPoint, imageSize);
sensor = monoCamera(camIntrinsics, height, 'Pitch', pitch);

videoReader = VideoReader('caltech_washington1.avi');

8 Featured Examples

8-122

Create the helperMonoSensor object and apply it to the video.

monoSensor = helperMonoSensor(sensor);
monoSensor.LaneXExtentThreshold = 0.5;
% To remove false detections from shadows in this video, we only return
% vehicle detections with higher scores.
monoSensor.VehicleDetectionThreshold = 20;

isPlayerOpen = true;
snapshot = [];
while hasFrame(videoReader) && isPlayerOpen

 frame = readFrame(videoReader); % get a frame

 sensorOut = processFrame(monoSensor, frame);

 closePlayers = ~hasFrame(videoReader);

 isPlayerOpen = displaySensorOutputs(monoSensor, frame, sensorOut, closePlayers);

 timeStamp = 11.1333; % take snapshot for publishing at timeStamp seconds
 if abs(videoReader.CurrentTime - timeStamp) < 0.01
 snapshot = takeSnapshot(frame, sensor, sensorOut);
 end

end

Display the video frame. Snapshot is taken at timeStamp seconds.

if ~isempty(snapshot)
 figure
 imshow(snapshot)
end

 Visual Perception Using Monocular Camera

8-123

Supporting Functions

visualizeSensorResults displays core information and intermediate results from the monocular
camera sensor simulation.

function isPlayerOpen = visualizeSensorResults(frame, sensor, sensorOut,...
 intOut, closePlayers)

 % Unpack the main inputs
 leftEgoBoundary = sensorOut.leftEgoBoundary;
 rightEgoBoundary = sensorOut.rightEgoBoundary;
 locations = sensorOut.vehicleLocations;

 xVehiclePoints = sensorOut.xVehiclePoints;
 bboxes = sensorOut.vehicleBoxes;

 % Unpack additional intermediate data
 birdsEyeViewImage = intOut.birdsEyeImage;
 birdsEyeConfig = intOut.birdsEyeConfig;
 vehicleROI = intOut.vehicleROI;
 birdsEyeViewBW = intOut.birdsEyeBW;

 % Visualize left and right ego-lane boundaries in bird's-eye view

8 Featured Examples

8-124

 birdsEyeWithOverlays = insertLaneBoundary(birdsEyeViewImage, leftEgoBoundary , birdsEyeConfig, xVehiclePoints, 'Color','Red');
 birdsEyeWithOverlays = insertLaneBoundary(birdsEyeWithOverlays, rightEgoBoundary, birdsEyeConfig, xVehiclePoints, 'Color','Green');

 % Visualize ego-lane boundaries in camera view
 frameWithOverlays = insertLaneBoundary(frame, leftEgoBoundary, sensor, xVehiclePoints, 'Color','Red');
 frameWithOverlays = insertLaneBoundary(frameWithOverlays, rightEgoBoundary, sensor, xVehiclePoints, 'Color','Green');

 frameWithOverlays = insertVehicleDetections(frameWithOverlays, locations, bboxes);

 imageROI = vehicleToImageROI(birdsEyeConfig, vehicleROI);
 ROI = [imageROI(1) imageROI(3) imageROI(2)-imageROI(1) imageROI(4)-imageROI(3)];

 % Highlight candidate lane points that include outliers
 birdsEyeViewImage = insertShape(birdsEyeViewImage, 'rectangle', ROI); % show detection ROI
 birdsEyeViewImage = imoverlay(birdsEyeViewImage, birdsEyeViewBW, 'blue');

 % Display the results
 frames = {frameWithOverlays, birdsEyeViewImage, birdsEyeWithOverlays};

 persistent players;
 if isempty(players)
 frameNames = {'Lane marker and vehicle detections', 'Raw segmentation', 'Lane marker detections'};
 players = helperVideoPlayerSet(frames, frameNames);
 end
 update(players, frames);

 % Terminate the loop when the first player is closed
 isPlayerOpen = isOpen(players, 1);

 if (~isPlayerOpen || closePlayers) % close down the other players
 clear players;
 end
end

computeVehicleLocations calculates the location of a vehicle in vehicle coordinates, given a
bounding box returned by a detection algorithm in image coordinates. It returns the center location
of the bottom of the bounding box in vehicle coordinates. Because a monocular camera sensor and a
simple homography are used, only distances along the surface of the road can be computed.
Computation of an arbitrary location in 3-D space requires use of a stereo camera or another sensor
capable of triangulation.

function locations = computeVehicleLocations(bboxes, sensor)

locations = zeros(size(bboxes,1),2);
for i = 1:size(bboxes, 1)
 bbox = bboxes(i, :);

 % Get [x,y] location of the center of the lower portion of the
 % detection bounding box in meters. bbox is [x, y, width, height] in
 % image coordinates, where [x,y] represents upper-left corner.
 yBottom = bbox(2) + bbox(4) - 1;
 xCenter = bbox(1) + (bbox(3)-1)/2; % approximate center

 locations(i,:) = imageToVehicle(sensor, [xCenter, yBottom]);
end
end

 Visual Perception Using Monocular Camera

8-125

insertVehicleDetections inserts bounding boxes and displays [x,y] locations corresponding to
returned vehicle detections.

function imgOut = insertVehicleDetections(imgIn, locations, bboxes)

imgOut = imgIn;

for i = 1:size(locations, 1)
 location = locations(i, :);
 bbox = bboxes(i, :);

 label = sprintf('X=%0.2f, Y=%0.2f', location(1), location(2));

 imgOut = insertObjectAnnotation(imgOut, ...
 'rectangle', bbox, label, 'Color','g');
end
end

vehicleToImageROI converts ROI in vehicle coordinates to image coordinates in bird's-eye-view
image.

function imageROI = vehicleToImageROI(birdsEyeConfig, vehicleROI)

vehicleROI = double(vehicleROI);

loc2 = abs(vehicleToImage(birdsEyeConfig, [vehicleROI(2) vehicleROI(4)]));
loc1 = abs(vehicleToImage(birdsEyeConfig, [vehicleROI(1) vehicleROI(4)]));
loc4 = vehicleToImage(birdsEyeConfig, [vehicleROI(1) vehicleROI(4)]);
loc3 = vehicleToImage(birdsEyeConfig, [vehicleROI(1) vehicleROI(3)]);

[minRoiX, maxRoiX, minRoiY, maxRoiY] = deal(loc4(1), loc3(1), loc2(2), loc1(2));

imageROI = round([minRoiX, maxRoiX, minRoiY, maxRoiY]);

end

validateBoundaryFcn rejects some of the lane boundary curves computed using the RANSAC
algorithm.

function isGood = validateBoundaryFcn(params)

if ~isempty(params)
 a = params(1);

 % Reject any curve with a small 'a' coefficient, which makes it highly
 % curved.
 isGood = abs(a) < 0.003; % a from ax^2+bx+c
else
 isGood = false;
end
end

classifyLaneTypes determines lane marker types as solid, dashed, etc.

function boundaries = classifyLaneTypes(boundaries, boundaryPoints)

for bInd = 1 : size(boundaries,2)

8 Featured Examples

8-126

 vehiclePoints = boundaryPoints{bInd};
 % Sort by x
 vehiclePoints = sortrows(vehiclePoints, 1);

 xVehicle = vehiclePoints(:,1);
 xVehicleUnique = unique(xVehicle);

 % Dashed vs solid
 xdiff = diff(xVehicleUnique);
 % Set a threshold to remove gaps in solid line but not the spaces from
 % dashed lines.
 xdiffThreshold = mean(xdiff) + 3*std(xdiff);
 largeGaps = xdiff(xdiff > xdiffThreshold);

 % Safe default
 boundary = boundaries(bInd); % changed according to set/get methods
 boundary.BoundaryType= LaneBoundaryType.Solid;

 if largeGaps>1
 % Ideally, these gaps should be consistent, but you cannot rely
 % on that unless you know that the ROI extent includes at least 3 dashes.
 boundary.BoundaryType= LaneBoundaryType.Dashed;
 end
 boundaries(bInd) = boundary;
end
end

takeSnapshot captures the output for the HTML publishing report.

function I = takeSnapshot(frame, sensor, sensorOut)

 % Unpack the inputs
 leftEgoBoundary = sensorOut.leftEgoBoundary;
 rightEgoBoundary = sensorOut.rightEgoBoundary;
 locations = sensorOut.vehicleLocations;
 xVehiclePoints = sensorOut.xVehiclePoints;
 bboxes = sensorOut.vehicleBoxes;

 frameWithOverlays = insertLaneBoundary(frame, leftEgoBoundary, sensor, xVehiclePoints, 'Color','Red');
 frameWithOverlays = insertLaneBoundary(frameWithOverlays, rightEgoBoundary, sensor, xVehiclePoints, 'Color','Green');
 frameWithOverlays = insertVehicleDetections(frameWithOverlays, locations, bboxes);

 I = frameWithOverlays;

end

See Also
Apps
Camera Calibrator

Functions
findParabolicLaneBoundaries | segmentLaneMarkerRidge |
configureDetectorMonoCamera | extrinsics | estimateMonoCameraParameters

Objects
birdsEyeView | monoCamera | VideoReader | parabolicLaneBoundary | cameraIntrinsics

 Visual Perception Using Monocular Camera

8-127

More About
• “Track Multiple Vehicles Using a Camera” on page 8-261
• “Lane Keeping Assist with Lane Detection” on page 8-563
• “Forward Collision Warning Using Sensor Fusion” on page 8-218
• “Highway Lane Following” on page 8-922
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Calibrate a Monocular Camera” on page 1-8

8 Featured Examples

8-128

Create 360° Bird's-Eye-View Image Around a Vehicle
This example shows how to create a 360° bird's-eye-view image around a vehicle for use in a
surround view monitoring system. It then shows how to generate code for the same bird's-eye-view
image creation algorithm and verify the results.

Overview

Surround view monitoring is an important safety feature provided by advanced driver-assistance
systems (ADAS). These monitoring systems reduce blind spots and help drivers understand the
relative position of their vehicle with respect to the surroundings, making tight parking maneuvers
easier and safer. A typical surround view monitoring system consists of four fisheye cameras, with a
180° field of view, mounted on the four sides of the vehicle. A display in the vehicle shows the driver
the front, left, right, rear, and bird's-eye view of the vehicle. While the four views from the four
cameras are trivial to display, creating a bird's-eye view of the vehicle surroundings requires intrinsic
and extrinsic camera calibration and image stitching to combine the multiple camera views.

In this example, you first calibrate the multi-camera system to estimate the camera parameters. You
then use the calibrated cameras to create a bird's-eye-view image of the surroundings by stitching
together images from multiple cameras.

Calibrate the Multi-Camera System

First, calibrate the multi-camera system by estimating the camera intrinsic and extrinsic parameters
by constructing a monoCamera object for each camera in the multi-camera system. For illustration
purposes, this example uses images taken from eight directions by a single camera with a 78˚ field of
view, covering 360˚ around the vehicle. The setup mimics a multi-camera system mounted on the roof
of a vehicle.

Estimate Monocular Camera Intrinsics

Camera calibration is an essential step in the process of generating a bird's-eye view. It estimates the
camera intrinsic parameters, which are required for estimating camera extrinsics, removing
distortion in images, measuring real-world distances, and finally generating the bird's-eye-view
image.

In this example, the camera was calibrated using a checkerboard calibration pattern in the “Using
the Single Camera Calibrator App” and the camera parameters were exported to
cameraParams.mat. Load these estimated camera intrinsic parameters.

ld = load("cameraParams.mat");

Since this example mimics eight cameras, copy the loaded intrinsics eight times. If you are using
eight different cameras, calibrate each camera separately and store their intrinsic parameters in a
cell array named intrinsics.

numCameras = 8;
intrinsics = cell(numCameras, 1);

intrinsics(:) = {ld.cameraParams.Intrinsics};

Estimate Monocular Camera Extrinsics

In this step, you estimate the extrinsics of each camera to define its position in the vehicle coordinate
system. Estimating the extrinsics involves capturing the calibration pattern from the eight cameras in

 Create 360° Bird's-Eye-View Image Around a Vehicle

8-129

a specific orientation with respect to the road and the vehicle. In this example, you use the horizontal
orientation of the calibration pattern. For details on the camera extrinsics estimation process and
pattern orientation, see Calibrate a Monocular Camera.

Place the calibration pattern in the horizontal orientation parallel to the ground, and at an
appropriate height such that all the corner points of the pattern are visible. Measure the height after
placing the calibration pattern and the size of a square in the checkerboard. In this example, the
pattern was placed horizontally at a height of 62.5 cm to make the pattern visible to the camera. The
size of a square in the checkerboard pattern was measured to be 29 mm.

% Measurements in meters
patternOriginHeight = 0.625;
squareSize = 29e-3;

The following figure illustrates the proper orientation of the calibration pattern for cameras along the
four principal directions, with respect to the vehicle axes. However, for generating the bird's-eye
view, this example uses four additional cameras oriented along directions that are different from the
principal directions. To estimate extrinsics for those cameras, choose and assign the preferred
orientation among the four principal directions. For example, if you are capturing from a front-facing
camera, align the X- and Y- axes of the pattern as shown in the following figure.

The variable patternPositions stores the preferred orientation choices for all the eight cameras.
These choices define the relative orientation between the pattern axes and the vehicle axes for

8 Featured Examples

8-130

https://www.mathworks.com/help/driving/ug/calibrate-a-monocular-camera.html

estimateMonoCameraParameters function. Display the images arranged by their camera positions
relative to the vehicle.

patternPositions = ["front", "left" , "left" , "back" ,...
 "back" , "right", "right", "front"];
extrinsicsCalibrationImages = cell(1, numCameras);
for i = 1:numCameras
 filename = "extrinsicsCalibrationImages/extrinsicsCalibrationImage" + string(i) + ".jpg";
 extrinsicsCalibrationImages{i} = imread(filename);
end
helperVisualizeScene(extrinsicsCalibrationImages, patternPositions)

To estimate the extrinsic parameters of one monocular camera, follow these steps:

1 Remove distortion in the image.
2 Detect the corners of the checkerboard square in the image.
3 Generate the world points of the checkerboard.
4 Use estimateMonoCameraParameters function to estimate the extrinsic parameters.
5 Use the extrinsic parameters to create a monoCamera object, assuming that the location of the

sensor location at vehicle coordinate system's origin.

In this example, the setup uses a single camera that was rotated manually around a camera stand.
Although the camera's focal center had moved during this motion, for simplicity, this example
assumes that the sensor remained at the same location (at origin). However, distances between
cameras on a real vehicle can be measured and entered in the sensor location property of
monoCamera.

 Create 360° Bird's-Eye-View Image Around a Vehicle

8-131

monoCams = cell(1, numCameras);
for i = 1:numCameras
 % Undistort the image.
 undistortedImage = undistortImage(extrinsicsCalibrationImages{i}, intrinsics{i});

 % Detect checkerboard points.
 [imagePoints, boardSize] = detectCheckerboardPoints(undistortedImage,...
 "PartialDetections", false);

 % Generate world points of the checkerboard.
 worldPoints = generateCheckerboardPoints(boardSize, squareSize);

 % Estimate extrinsic parameters of the monocular camera.
 [pitch, yaw, roll, height] = estimateMonoCameraParameters(intrinsics{i}, ...
 imagePoints, worldPoints, patternOriginHeight,...
 "PatternPosition", patternPositions(i));

 % Create a monoCamera object, assuming the camera is at origin.
 monoCams{i} = monoCamera(intrinsics{i}, height, ...
 "Pitch", pitch, ...
 "Yaw" , yaw, ...
 "Roll" , roll, ...
 "SensorLocation", [0, 0]);
end

Create 360° Bird's-Eye-View Image

Use the monoCamera objects configured using the estimated camera parameters to generate
individual bird's-eye-view images from the eight cameras. Stitch them to create the 360° bird's-eye-
view image.

Capture the scene from the cameras and load the images in the MATLAB workspace.

sceneImages = cell(1, numCameras);
for i = 1:numCameras
 filename = "sceneImages/sceneImage" + string(i) + ".jpg";
 sceneImages{i} = imread(filename);
end
helperVisualizeScene(sceneImages)

8 Featured Examples

8-132

Transform Images to Bird's-Eye View

Specify the rectangular area around the vehicle that you want to transform into a bird's-eye view and
the output image size. In this example, the farthest objects in captured images are about 4.5 m away.

Create a square output view that covers 4.5 m radius around the vehicle.

distFromVehicle = 4.5; % in meters
outView = [-distFromVehicle, distFromVehicle, ... % [xmin, xmax,
 -distFromVehicle, distFromVehicle]; % ymin, ymax]
outImageSize = [640, NaN];

To create the bird's-eye-view image from each monoCamera object, follow these steps.

1 Remove distortion in the image.
2 Create a birdsEyeView object.
3 Transform the undistorted image to a bird's-eye-view image using the transformImage

function.

bevImgs = cell(1, numCameras);
birdsEye = cell(1, numCameras);
for i = 1:numCameras
 undistortedImage = undistortImage(sceneImages{i}, monoCams{i}.Intrinsics);
 birdsEye{i} = birdsEyeView(monoCams{i}, outView, outImageSize);
 bevImgs{i} = transformImage(birdsEye{i}, undistortedImage);
end
helperVisualizeScene(bevImgs)

 Create 360° Bird's-Eye-View Image Around a Vehicle

8-133

Test the accuracy of the extrinsics estimation process by using the helperBlendImages function
which blends the eight bird's-eye-view images. Then display the image.

tiled360DegreesBirdsEyeView = zeros(640, 640, 3);
for i = 1:numCameras
 tiled360DegreesBirdsEyeView = helperBlendImages(tiled360DegreesBirdsEyeView, bevImgs{i});
end
figure
imshow(tiled360DegreesBirdsEyeView)

8 Featured Examples

8-134

For this example, the initial results from the extrinsics estimation process contain some
misalignments. However, those can be attributed to the wrong assumption that the camera was
located at the origin of the vehicle coordinate system. Correcting the misalignment requires image
registration.

Register and Stitch Bird's-Eye-View Images

First, match the features. Compare and visualize the results of using matchFeatures with
matchFeaturesInRadius, which enables you to restrict the search boundary using geometric
constraints. Constrained feature matching can improve results when patterns are repetitive, such as
on roads, where pavement markings and road signs are standard. In factory settings, you can design
a more elaborate configuration of the calibration patterns and textured background that further
improves the calibration and registration process. The Feature Based Panoramic Image Stitching

 Create 360° Bird's-Eye-View Image Around a Vehicle

8-135

https://www.mathworks.com/help/vision/ug/feature-based-panoramic-image-stitching.html

example explains in detail how to register multiple images and stitch them to create a panorama. The
results show that constrained feature matching using matchFeaturesInRadius matches only the
corresponding feature pairs in the two images and discards any features corresponding to unrelated
repetitive patterns.

% The last two images of the scene best demonstrate the advantage of
% constrained feature matching as they have many repetitive pavement
% markings.
I = bevImgs{7};
J = bevImgs{8};

% Extract features from the two images.
grayImage = rgb2gray(I);
pointsPrev = detectKAZEFeatures(grayImage);
[featuresPrev, pointsPrev] = extractFeatures(grayImage, pointsPrev);

grayImage = rgb2gray(J);
points = detectKAZEFeatures(grayImage);
[features, points] = extractFeatures(grayImage, points);

% Match features using the two methods.
indexPairs1 = matchFeaturesInRadius(featuresPrev, features, points.Location, ...
 pointsPrev.Location, 15, ...
 "MatchThreshold", 10, "MaxRatio", 0.6);

indexPairs2 = matchFeatures(featuresPrev, features, "MatchThreshold", 10, ...
 "MaxRatio", 0.6);

% Visualize the matched features.
tiledlayout(1,2)
nexttile
showMatchedFeatures(I, J, pointsPrev(indexPairs1(:,1)), points(indexPairs1(:,2)))
title(sprintf('%d pairs matched\n with spatial constraints', size(indexPairs1, 1)))

nexttile
showMatchedFeatures(I, J, pointsPrev(indexPairs2(:,1)), points(indexPairs2(:,2)))
title(sprintf('%d pairs matched\n without spatial constraints', size(indexPairs2,1)))

8 Featured Examples

8-136

The functions helperRegisterImages and helperStitchImages have been written based on the
Feature Based Panoramic Image Stitching example using matchFeaturesInRadius. Note that
traditional panoramic stitching is not enough for this application as each image is registered with
respect to the previous image alone. Consequently, the last image might not align accurately with the
first image, resulting in a poorly aligned 360° surround view image.

This drawback in the registration process can be overcome by registering the images in batches:

1 Register and stitch the first four images to generate the image of left side of the vehicle.
2 Register and stitch the last four images to generate the image of right side of the vehicle.
3 Register and stitch the left side and right side to get the complete 360° of the bird's-eye-view

image of the scene.

 Create 360° Bird's-Eye-View Image Around a Vehicle

8-137

https://www.mathworks.com/help/vision/ug/feature-based-panoramic-image-stitching.html

Note the use of larger matching radius for stitching images in step 3 compared to steps 1 and 2. This
is because of the change in the relative positions of the images during the first two registration steps.

% Cell array holding two sets of transformations for left and right sides
finalTforms = cell(1,2);

% Combine the first four images to get the stitched leftSideview and the
% spatial reference object Rleft.
radius = 15;
leftImgs = bevImgs(1:4);
finalTforms{1} = helperRegisterImages(leftImgs, radius);
[leftSideView, Rleft] = helperStitchImages(leftImgs, finalTforms{1});

% Combine the last four images to get the stitched rightSideView.
rightImgs = bevImgs(5:8);
finalTforms{2} = helperRegisterImages(rightImgs, radius);
rightSideView = helperStitchImages(rightImgs, finalTforms{2});

% Combine the two side views to get the 360° bird's-eye-view in
% surroundView and the spatial reference object Rsurround
radius = 50;
imgs = {leftSideView, rightSideView};
tforms = helperRegisterImages(imgs, radius);
[surroundView, Rsurround] = helperStitchImages(imgs, tforms);
figure
imshow(surroundView)

8 Featured Examples

8-138

Measure Distances in the 360° Bird's-Eye-View

One advantage in using bird's-eye-view images to measure distances is that the distances can be
computed across the image owing to the planar nature of the ground. You can measure various
distances that are useful for ADAS applications such as drawing proximity range guidelines and ego
vehicle boundaries. Distance measurement involves transforming world points in the vehicle
coordinate system to the bird's-eye-view image, which you can do using the vehicleToImage
function. However, note that each of the eight bird's-eye-view images have undergone two geometric
transformations during the image registration process. Thus, in addition to using the
vehicleToImage function, you must apply these transformations to the image points. The
helperVehicleToBirdsEyeView function applies these transformations. The points are projected

 Create 360° Bird's-Eye-View Image Around a Vehicle

8-139

to the first bird's-eye-view image, as this image has undergone the least number of transformations
during the registration process.

Draw Proximity Range Guidelines

Circular parking range guidelines around the vehicle can assist drivers maneuvering in tight parking
spots. Draw circular guidelines at 2, 3, and 4 meters on the 360° bird's-eye-view image:

1 Transform the vehicle center and a point in the circular guideline in the vehicle coordinate
system, to the 360° bird's-eye-view image using helperVehicleToBirdsEyeView function.

2 Calculate the radius of the circular guideline in pixels by finding the distance between the two
transformed points.

3 Draw the guidelines using the insertShape function and label the guidelines using the
insertText function.

proximityRange = [2, 3, 4]; % in meters
colors = ["red", "yellow", "green"];
refBirdsEye = birdsEye{1};
Rout = {Rleft, Rsurround};
vehicleCenter = [0, 0];
vehicleCenterInImage = helperVehicleToBirdsEyeView(refBirdsEye, vehicleCenter, Rout);

for i = 1:length(proximityRange)

 % Estimate the radius of the circular guidelines in pixels given its
 % radius in meters.
 circlePoint = [0, proximityRange(i)];
 circlePointInImage = helperVehicleToBirdsEyeView(refBirdsEye, circlePoint, Rout);

 % Compute radius using euclidean norm.
 proximityRangeInPixels = norm(circlePointInImage - vehicleCenterInImage, 2);

 surroundView = insertShape(surroundView, "Circle", [vehicleCenterInImage, proximityRangeInPixels], ...
 "LineWidth", 1, ...
 "Color", colors(i));

 labelText = string(proximityRange(i)) + " m";
 surroundView = insertText(surroundView, circlePointInImage, labelText,...
 "TextColor", "White", ...
 "FontSize", 14, ...
 "BoxOpacity", 0);
end

imshow(surroundView)

Draw Ego Vehicle Boundary

Boundary lines for a vehicle help the driver understand the relative position of the vehicle with
respect to the surroundings. Draw the ego vehicle's boundary using a similar procedure as that of
drawing proximity guidelines. The helperGetVehicleBoundaryOnBEV function returns the corner
points of the vehicle boundary on the 360° bird's-eye-view image given the vehicle position and size.
Show the guidelines on the scene using the showShape function.

vehicleCenter = [0, 0];
vehicleSize = [5.6, 2.4]; % length-by-width in meters
[polygonPoints, vehicleLength, vehicleWidth] = helperGetVehicleBoundaryOnBEV(refBirdsEye, ...

8 Featured Examples

8-140

 vehicleCenter, ...
 vehicleSize, ...
 Rout);
showShape("polygon", polygonPoints, "Label", "Ego Vehicle")

Additionally, you can also overlay a simulated vehicle on the scene for visually pleasing results.

% Read the picture of the simulation vehicle.
egoVehicleImage = imread("vehicle.png", "BackgroundColor", [0 0 0]);

% Bring the simulation vehicle into the vehicle coordinate system.
egoVehicleImage = imresize(egoVehicleImage, [vehicleLength, vehicleWidth]);
vehicle = zeros(size(surroundView), "uint8");
xIdx = polygonPoints(1,1) + (1:vehicleWidth);

 Create 360° Bird's-Eye-View Image Around a Vehicle

8-141

yIdx = polygonPoints(1,2) + (1:vehicleLength);
vehicle(yIdx, xIdx, :) = egoVehicleImage;

% Overlay the simulation vehicle on the 360° bird's-eye-view image.
sceneBirdsEyeView = helperOverlayImage(vehicle, surroundView);

Finally, let's eliminate black borders in the image by selecting smaller range from the vehicle's
coordinate system's origin.

distFromVehicle = 4.25; % in meters
[x, y, h, w] = helperGetImageBoundaryOnBEV(refBirdsEye, distFromVehicle, Rout);
croppedSceneBirdsEyeView = imcrop(sceneBirdsEyeView, [x, y, h, w]);
imshow(croppedSceneBirdsEyeView)

8 Featured Examples

8-142

Code Generation and Verification

This algorithm can be deployed in hardware. To accomplish that, the next step is to package the
proposed algorithm for generating 360° bird's-eye-view using images from eight surround cameras
into a function, and generate code for it using MATLAB Coder™.

Restructure MATLAB Code for Code Generation

Following is a summary of the steps to generate 360° bird's-eye-view image, outlined in the previous
sections:

1 Calibrate the multi-camera system and store the intrinsics and extrinsics in monoCamera objects.
2 Obtain the bird's-eye-view transformations for each of the cameras and store them in

birdsEyeView objects.
3 Transform the camera images into bird's-eye-view images and blend them to obtain the 360°

surround view.
4 Register and stitch the corresponding camera images to generate the images of left and right-

side views of the vehicle, and obtain the two respective transformations.
5 Obtain the final 360° bird's-eye-view image by registering and stitching the left and right side

images of the vehicle.
6 Add circular guidelines at specific distances, overlay the simulated vehicle image on the bird's-

eye-view image, and crop the final image to eliminate black borders.

However, the following additional considerations help restructure the above steps into the proposed
algorithm for code generation:

• Steps 1 and 2 need to be performed only once for a given stationary multi-camera setup. Hence,
you can use the bird's-eye-view transformations obtained from MATLAB directly in the generated
code.

• Similarly, in step 4, you can use the two transformations for the left and right-side images
obtained during the first-time setup in MATLAB, directly in the generated code. This eliminates
the need to perform registration every time to generate the left and right-side images.

Applying the above considerations, this example provides helperGenerateBirdsEyeView, that
serves as the entry-point function for code generation. The proposed algorithm in
helperGenerateBirdsEyeView has the following steps:

1 Transform the current camera images to bird's-eye-view images using the birdsEyeView
objects.

2 Obtain the left and right-side images of the vehicle using the respective transformations on the
corresponding camera images.

3 Obtain the final 360° bird's-eye-view image by registering and stitching the left and right-side
view images of the vehicle.

4 (Optional) Add circular guidelines at specific distances and overlay the simulated vehicle image
on the bird's-eye-view image and crop the final image to eliminate black borders.

Generate Code and Verify Results

The entry-point function helperGenerateBirdsEyeView provides the final bird's-eye-view image
overlayed with vehicle image as output. It has the following inputs:

 Create 360° Bird's-Eye-View Image Around a Vehicle

8-143

1 sceneImages: Current camera images, specified as a cell array.
2 bevStructs: BirdsEyeView objects converted to structures, specified as a cell array of

structures.
3 finalTforms: Transforms for left and right-side view images, specified as a cell array of

affine2d transforms.
4 egoVehicleImage: Simulated image of the ego vehicle to overlay on the final bird's-eye-view

image, specified as M x N x 3 array.

To convert the bird's-eye-view objects to structures, use helperToStructBev function. This gives us
all the necessary inputs.

for i = 1:numCameras
 bevStructs{i} = helperToStructBev(birdsEye{i});
end

This example provides the MATLAB Coder project helperGenerateBirdsEyeViewProject, that is
already set up with the entry-point function, helperGenerateBirdsEyeView.

1 Open the project. You can use this to define the input and output types, tune code generation
settings and generate code. You can navigate to different steps in the process using the Back
and Next options.

2 The project is tuned for the build type to be MEX. This generates a MEX function, which is an
executable for the generated code that can be executed within the MATLAB environment. This is
useful to verify that the proposed algorithm provides the same functionality as the MATLAB code.
In the project, navigate to the Generate Code step, and click Generate. This will generate the
MEX function.

3 After the code is generated, select Verify Code to execute the MEX function and verify the
output of the generated code with that of the algorithm in MATLAB. For Run using, select
Generated code to call the generated MEX function during testing. By default, the test function
is just a call to the entry-point function, which you can replace with your own test function.

4 Click Run Generated Code to obtain the bird's-eye-view image output. Visualize the output
image from the generated code and verify that it is the same as MATLAB code. Alternatively, you
can execute the MEX file directly by providing the same inputs as the entry-point function.

bevImage = helperGenerateBirdsEyeView_mex(sceneImages,bevStructs,finalTforms,egoVehicleImage);
imshow(bevImage)

8 Featured Examples

8-144

For more information on authoring test functions for the generated code, see “Unit Test Generated
Code with MATLAB Coder” (MATLAB Coder).

Conclusion

The procedure shown in this example can be extended to generate source code to deploy to the target
hardware of a surround view monitoring system. For this, you must select the build type to be Source
Code in the MATLAB Coder project and perform any necessary modifications to the MATLAB code.
For more information, see “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder).

Note that this example requires accurate camera calibration to estimate the monocular camera
positions with minimal errors and tuning the registration hyperparameters. This example can also be
modified to use fisheye cameras.

 Create 360° Bird's-Eye-View Image Around a Vehicle

8-145

Supporting Functions

helperVisualizeScene Function

The helperVisualizeScene function displays the images arranged by their camera positions
relative to the vehicle on a 3-by-3 tiled chart layout and optionally shows the title text for each of the
tiles.

helperBlendImages Function

The helperBlendImages function performs alpha blending to the given two input images, I1 and
I2, with alpha values that are proportional to the center seam of each image. The output Iout is a
linear combination of the input images:

Iout = αI1 + 1− α I2

helperRegisterImages Function

The helperRegisterImages function registers a cell array of images sequentially using the
searching radius for matchFeaturesInRadius and returns the transformations, tforms.

helperStitchImages Function

The helperStitchImages function applies the transforms tforms to the input images and blends
them to produce the outputImage. It additionally returns the outputView, which you can use to
transform any point from the first image in the given image sequence to the output image.

helperVehicleToBirdsEyeView Function

The helperVehicleToBirdsEyeView function transforms the given world points in vehicle
coordinate system to points in the 360° bird's-eye-view image.

helperGetImageBoundaryOnBEV Function

The helperGetImageBoundaryOnBEV function returns the position and size of a bounding box in
the bird's-eye-view image that defines a square area that covers distFromVehicle meters around
the vehicle.

helperGetVehicleBoundaryOnBEV Function

The helperGetVehicleBoundaryOnBEV function returns the corner points of a vehicle boundary
given its position and size.

helperOverlayImage Function

The helperOverlayImage function overlays the topImage on the bottomImage and returns the
result in outputImage.

See Also
Apps
Camera Calibrator

Functions
undistortImage | estimateMonoCameraParameters | detectKAZEFeatures | matchFeatures
| matchFeaturesInRadius | estimateGeometricTransform2D

8 Featured Examples

8-146

Objects
birdsEyeView | monoCamera

More About
• “Calibrate a Monocular Camera” on page 1-8

 Create 360° Bird's-Eye-View Image Around a Vehicle

8-147

Perception-Based Parking Spot Detection Using Unreal Engine
Simulation

To park a vehicle automatically once it arrives at the entrance of a parking lot, automated systems of
the vehicle must take control and steer it to an available parking spot. This requires the vehicle to use
the on-board sensors to perceive the environment around the vehicle and find available parking spots.
This example implements a vision-based parking spot detection system in a 3D simulation
environment, rendered using Unreal Engine® from Epic Games®.

Introduction

Using the Unreal Engine Simulation environment, you can configure prebuilt scenes, place and move
vehicles within the scene, and configure and simulate camera, radar, or lidar sensors on the vehicle.
This example shows how to find empty parking spots in the prebuilt Large Parking Lot scene using a
camera sensor. The steps in this workflow are:

1 Drive through the parking lot to build a map of the environment using the semantic segmentation
data derived from the camera sensor.

2 Detect parking lines on the map.
3 Analyze the map to determine empty parking spots based on the detected parking lines and

detect vehicles which are already parked.

Construct Parking Lot Simulation

Use the Simulation 3D Scene Configuration block to set up the simulation environment. Select the
built-in Large Parking Lot scene, which contains several parked vehicles. Set up an ego vehicle
moving along the specified reference path by using the Simulation 3D Vehicle with Ground Following
block. This example uses a prerecorded reference trajectory and parked vehicle locations. You can
specify a trajectory interactively by selecting a sequence of waypoints. For more information, see the
Select Waypoints for Unreal Engine Simulation example.

% Load reference path data
refPoses = load("parkingSpotPath.mat");

% Display the reference path
sceneName = "LargeParkingLot";
hScene = figure;
helperShowSceneImage(sceneName);
hold on
plot(refPoses.X(:,2), refPoses.Y(:,2),LineWidth=2,DisplayName="Reference Path");
xlim([-60 40])
ylim([10 60])
hScene.Position = [100, 100, 1000, 500]; % Resize figure
legend
hold off

8 Featured Examples

8-148

https://www.mathworks.com/help/driving/ug/select-waypoints-for-3d-simulation.html

After adding the ego vehicle, you can attach a camera sensor to it using the Simulation 3D Camera
block. In this example, the camera is mounted on the left mirror of the ego vehicle with a rotation
offset to point to the side of the vehicle. You can use the Camera Calibrator app to estimate
intrinsics of the actual camera that you want to simulate.

% Open the model
modelName = "ParkingLaneMarkingsDetection";
open_system(modelName)

% Set camera intrinsic parameters
focalLength = [1109 1109]; % In pixels
principalPoint = [401 401]; % In pixels
imageSize = [801 801]; % In pixels

 Perception-Based Parking Spot Detection Using Unreal Engine Simulation

8-149

Build a Map

Using the camera mounted on the vehicle, the constructMap MATLAB Function block in the
ParkingLaneMarkingsDetection model implements the algorithm to build a map, using these
steps:

1 Detects parking lane markings and parked vehicles using semantic segmentation. For simplicity,
this example uses the ground truth segmentation data from the Label outport of the Simulation
3D Camera block. In a more realistic implementation, you can replace this with a semantic
segmentation algorithm to detect vehicles and lane markings from camera images.

2 Transforms detections from the image coordinates to the vehicle coordinates by applying a
projective transformation using the transformImage object function of the birdsEyeView
object.

3 Transforms detections from the local vehicle coordinates to the world coordinates using vehicle
odometry. This example relies on the odometry provided by the ground truth of the Simulation 3D
Vehicle with Ground Following block. In real applications, you can obtain this information from a
localization subsystem that uses onboard IMU, wheel encoders, camera, lidar sensor, and any
other sensors that help with accurate vehicle trajectory estimation. For an example of how to

8 Featured Examples

8-150

https://www.mathworks.com/help/driving/ref/birdseyeview.transformimage.html

develop a visual localization system using synthetic image data in the Unreal Engine® simulation
environment, see the Visual Localization in a Parking Lot example.

4 Builds a bird's-eye-view map of the parking lot by incrementally merging the detections in the
world coordinates. The map consists of two layers represented by two binary images,
laneMarkings and parkedVehicles. parkedVehicles contains the parked vehicles in the
scene, representing obstacles. laneMarkings contains the parking lane markings used to
determine the locations of parking spots.

if ~ispc
 error(["3D Simulation is only supported on Microsoft", char(174), "Windows", char(174), "."]);
end

% Simulate the model
sim(modelName);

 Perception-Based Parking Spot Detection Using Unreal Engine Simulation

8-151

https://www.mathworks.com/help/vision/ug/visual-localization-in-parking-lot.html

8 Featured Examples

8-152

 Perception-Based Parking Spot Detection Using Unreal Engine Simulation

8-153

Detect Parking Lines

Parking spots are generally constructed using fixed-width, parallel, line segments. You can detect
these line segments from the parking line markings by using the Hough transform. The
helperFindParkingLines on page 8-0 function extracts line segments based on the Hough
transform and returns horizontal or vertical lines.

% Get the data at the end of the simulation
laneMarkings = logsout{1}.Values.Data(:,:,end);
parkedVehicles = logsout{2}.Values.Data(:,:,end);

% Close the model
close_system(modelName)

% Find parking lanes
[parkingLines,isHorizontal] = helperFindParkingLines(laneMarkings);

% Display parking lines
helperPlotMap(parkingLines,laneMarkings,parkedVehicles);

8 Featured Examples

8-154

https://www.mathworks.com/help/images/hough-transform.html

The returned line segments may contain multiple lines that belong to the same line markings. To
remove redundant lines, the helperFindUnqiueLanes on page 8-0 function clusters the detected
lines based on their orientations and center point positions, and keeps only the longest line in each
cluster.

% Collect features for each detected lane
parkingLines = helperFindUnqiueLanes(parkingLines, isHorizontal);

% Display the filtered lines
ax = helperPlotMap(parkingLines,laneMarkings,parkedVehicles);

 Perception-Based Parking Spot Detection Using Unreal Engine Simulation

8-155

Determine Empty Parking Spots

Next, find the empty parking spots by exploring all the vertices resulting from the detected lines and
checking which ones could result in a rectangle with required dimensions. The vertices include both
the starting and ending points of the detected lines, as well as the intersection points of the lines.

% Find all the vertices
vertices = helperGetVertices(parkingLines);

% Display all the vertices
plot(ax,vertices(:,1),vertices(:,2),"x",LineWidth=2,Color="red");

8 Featured Examples

8-156

To determine if a parking spot is empty, check if the convex hull of its four vertices overlaps with the
obstacle area in parkedVehicles.

% Identify parking spots based on area
[parkingSpots,isOccupied] = helperFindParkingSpots(vertices,parkedVehicles);

% Display empty parking spots on the map
h1 = plot(ax, parkingSpots(~isOccupied),LineWidth=2,FaceColor="c",DisplayName="Empty spots");

% Display occupied parking spots on the map
h2 = plot(ax, parkingSpots(isOccupied),LineWidth=2,FaceColor="r",DisplayName="Occupied spots");

% Add legends
legend([h1(1) h2(2)])

 Perception-Based Parking Spot Detection Using Unreal Engine Simulation

8-157

After obtaining the locations of empty parking spots, you can execute a parking maneuver to park the
vehicle. To learn how to plan a trajectory in a parking lot, see the “Visualize Automated Parking Valet
Using Unreal Engine Simulation” on page 8-904 example.

Helper Functions

helperFindParkingLines finds lines from semantic segmentation results.

function [lanes,isHorizontal] = helperFindParkingLines(map)

[H,T,R] = hough(map);

P = houghpeaks(H,150,Threshold=0.1*max(H(:)));
lines = houghlines(map,T,R,P,FillGap=10,MinLength=50);
lanes = [vertcat(lines.point1),vertcat(lines.point2)];

isHorizontal = abs(lanes(:, 1) - lanes(:, 3)) < 4;
isVertical = abs(lanes(:, 2) - lanes(:, 4)) < 4;
lanes = lanes(isHorizontal | isVertical,:);
isHorizontal = isHorizontal(isHorizontal | isVertical);
end

helperPlotMap plots the occupancy map based on the data captured from the simulation.

function ax = helperPlotMap(parkingLanes,binaryLanesMap,binaryCarsMap)

occupancyMap = imfuse(binaryLanesMap,binaryCarsMap);

8 Featured Examples

8-158

figure
ax = gca;
imshow(occupancyMap,Parent=ax);
hold(ax, 'on');

for i=1:size(parkingLanes,1)
 xy=parkingLanes(i,:);
 xy=[xy(1:2);xy(3:4)];
 plot(ax,xy(:,1),xy(:,2),LineWidth=2,Color="blue");
 plot(ax,xy(1,1),xy(1,2),"x",LineWidth=2,Color="red");
 plot(ax,xy(2,1),xy(2,2),"x",LineWidth=2,Color="red");
end
end

helperGetVertices constructs a set of vertices using the end-points of the lines and their
intersections.

function vertices = helperGetVertices(lanes)

vertices=[lanes(:,1:2); lanes(:,3:4)];

for i = 1:size(lanes,1)
 for j = i:size(lanes,1)
 point = helperFindLineIntersections(lanes(i,1:2),lanes(i,3:4),lanes(j,1:2),lanes(j,3:4));
 if ~isempty(point)
 vertices = [vertices; point];
 end
 end
end
vertices = unique(vertices,"rows");
end

helperFindUnqiueLanes calculates a set of features for each lane.

function uniqueLanes = helperFindUnqiueLanes(lanes,isHorizontal)
% Cluster lines based on orientation and length
startPoints = lanes(:,[1 2]);
endPoints = lanes(:,[3 4]);

numLanes = size(lanes,1);

isLongest = true(numLanes,1);
for i = 1:numLanes-1
 for j = i+1:numLanes
 isPointsClose = norm(startPoints(i,:)-startPoints(j,:)) < 10 || norm(endPoints(i,:)-endPoints(j,:)) < 10 || ...
 norm(startPoints(i,:)-endPoints(j,:)) < 10 || norm(startPoints(i,:)-endPoints(j,:)) < 10;
 isSameOrientation = isHorizontal(i) & isHorizontal(j);
 if isPointsClose && isSameOrientation
 if norm(startPoints(i,:)-endPoints(i,:)) < norm(startPoints(j,:)-endPoints(j,:))
 isLongest(i) = false;
 else
 isLongest(j) = false;
 end
 end
 end
end
uniqueLanes = lanes(isLongest,:);
end

 Perception-Based Parking Spot Detection Using Unreal Engine Simulation

8-159

helperFindParkingSpots finds parking spots constructed by parking lines

function [parkingSpots,isOccupied] = helperFindParkingSpots(points,binaryCarsMap)

% Check all the combinations of four points
groups = nchoosek(1:size(points,1),4);

numSpots = 1;
spotArea = 1500; % Expected parking spot area

for i = 1:size(groups,1)
 % Compute the distance between the center point and the four corner
 % points. If the distances are approximately the same, then the shape
 % constructed by the four corner points are a rectangle.
 cornerPoints = points(groups(i,:),:);
 centerPoint = mean(cornerPoints);
 distances = vecnorm(cornerPoints - centerPoint,2,2);

 hasCollinearPoints = numel(unique(cornerPoints(:,1)))==1 || ...
 numel(unique(cornerPoints(:,2)))==1;
 if max(distances) - min(distances) < 5 && ~hasCollinearPoints

 % Compute the area of the rectangle
 pgon = polyshape(cornerPoints,KeepCollinearPoints=true,Simplify=false);
 if numsides(pgon) == 4
 hull = convhull(pgon);
 if abs(area(hull) - spotArea) < 500
 mask = poly2mask(hull.Vertices(:,1),hull.Vertices(:,2), ...
 size(binaryCarsMap,1),size(binaryCarsMap, 2));
 % Check if the spot is occupied by a parking vehicle
 parkingSpots(numSpots) = hull; %#ok<*AGROW>
 isOccupied(numSpots) = sum(sum(mask & binaryCarsMap))>100;
 numSpots = numSpots+1;
 end
 end
 end
end
end

helperFindLineIntersections finds the intersection points of two lines.

function point = helperFindLineIntersections(startPoint1,endPoint1,startPoint2,endPoint2)

% Line1 : a1*x + b1*y = c1
a1 = endPoint1(2) - startPoint1(2);
b1 = startPoint1(1) - endPoint1(1);
c1 = a1 .* startPoint1(1) + b1 .* startPoint1(2);

% Line2 : a2*x + b2*y = c2
a2 = endPoint2(2) - startPoint2(2);
b2 = startPoint2(1) - endPoint2(1);
c2 = a2 .* startPoint2(1) + b2 .* startPoint2(2);

determinant = a1*b2 - a2*b1;

point = [];
if abs(determinant) > sqrt(eps(class(determinant))) % Two lines are not parallel
 point(1) = (b2*c1 - b1*c2)/determinant;

8 Featured Examples

8-160

 point(2) = (a1*c2 - a2*c1)/determinant;

 % Check if the intersection point lies with the two line segments
 isValid = point(1) >= min(startPoint1(1), endPoint1(1)) && ...
 point(1) <= max(startPoint1(1),endPoint1(1)) && ...
 point(2) >= min(startPoint1(2),endPoint1(2)) && ...
 point(2) <= min(startPoint1(2),endPoint1(2));

 if ~isValid
 point = [];
 end
end

end

 Perception-Based Parking Spot Detection Using Unreal Engine Simulation

8-161

Train a Deep Learning Vehicle Detector
This example shows how to train a vision-based vehicle detector using deep learning.

Overview

Vehicle detection using computer vision is an important component for tracking vehicles around the
ego vehicle. The ability to detect and track vehicles is required for many autonomous driving
applications, such as for forward collision warning, adaptive cruise control, and automated lane
keeping. Automated Driving Toolbox™ provides pretrained vehicle detectors
(vehicleDetectorFasterRCNN and vehicleDetectorACF) to enable quick prototyping. However,
the pretrained models might not suit every application, requiring you to train from scratch. This
example shows how to train a vehicle detector from scratch using deep learning.

Deep learning is a powerful machine learning technique that you can use to train robust object
detectors. Several deep learning techniques for object detection exist, including Faster R-CNN and
you only look once (YOLO) v2. This example trains a Faster R-CNN vehicle detector using the
trainFasterRCNNObjectDetector function. For more information, see “Object Detection”.

Download Pretrained Detector

Download a pretrained detector to avoid having to wait for training to complete. If you want to train
the detector, set the doTrainingAndEval variable to true.

doTrainingAndEval = false;
if ~doTrainingAndEval && ~exist('fasterRCNNResNet50EndToEndVehicleExample.mat','file')
 disp('Downloading pretrained detector (118 MB)...');
 pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/fasterRCNNResNet50EndToEndVehicleExample.mat';
 websave('fasterRCNNResNet50EndToEndVehicleExample.mat',pretrainedURL);
end

Load Dataset

This example uses a small labeled dataset that contains 295 images. Many of these images come from
the Caltech Cars 1999 and 2001 data sets, available at the Caltech Computational Vision website,
created by Pietro Perona and used with permission. Each image contains one or two labeled instances
of a vehicle. A small dataset is useful for exploring the Faster R-CNN training procedure, but in
practice, more labeled images are needed to train a robust detector. Unzip the vehicle images and
load the vehicle ground truth data.

unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;

The vehicle data is stored in a two-column table, where the first column contains the image file paths
and the second column contains the vehicle bounding boxes.

Split the data set into a training set for training the detector and a test set for evaluating the
detector. Select 60% of the data for training. Use the rest for evaluation.

rng(0)
shuffledIdx = randperm(height(vehicleDataset));
idx = floor(0.6 * height(vehicleDataset));
trainingDataTbl = vehicleDataset(shuffledIdx(1:idx),:);
testDataTbl = vehicleDataset(shuffledIdx(idx+1:end),:);

8 Featured Examples

8-162

http://www.vision.caltech.edu/archive.html

Use imageDatastore and boxLabelDatastore to create datastores for loading the image and
label data during training and evaluation.

imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle'));

imdsTest = imageDatastore(testDataTbl{:,'imageFilename'});
bldsTest = boxLabelDatastore(testDataTbl(:,'vehicle'));

Combine image and box label datastores.

trainingData = combine(imdsTrain,bldsTrain);
testData = combine(imdsTest,bldsTest);

Display one of the training images and box labels.

data = read(trainingData);
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'Rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

 Train a Deep Learning Vehicle Detector

8-163

Create Faster R-CNN Detection Network

A Faster R-CNN object detection network is composed of a feature extraction network followed by
two subnetworks. The feature extraction network is typically a pretrained CNN, such as ResNet-50 or
Inception v3. The first subnetwork following the feature extraction network is a region proposal
network (RPN) trained to generate object proposals - areas in the image where objects are likely to
exist. The second subnetwork is trained to predict the actual class of each object proposal.

The feature extraction network is typically a pretrained CNN (for details, see “Pretrained Deep
Neural Networks” (Deep Learning Toolbox)). This example uses ResNet-50 for feature extraction. You
can also use other pretrained networks such as MobileNet v2 or ResNet-18, depending on your
application requirements.

Use fasterRCNNLayers to create a Faster R-CNN network automatically given a pretrained feature
extraction network. fasterRCNNLayers requires you to specify several inputs that parameterize a
Faster R-CNN network:

• Network input size
• Anchor boxes
• Feature extraction network

First, specify the network input size. When choosing the network input size, consider the minimum
size required to run the network itself, the size of the training images, and the computational cost
incurred by processing data at the selected size. When feasible, choose a network input size that is
close to the size of the training image and larger than the input size required for the network. To
reduce the computational cost of running the example, specify a network input size of [224 224 3],
which is the minimum size required to run the network.

inputSize = [224 224 3];

Note that the training images used in this example are bigger than 224-by-224 and vary in size, so
you must resize the images in a preprocessing step prior to training.

Next, use estimateAnchorBoxes to estimate anchor boxes based on the size of objects in the
training data. To account for the resizing of the images prior to training, resize the training data for
estimating anchor boxes. Use transform to preprocess the training data, then define the number of
anchor boxes and estimate the anchor boxes.

preprocessedTrainingData = transform(trainingData, @(data)preprocessData(data,inputSize));
numAnchors = 4;
anchorBoxes = estimateAnchorBoxes(preprocessedTrainingData,numAnchors)

anchorBoxes = 4×2

 96 91
 68 65
 150 125
 38 29

For more information on choosing anchor boxes, see “Estimate Anchor Boxes From Training Data”
(Computer Vision Toolbox™) and “Anchor Boxes for Object Detection”.

Now, use resnet50 to load a pretrained ResNet-50 model.

featureExtractionNetwork = resnet50;

8 Featured Examples

8-164

Select 'activation_40_relu' as the feature extraction layer. This feature extraction layer outputs
feature maps that are downsampled by a factor of 16. This amount of downsampling is a good trade-
off between spatial resolution and the strength of the extracted features, as features extracted
further down the network encode stronger image features at the cost of spatial resolution. Choosing
the optimal feature extraction layer requires empirical analysis. You can use analyzeNetwork to
find the names of other potential feature extraction layers within a network.

featureLayer = 'activation_40_relu';

Define the number of classes to detect.

numClasses = width(vehicleDataset)-1;

Create the Faster R-CNN object detection network.

lgraph = fasterRCNNLayers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLayer);

You can visualize the network using analyzeNetwork or Deep Network Designer from Deep
Learning Toolbox™.

If more control is required over the Faster R-CNN network architecture, use Deep Network Designer
to design the Faster R-CNN detection network manually. For more information, see “Getting Started
with R-CNN, Fast R-CNN, and Faster R-CNN”.

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data
during training. By using data augmentation, you can add more variety to the training data without
actually having to increase the number of labeled training samples.

Use transform to augment the training data by randomly flipping the image and associated box
labels horizontally. Note that data augmentation is not applied to test data. Ideally, test data is
representative of the original data and is left unmodified for unbiased evaluation.

augmentedTrainingData = transform(trainingData,@augmentData);

Read the same image multiple times and display the augmented training data.

augmentedData = cell(4,1);
for k = 1:4
 data = read(augmentedTrainingData);
 augmentedData{k} = insertShape(data{1},'Rectangle',data{2});
 reset(augmentedTrainingData);
end
figure
montage(augmentedData,'BorderSize',10)

 Train a Deep Learning Vehicle Detector

8-165

Preprocess Training Data

Preprocess the augmented training data to prepare for training.

trainingData = transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));

Read the preprocessed data.

data = read(trainingData);

Display the image and box bounding boxes.

I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'Rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)

8 Featured Examples

8-166

Train Faster R-CNN

Use trainingOptions to specify network training options. Set 'CheckpointPath' to a temporary
location. This enables the saving of partially trained detectors during the training process. If training
is interrupted, such as by a power outage or system failure, you can resume training from the saved
checkpoint.

options = trainingOptions('sgdm',...
 'MaxEpochs',7,...
 'MiniBatchSize',1,...
 'InitialLearnRate',1e-3,...
 'CheckpointPath',tempdir);

Use trainFasterRCNNObjectDetector to train Faster R-CNN object detector if
doTrainingAndEval is true. Otherwise, load the pretrained network.

if doTrainingAndEval
 % Train the Faster R-CNN detector.
 % * Adjust NegativeOverlapRange and PositiveOverlapRange to ensure

 Train a Deep Learning Vehicle Detector

8-167

 % that training samples tightly overlap with ground truth.
 [detector, info] = trainFasterRCNNObjectDetector(trainingData,lgraph,options, ...
 'NegativeOverlapRange',[0 0.3], ...
 'PositiveOverlapRange',[0.6 1]);
else
 % Load pretrained detector for the example.
 pretrained = load('fasterRCNNResNet50EndToEndVehicleExample.mat');
 detector = pretrained.detector;
end

This example was verified on an Nvidia(TM) Titan X GPU with 12 GB of memory. Training the network
took approximately 20 minutes. The training time varies depending on the hardware you use.

As a quick check, run the detector on one test image. Make sure you resize the image to the same
size as the training images.

I = imread(testDataTbl.imageFilename{1});
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);

Display the results.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer
Vision Toolbox™ provides object detector evaluation functions to measure common metrics such as
average precision (evaluateDetectionPrecision) and log-average miss rates
(evaluateDetectionMissRate). For this example, use the average precision metric to evaluate
performance. The average precision provides a single number that incorporates the ability of the
detector to make correct classifications (precision) and the ability of the detector to find all relevant
objects (recall).

8 Featured Examples

8-168

Apply the same preprocessing transform to the test data as for the training data.

testData = transform(testData,@(data)preprocessData(data,inputSize));

Run the detector on all the test images.

if doTrainingAndEval
 detectionResults = detect(detector,testData,'MinibatchSize',4);
else
 % Load pretrained detector for the example.
 pretrained = load('fasterRCNNResNet50EndToEndVehicleExample.mat');
 detectionResults = pretrained.detectionResults;
end

Evaluate the object detector using the average precision metric.

[ap, recall, precision] = evaluateDetectionPrecision(detectionResults,testData);

The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. The
ideal precision is 1 at all recall levels. The use of more data can help improve the average precision
but might require more training time. Plot the PR curve.

figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))

 Train a Deep Learning Vehicle Detector

8-169

Supporting Functions

function data = augmentData(data)
% Randomly flip images and bounding boxes horizontally.
tform = randomAffine2d('XReflection',true);
sz = size(data{1},[1 2]);
rout = affineOutputView(sz, tform);
data{1} = imwarp(data{1},tform,'OutputView',rout);

% Sanitize box data, if needed.
data{2} = helperSanitizeBoxes(data{2}, sz);

% Warp boxes.
data{2} = bboxwarp(data{2},tform,rout);
end

function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to targetSize.
sz = size(data{1},[1 2]);
scale = targetSize(1:2)./sz;
data{1} = imresize(data{1},targetSize(1:2));

% Sanitize box data, if needed.
data{2} = helperSanitizeBoxes(data{2}, sz);

% Resize boxes.
data{2} = bboxresize(data{2},scale);
end

References

[1] Ren, S., K. He, R. Gershick, and J. Sun. "Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks." IEEE Transactions of Pattern Analysis and Machine Intelligence. Vol. 39,
Issue 6, June 2017, pp. 1137-1149.

[2] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation." Proceedings of the 2014 IEEE Conference on Computer
Vision and Pattern Recognition. Columbus, OH, June 2014, pp. 580-587.

[3] Girshick, R. "Fast R-CNN." Proceedings of the 2015 IEEE International Conference on Computer
Vision. Santiago, Chile, Dec. 2015, pp. 1440-1448.

[4] Zitnick, C. L., and P. Dollar. "Edge Boxes: Locating Object Proposals from Edges." European
Conference on Computer Vision. Zurich, Switzerland, Sept. 2014, pp. 391-405.

[5] Uijlings, J. R. R., K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. "Selective Search for
Object Recognition." International Journal of Computer Vision. Vol. 104, Number 2, Sept. 2013, pp.
154-171.

See Also
Functions
trainRCNNObjectDetector | trainFastRCNNObjectDetector |
trainFasterRCNNObjectDetector

8 Featured Examples

8-170

More About
• “Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN”
• “Train Object Detector Using R-CNN Deep Learning”
• “Object Detection Using Faster R-CNN Deep Learning”

 Train a Deep Learning Vehicle Detector

8-171

Ground Plane and Obstacle Detection Using Lidar
This example shows how to process 3-D lidar data from a sensor mounted on a vehicle by segmenting
the ground plane and finding nearby obstacles. This can facilitate drivable path planning for vehicle
navigation. The example also shows how to visualize streaming lidar data.

Create a Velodyne File Reader

The lidar data used in this example was recorded using a Velodyne® HDL32E sensor mounted on a
vehicle. Set up a velodyneFileReader object to read the recorded PCAP file.

fileName = 'lidarData_ConstructionRoad.pcap';
deviceModel = 'HDL32E';

veloReader = velodyneFileReader(fileName, deviceModel);

Read a Lidar Scan

Each scan of lidar data is stored as a 3-D point cloud. Efficiently processing this data using fast
indexing and search is key to the performance of the sensor processing pipeline. This efficiency is
achieved using the pointCloud object, which internally organizes the data using a K-d tree data
structure.

The veloReader constructs an organized pointCloud for each lidar scan. The Location property
of the pointCloud is an M-by-N-by-3 matrix, containing the XYZ coordinates of points in meters. The
point intensities are stored in Intensity.

% Read a scan of lidar data
ptCloud = readFrame(veloReader) %#ok<NOPTS>

ptCloud =

 pointCloud with properties:

 Location: [32×1083×3 single]
 Count: 34656
 XLimits: [-80.0444 87.1780]
 YLimits: [-85.6287 92.8721]
 ZLimits: [-21.6060 14.3558]
 Color: []
 Normal: []
 Intensity: [32×1083 uint8]

Setup Streaming Point Cloud Display

The pcplayer can be used to visualize streaming point cloud data. Set up the region around the
vehicle to display by configuring pcplayer.

% Specify limits of point cloud display
xlimits = [-25 45]; % meters
ylimits = [-25 45];
zlimits = [-20 20];

% Create a pcplayer
lidarViewer = pcplayer(xlimits, ylimits, zlimits);

8 Featured Examples

8-172

% Customize player axes labels
xlabel(lidarViewer.Axes, 'X (m)')
ylabel(lidarViewer.Axes, 'Y (m)')
zlabel(lidarViewer.Axes, 'Z (m)')

% Display the raw lidar scan
view(lidarViewer, ptCloud)

In this example, we will be segmenting points belonging to the ground plane, the ego vehicle and
nearby obstacles. Set the colormap for labeling these points.

% Define labels to use for segmented points
colorLabels = [...
 0 0.4470 0.7410; ... % Unlabeled points, specified as [R,G,B]
 0.4660 0.6740 0.1880; ... % Ground points
 0.9290 0.6940 0.1250; ... % Ego points
 0.6350 0.0780 0.1840]; % Obstacle points

% Define indices for each label
colors.Unlabeled = 1;

 Ground Plane and Obstacle Detection Using Lidar

8-173

colors.Ground = 2;
colors.Ego = 3;
colors.Obstacle = 4;

% Set the colormap
colormap(lidarViewer.Axes, colorLabels)

Segment the Ego Vehicle

The lidar is mounted on top of the vehicle, and the point cloud may contain points belonging to the
vehicle itself, such as on the roof or hood. Knowing the dimensions of the vehicle, we can segment out
points that are closest to the vehicle.

Create a vehicleDimensions object for storing dimensions of the vehicle.

vehicleDims = vehicleDimensions(); % Typical vehicle 4.7m by 1.8m by 1.4m

Specify the mounting location of the lidar in the vehicle coordinate system. The vehicle coordinate
system is centered at the center of the rear-axle, on the ground, with positive X direction pointing
forward, positive Y towards the left, and positive Z upwards. In this example, the lidar is mounted on
the top center of the vehicle, parallel to the ground.

8 Featured Examples

8-174

mountLocation = [...
 vehicleDims.Length/2 - vehicleDims.RearOverhang, ... % x
 0, ... % y
 vehicleDims.Height]; % z

Segment the ego vehicle using the helper function helperSegmentEgoFromLidarData. This
function segments all points within the cuboid defined by the ego vehicle. Store the segmented points
in a struct points.

points = struct();
points.EgoPoints = helperSegmentEgoFromLidarData(ptCloud, vehicleDims, mountLocation);

Visualize the point cloud with segmented ego vehicle. Use the helperUpdateView helper function.

closePlayer = false;
helperUpdateView(lidarViewer, ptCloud, points, colors, closePlayer);

Segment Ground Plane and Nearby Obstacles

In order to identify obstacles from the lidar data, first segment the ground plane using the
segmentGroundFromLidarData function to accomplish this. This function segments points
belonging to ground from organized lidar data.

 Ground Plane and Obstacle Detection Using Lidar

8-175

elevationDelta = 10;
points.GroundPoints = segmentGroundFromLidarData(ptCloud, 'ElevationAngleDelta', elevationDelta);

% Visualize the segmented ground plane.
helperUpdateView(lidarViewer, ptCloud, points, colors, closePlayer);

Remove points belonging to the ego vehicle and the ground plane by using the select function on
the point cloud. Specify the 'OutputSize' as 'full' to retain the organized nature of the point
cloud.

nonEgoGroundPoints = ~points.EgoPoints & ~points.GroundPoints;
ptCloudSegmented = select(ptCloud, nonEgoGroundPoints, 'OutputSize', 'full');

Next, segment nearby obstacles by looking for all points that are not part of the ground or ego
vehicle within some radius from the ego vehicle. This radius can be determined based on the range of
the lidar and area of interest for further processing.

sensorLocation = [0, 0, 0]; % Sensor is at the center of the coordinate system
radius = 40; % meters

points.ObstaclePoints = findNeighborsInRadius(ptCloudSegmented, ...

8 Featured Examples

8-176

 sensorLocation, radius);

% Visualize the segmented obstacles
helperUpdateView(lidarViewer, ptCloud, points, colors, closePlayer);

Process Lidar Sequence

Now that the point cloud processing pipeline for a single lidar scan has been laid out, put this all
together to process 30 seconds from the sequence of recorded data. The code below is shortened
since the key parameters have been defined in the previous steps. Here, the parameters are used
without further explanation.

% Rewind the |veloReader| to start from the beginning of the sequence
reset(veloReader);

% Stop processing after 30 seconds
stopTime = veloReader.StartTime + seconds(30);

isPlayerOpen = true;
while hasFrame(veloReader) && veloReader.CurrentTime < stopTime && isPlayerOpen

 Ground Plane and Obstacle Detection Using Lidar

8-177

 % Grab the next lidar scan
 ptCloud = readFrame(veloReader);

 % Segment points belonging to the ego vehicle
 points.EgoPoints = helperSegmentEgoFromLidarData(ptCloud, vehicleDims, mountLocation);

 % Segment points belonging to the ground plane
 points.GroundPoints = segmentGroundFromLidarData(ptCloud, 'ElevationAngleDelta', elevationDelta);

 % Remove points belonging to the ego vehicle and ground plane
 nonEgoGroundPoints = ~points.EgoPoints & ~points.GroundPoints;
 ptCloudSegmented = select(ptCloud, nonEgoGroundPoints, 'OutputSize', 'full');

 % Segment obstacles
 points.ObstaclePoints = findNeighborsInRadius(ptCloudSegmented, sensorLocation, radius);

 closePlayer = ~hasFrame(veloReader);

 % Update lidar display
 isPlayerOpen = helperUpdateView(lidarViewer, ptCloud, points, colors, closePlayer);
end
snapnow

Supporting Functions

helperSegmentEgoFromLidarData segments points belonging to the ego vehicle given the
dimensions of the vehicle and mounting location.

function egoPoints = helperSegmentEgoFromLidarData(ptCloud, vehicleDims, mountLocation)
%helperSegmentEgoFromLidarData segment ego vehicle points from lidar data
% egoPoints = helperSegmentEgoFromLidarData(ptCloud,vehicleDims,mountLocation)
% segments points belonging to the ego vehicle of dimensions vehicleDims
% from the lidar scan ptCloud. The lidar is mounted at location specified
% by mountLocation in the vehicle coordinate system. ptCloud is a
% pointCloud object. vehicleDimensions is a vehicleDimensions object.
% mountLocation is a 3-element vector specifying XYZ location of the
% lidar in the vehicle coordinate system.
%
% This function assumes that the lidar is mounted parallel to the ground
% plane, with positive X direction pointing ahead of the vehicle,
% positive Y direction pointing to the left of the vehicle in a
% right-handed system.

% Buffer around ego vehicle
bufferZone = [0.1, 0.1, 0.1]; % in meters

% Define ego vehicle limits in vehicle coordinates
egoXMin = -vehicleDims.RearOverhang - bufferZone(1);
egoXMax = egoXMin + vehicleDims.Length + bufferZone(1);
egoYMin = -vehicleDims.Width/2 - bufferZone(2);
egoYMax = egoYMin + vehicleDims.Width + bufferZone(2);
egoZMin = 0 - bufferZone(3);
egoZMax = egoZMin + vehicleDims.Height + bufferZone(3);

egoXLimits = [egoXMin, egoXMax];
egoYLimits = [egoYMin, egoYMax];
egoZLimits = [egoZMin, egoZMax];

8 Featured Examples

8-178

% Transform to lidar coordinates
egoXLimits = egoXLimits - mountLocation(1);
egoYLimits = egoYLimits - mountLocation(2);
egoZLimits = egoZLimits - mountLocation(3);

% Use logical indexing to select points inside ego vehicle cube
egoPoints = ptCloud.Location(:,:,1) > egoXLimits(1) ...
 & ptCloud.Location(:,:,1) < egoXLimits(2) ...
 & ptCloud.Location(:,:,2) > egoYLimits(1) ...
 & ptCloud.Location(:,:,2) < egoYLimits(2) ...
 & ptCloud.Location(:,:,3) > egoZLimits(1) ...
 & ptCloud.Location(:,:,3) < egoZLimits(2);
end

helperUpdateView updates the streaming point cloud display with the latest point cloud and
associated color labels.

function isPlayerOpen = helperUpdateView(lidarViewer, ptCloud, points, colors, closePlayer)
%helperUpdateView update streaming point cloud display
% isPlayerOpen = helperUpdateView(lidarViewer, ptCloud, points, colors, closePlayers)
% updates the pcplayer object specified in lidarViewer with a new point
% cloud ptCloud. Points specified in the struct points are colored
% according to the colormap of lidarViewer using the labels specified by
% the struct colors. closePlayer is a flag indicating whether to close
% the lidarViewer.

if closePlayer
 hide(lidarViewer);
 isPlayerOpen = false;
 return;
end

scanSize = size(ptCloud.Location);
scanSize = scanSize(1:2);

% Initialize colormap
colormapValues = ones(scanSize, 'like', ptCloud.Location) * colors.Unlabeled;

if isfield(points, 'GroundPoints')
 colormapValues(points.GroundPoints) = colors.Ground;
end

if isfield(points, 'EgoPoints')
 colormapValues(points.EgoPoints) = colors.Ego;
end

if isfield(points, 'ObstaclePoints')
 colormapValues(points.ObstaclePoints) = colors.Obstacle;
end

% Update view
view(lidarViewer, ptCloud.Location, colormapValues)

% Check if player is open
isPlayerOpen = isOpen(lidarViewer);

end

 Ground Plane and Obstacle Detection Using Lidar

8-179

See Also
Functions
segmentLidarData | segmentGroundFromLidarData | pcfitplane | findNeighborsInRadius

Objects
pointCloud | pcplayer | velodyneFileReader | vehicleDimensions

More About
• “Build a Map from Lidar Data” on page 8-807

8 Featured Examples

8-180

Build Map and Localize Using Segment Matching
This example shows how to build a map with lidar data and localize the position of a vehicle on the
map using SegMatch [1] on page 8-0 , a place recognition algorithm based on segment matching.

Autonomous driving systems use localization to determine the position of the vehicle within a mapped
environment. Autonomous navigation requires accurate localization, which relies on an accurate map.
Building an accurate map of large scale environments is difficult because the map accumulates drift
over time, and detecting loop closures to correct for accumulated drift is challenging due to dynamic
obstacles. The SegMatch algorithm is robust to dynamic obstacles and reliable in large scale
environments. The algorithm is a segment-based approach that takes advantage of descriptive shapes
and recognizes places by matching segments.

Overview

Like the “Build a Map from Lidar Data Using SLAM” example, this example uses 3-D lidar data to
build a map and corrects for the accumulated drift using graph SLAM. However, this example does
not require global pose estimates from other sensors, such as an inertial measurement unit (IMU).
After building the map, this example uses it to localize the vehicle in a known environment.

In this example, you learn how to:

• Use SegMatch to find the relative transformation between two point clouds that correspond to the
same place

• Build a map using SegMatch for loop closure detection
• Localize on a prebuilt map using SegMatch

Download Data

The data used in this example is part of the Velodyne SLAM Dataset. It includes approximately 6
minutes of data recorded with a Velodyne® HDL64E-S2 scanner. Download the data to a temporary
directory. This can take a few minutes.

baseDownloadURL = 'https://www.mrt.kit.edu/z/publ/download/velodyneslam/data/scenario1.zip';
dataFolder = fullfile(tempdir,'kit_velodyneslam_data_scenario1',filesep);
options = weboptions('Timeout',Inf);

zipFileName = dataFolder+"scenario1.zip";

% Get the full file path to the PNG files in the scenario1 folder.
pointCloudFilePattern = fullfile(dataFolder,'scenario1','scan*.png');
numExpectedFiles = 2513;

folderExists = exist(dataFolder,'dir');
if ~folderExists
 % Create a folder in a temporary directory to save the downloaded zip file.
 mkdir(dataFolder)

 disp('Downloading scenario1.zip (153 MB) ...')
 websave(zipFileName,baseDownloadURL,options);

 % Unzip downloaded file.
 unzip(zipFileName,dataFolder)

elseif folderExists && numel(dir(pointCloudFilePattern)) < numExpectedFiles

 Build Map and Localize Using Segment Matching

8-181

https://www.mrt.kit.edu/z/publ/download/velodyneslam/dataset.html

 % Redownload the data if it got reduced in the temporary directory.
 disp('Downloading scenario1.zip (153 MB) ...')
 websave(zipFileName,baseDownloadURL,options);

 % Unzip downloaded file.
 unzip(zipFileName,dataFolder)
end

Load and Select Data

The downloaded dataset stores point cloud data in PNG files. Create a file datastore using the
helperReadVelodyneSLAMData on page 8-0 function to load point cloud data from the PNG files
and convert distance values to 3-D coordinates. The helper function is a custom read function, which
is designed for the Velodyne SLAM Dataset. Select a subset of the data and split the data to use for
map building and for localization.

% Create a file datastore to read files in the right order.
fileDS = fileDatastore(pointCloudFilePattern,'ReadFcn', ...
 @helperReadVelodyneSLAMData);

% Read the point clouds.
ptCloudArr = readall(fileDS);

% Select a subset of point cloud scans, and split the data to use for
% map building and for localization.
ptCloudMap = vertcat(ptCloudArr{1:5:1550});
ptCloudLoc = vertcat(ptCloudArr{2:5:1550});

% Visualize the first point cloud.
figure
pcshow(ptCloudMap(1))
title('Point Cloud Data')

8 Featured Examples

8-182

SegMatch Overview

The SegMatch algorithm consists of four different components: point cloud segmentation, feature
extraction, segment matching, and geometric verification. For best results, preprocess the point cloud
before performing these four steps.

Preprocess Point Cloud

To select the most relevant point cloud data, perform the following preprocessing steps:

1 Select a cylindrical neighborhood centered around the vehicle to extract a local point cloud of
interest. First, specify a cylindrical neighborhood based on the distance of the points from the
origin in the x and y directions. Then, select the area of interest using select.

2 Remove the ground in preparation to segment the point cloud into distinct objects. Use
segmentGroundSMRF (Lidar Toolbox) to segment the ground.

% Select a point cloud from the map for preprocessing.
ptCloud = ptCloudMap(25);

% Set the cylinder radius and ego radius.
cylinderRadius = 40;
egoRadius = 1;

% Compute the distance between each point and the origin.
dists = hypot(ptCloud.Location(:,:,1),ptCloud.Location(:,:,2));

% Select the points inside the cylinder radius and outside the ego radius.

 Build Map and Localize Using Segment Matching

8-183

cylinderIdx = dists <= cylinderRadius & dists >= egoRadius;
cylinderPtCloud = select(ptCloud,cylinderIdx,'OutputSize','full');

% Remove the ground.
[~,ptCloudNoGround] = segmentGroundSMRF(cylinderPtCloud,'ElevationThreshold',0.05);

% Visualize the point cloud before and after preprocessing.
figure
pcshowpair(ptCloud,ptCloudNoGround)
title('Point Cloud Before and After Preprocessing')

Segmentation and Feature Extraction

Next, segment the point cloud and extract features from each segment.

Segment the point cloud by using the segmentLidarData function and visualize the segments. For
this example, each segment must have a minimum of 150 points. This produces segment clusters that
represent distinct objects and have enough points to characterize the area in the map.

Different datasets require different parameters for segmentation. Requiring fewer points for
segments can lead to false positive loop closures, and limiting the segments to larger clusters can
eliminate segments that are important for place recognition. You must also tune the distance and
angle thresholds to ensure that each segment corresponds to one object. A small distance threshold
can result in many segments that correspond to the same object, and a large distance threshold and
small angle threshold can result in segments that combine many objects.

8 Featured Examples

8-184

minNumPoints = 150;
distThreshold = 1;
angleThreshold = 180;
[labels,numClusters] = segmentLidarData(ptCloudNoGround,distThreshold, ...
 angleThreshold,'NumClusterPoints',minNumPoints);

% Remove points that contain a label value of 0 for visualization.
idxValidPoints = find(labels);
labelColorIndex = labels(idxValidPoints);
segmentedPtCloud = select(ptCloudNoGround,idxValidPoints);

figure
pcshow(segmentedPtCloud.Location,labelColorIndex)
title('Point Cloud Segments')

Extract features from each segment by using the extractEigenFeatures (Lidar Toolbox) function.
Eigenvalue-based features are geometric features. Each feature vector includes linearity, planarity,
scattering, omnivariance, anisotropy, eigenentropy, and change in curvature.

[features,segments] = extractEigenFeatures(ptCloud,labels);
disp(features)

 31×1 eigenFeature array with properties:

 Feature
 Centroid

disp(segments)

 Build Map and Localize Using Segment Matching

8-185

 31×1 pointCloud array with properties:

 Location
 Count
 XLimits
 YLimits
 ZLimits
 Color
 Normal
 Intensity

Segment Matching and Geometric Verification

Find the matching segments and the transformation between the segments for two point cloud scans
that correspond to a loop closure.

Preprocess and extract segment features from the two point clouds. The
helperPreProcessPointCloud on page 8-0 function includes the preprocessing steps in the
Preprocess Point Cloud on page 8-0 section, to simplify preprocessing the point cloud throughout
the workflow.

ptCloud1 = ptCloudMap(27);
ptCloud2 = ptCloudMap(309);

ptCloud1 = helperPreProcessPointCloud(ptCloud1,egoRadius,cylinderRadius);
ptCloud2 = helperPreProcessPointCloud(ptCloud2,egoRadius,cylinderRadius);

labels1 = segmentLidarData(ptCloud1,distThreshold, ...
 angleThreshold,'NumClusterPoints',minNumPoints);
labels2 = segmentLidarData(ptCloud2,distThreshold, ...
 angleThreshold,'NumClusterPoints',minNumPoints);

[features1,segments1] = extractEigenFeatures(ptCloud1,labels1);
[features2,segments2] = extractEigenFeatures(ptCloud2,labels2);

Find the possible segment matches based on the normalized euclidean distance between the feature
vectors by using the pcmatchfeatures (Lidar Toolbox) function.

featureMatrix1 = vertcat(features1.Feature);
featureMatrix2 = vertcat(features2.Feature);
indexPairs = pcmatchfeatures(featureMatrix1,featureMatrix2);

Perform geometric verification by identifying inliers and finding the 3-D rigid transformation between
segment matches using the estimateGeometricTransform3D function. Based on the number of
inliers, the point clouds can be classified as a loop closure.

centroids1 = vertcat(features1(indexPairs(:,1)).Centroid);
centroids2 = vertcat(features2(indexPairs(:,2)).Centroid);
[tform,inlierPairs] = estimateGeometricTransform3D(centroids1,centroids2,'rigid');

Visualize the segment matches by using the pcshowMatchedFeatures (Lidar Toolbox) function.

inlierIdx1 = indexPairs(inlierPairs,1);
inlierIdx2 = indexPairs(inlierPairs,2);
figure
pcshowMatchedFeatures(segments1(inlierIdx1),segments2(inlierIdx2), ...
 features1(inlierIdx1),features2(inlierIdx2))
title('Segment Matches')

8 Featured Examples

8-186

Align the segments with the transformation from the geometric verification step using pccat and
pctransform.

ptCloudSegments1 = pccat(segments1);
ptCloudSegments2 = pccat(segments2);
tformedPtCloudSegments1 = pctransform(ptCloudSegments1,tform);

Visualize the aligned segments using pcshowpair.

figure
pcshowpair(tformedPtCloudSegments1,ptCloudSegments2)
title('Aligned Segments')

 Build Map and Localize Using Segment Matching

8-187

Build Map

The map building procedure consists of the following steps:

1 Preprocess the point cloud
2 Register the point cloud
3 Segment the point cloud and extract features
4 Detect loop closures

Preprocess Point Cloud

Preprocess the previous and current point cloud using helperPreProcessPointCloud on page 8-
0 . Downsample the point clouds using pcdownsample to improve registration speed and accuracy.
To tune the downsample percentage input, find the lowest value that maintains the desired
registration accuracy when the vehicle turns.

currentViewId = 2;

prevPtCloud = helperPreProcessPointCloud(ptCloudMap(currentViewId-1), ...
 egoRadius,cylinderRadius);
ptCloud = helperPreProcessPointCloud(ptCloudMap(currentViewId), ...
 egoRadius,cylinderRadius);

downsamplePercent = 0.5;

8 Featured Examples

8-188

prevPtCloudFiltered = pcdownsample(prevPtCloud,'random',downsamplePercent);
ptCloudFiltered = pcdownsample(ptCloud,'random',downsamplePercent);

Register Point Cloud

Register the current point cloud with the previous point cloud to find the relative transformation.

gridStep = 3;
relPose = pcregisterndt(ptCloudFiltered,prevPtCloudFiltered,gridStep);

Use a pcviewset object to track absolute poses and connections between registered point clouds.
Create an empty pcviewset.

vSet = pcviewset;

Initialize the pose of the first point cloud to an identity rigid transformation, and add it to the view set
using addView.

initAbsPose = rigid3d;
vSet = addView(vSet,currentViewId-1,initAbsPose);

Compute the absolute pose of the second point cloud using the relative pose estimated during
registration, and add it to the view set.

absPose = rigid3d(relPose.T*initAbsPose.T);
vSet = addView(vSet,currentViewId,absPose);

Connect the two views using addConnection.

vSet = addConnection(vSet,currentViewId-1,currentViewId,relPose);

Transform the current point cloud to align it to the global map.

ptCloud = pctransform(ptCloud,absPose);

Segment Point Cloud and Extract Features

Segment the previous and current point clouds using segmentLidarData.

labels1 = segmentLidarData(prevPtCloud,distThreshold,angleThreshold, ...
 'NumClusterPoints',minNumPoints);
labels2 = segmentLidarData(ptCloud,distThreshold,angleThreshold, ...
 'NumClusterPoints',minNumPoints);

Extract features from the previous and current point cloud segments using extractEigenFeatures
(Lidar Toolbox).

[prevFeatures,prevSegments] = extractEigenFeatures(prevPtCloud,labels1);
[features,segments] = extractEigenFeatures(ptCloud,labels2);

Track the segments and features using a pcmapsegmatch (Lidar Toolbox) object. Create an empty
pcmapsegmatch (Lidar Toolbox).

sMap = pcmapsegmatch;

Add the views, features, and segments for the previous and current point clouds to the
pcmapsegmatch (Lidar Toolbox) using addView (Lidar Toolbox).

 Build Map and Localize Using Segment Matching

8-189

sMap = addView(sMap,currentViewId-1,prevFeatures,prevSegments);
sMap = addView(sMap,currentViewId,features,segments);

Detect Loop Closures

The estimated poses accumulate drift as more point clouds are added to the map. Detecting loop
closures helps correct for the accumulated drift and produce a more accurate map.

Detect loop closures using findPose (Lidar Toolbox).

[absPoseMap,loopClosureViewId] = findPose(sMap,absPose);
isLoopClosure = ~isempty(absPoseMap);

If findPose (Lidar Toolbox) detects a loop closure, find the transformation between the current view
and the loop closure view and add it to the pcviewset object.

Use the absolute pose of the current view without the accumulated drift, absPoseMap, and the
absolute pose of the loop closure view, absPoseLoop, to compute the relative pose between the loop
closure poses without the drift.

if isLoopClosure
 absPoseLoop = poses(vSet,loopClosureViewId).AbsolutePose;
 relPoseLoopToCurrent = rigid3d(absPoseMap.T*invert(absPoseLoop).T);

Add the loop closure relative pose as a connection using addConnection.

 vSet = addConnection(vSet,loopClosureViewId,currentViewId, ...
 relPoseLoopToCurrent);

Correct for the accumulated drift using pose graph optimization. Consider finding more than one loop
closure connection before optimizing the poses, since optimizing the pose graph and updating the
pcmapsegmatch (Lidar Toolbox) object are both computationally intensive.

Save the poses before optimization. The poses are needed to update the segments and centroid
locations in the pcmapsegmatch (Lidar Toolbox) object.

 prevPoses = vSet.Views.AbsolutePose;

Create a pose graph from the view set using createPoseGraph, and optimize the pose graph using
optimizePoseGraph (Navigation Toolbox).

 G = createPoseGraph(vSet);
 optimG = optimizePoseGraph(G,'g2o-levenberg-marquardt');
 vSet = updateView(vSet,optimG.Nodes);

Find the transformations from the poses before and after correcting for drift and use them to update
the map segments and centroid locations using updateMap (Lidar Toolbox).

 optimizedPoses = vSet.Views.AbsolutePose;

 relPoseOpt = rigid3d.empty;
 for k = 1:numel(prevPoses)
 relPoseOpt(k) = rigid3d(invert(prevPoses(k)).T* ...
 optimizedPoses(k).T);
 end

 sMap = updateMap(sMap,relPoseOpt);
end

8 Featured Examples

8-190

To build the map and correct for accumulated drift, apply these steps to the rest of the point cloud
scans.

% Set the random seed for example reproducibility.
rng(0)

% Update display every 5 scans.
figure
updateRate = 5;

% Initialize variables for registration.
prevPtCloud = ptCloudFiltered;
prevPose = rigid3d;

% Keep track of the loop closures to optimize the poses once enough loop
% closures are detected.
totalLoopClosures = 0;

for i = 3:numel(ptCloudMap)
 ptCloud = ptCloudMap(i);

 % Preprocess and register the point cloud.
 ptCloud = helperPreProcessPointCloud(ptCloud,egoRadius,cylinderRadius);
 ptCloudFiltered = pcdownsample(ptCloud,'random',downsamplePercent);
 relPose = pcregisterndt(ptCloudFiltered,prevPtCloud,gridStep, ...
 'InitialTransform',relPose);
 ptCloud = pctransform(ptCloud,absPose);

 % Store the current point cloud to register the next point cloud.
 prevPtCloud = ptCloudFiltered;

 % Compute the absolute pose of the current point cloud.
 absPose = rigid3d(relPose.T*absPose.T);

 % If the vehicle has moved at least 2 meters since last time, continue
 % with segmentation, feature extraction, and loop closure detection.
 if norm(absPose.Translation-prevPose.Translation) >= 2

 % Segment the point cloud and extract features.
 labels = segmentLidarData(ptCloud,distThreshold,angleThreshold, ...
 'NumClusterPoints',minNumPoints);
 [features,segments] = extractEigenFeatures(ptCloud,labels);

 % Keep track of the current view id.
 currentViewId = currentViewId+1;

 % Add the view to the point cloud view set and map representation.
 vSet = addView(vSet,currentViewId,absPose);
 vSet = addConnection(vSet,currentViewId-1,currentViewId, ...
 rigid3d(absPose.T*invert(prevPose).T));
 sMap = addView(sMap,currentViewId,features,segments);

 % Update the view set display.
 if mod(currentViewId,updateRate) == 0
 plot(vSet)
 drawnow
 end

 Build Map and Localize Using Segment Matching

8-191

 % Check if there is a loop closure.
 [absPoseMap,loopClosureViewId] = findPose(sMap,absPose,'MatchThreshold',1, ...
 'MinNumInliers',5,'NumSelectedClusters',4,'NumExcludedViews',150);
 isLoopClosure = ~isempty(absPoseMap);

 if isLoopClosure
 totalLoopClosures = totalLoopClosures+1;

 % Find the relative pose between the loop closure poses.
 absPoseLoop = poses(vSet,loopClosureViewId).AbsolutePose;
 relPoseLoopToCurrent = rigid3d(absPoseMap.T*invert(absPoseLoop).T);
 vSet = addConnection(vSet,loopClosureViewId,currentViewId, ...
 relPoseLoopToCurrent);

 % Optimize the graph of poses and update the map every time 3
 % loop closures are detected.
 if mod(totalLoopClosures,3) == 0
 prevPoses = vSet.Views.AbsolutePose;

 % Correct for accumulated drift.
 G = createPoseGraph(vSet);
 optimG = optimizePoseGraph(G,'g2o-levenberg-marquardt');
 vSet = updateView(vSet,optimG.Nodes);

 % Update the map.
 optimizedPoses = vSet.Views.AbsolutePose;
 relPoseOpt = rigid3d.empty;
 for k = 1:numel(prevPoses)
 relPoseOpt(k) = rigid3d(invert(prevPoses(k)).T* ...
 optimizedPoses(k).T);
 end
 sMap = updateMap(sMap,relPoseOpt);

 % Update the absolute pose after pose graph optimization.
 absPose = optimizedPoses(end);
 end
 end
 prevPose = absPose;
 end
end

8 Featured Examples

8-192

% Visualize the map of segments from the top view.
figure
show(sMap)
view(2)
title('Map of Segments')

 Build Map and Localize Using Segment Matching

8-193

Localize Vehicle in Known Map

The preprocessing steps for localization using SegMatch are the same preprocessing steps used for
map building. Since the algorithm relies on consistent segmentation, use the same segmentation
parameters for best results.

ptCloud = ptCloudLoc(1);

% Preprocess the point cloud.
ptCloud = helperPreProcessPointCloud(ptCloud,egoRadius,cylinderRadius);

% Segment the point cloud and extract features.
labels = segmentLidarData(ptCloud,distThreshold,angleThreshold, ...
 'NumClusterPoints',minNumPoints);
features = extractEigenFeatures(ptCloud,labels);

Because there is no position estimate for the vehicle, you must use the extent of the map for initial
vehicle localization. Select the extent of the map to localize for the first time using selectSubmap
(Lidar Toolbox).

sMap = selectSubmap(sMap,[sMap.XLimits sMap.YLimits sMap.ZLimits]);

Use the findPose (Lidar Toolbox) object function of pcmapsegmatch (Lidar Toolbox) to localize the
vehicle on the prebuilt map.

absPoseMap = findPose(sMap,features,'MatchThreshold',1,'MinNumInliers',5);

Visualize the map, and use showShape to visualize the vehicle on the map as a cuboid.

8 Featured Examples

8-194

mapSegments = pccat(sMap.Segments);
hAxLoc = pcshow(mapSegments.Location,'p');
title('Localization on a Prebuilt Map')
view(2)

poseTranslation = absPoseMap.Translation;
quat = quaternion(absPoseMap.Rotation','rotmat','point');
theta = eulerd(quat,'ZYX','point');
pos = [poseTranslation 5 9 3.5 theta(2) theta(3) theta(1)];
showShape('cuboid',pos,'Color','green','Parent',hAxLoc,'Opacity',0.8,'LineWidth',0.5)

To improve localization speed for the rest of the scans, select a submap using selectSubmap (Lidar
Toolbox).

submapSize = [65 65 200];
sMap = selectSubmap(sMap,poseTranslation,submapSize);

Continue localizing the vehicle using the rest of the point cloud scans. Use isInsideSubmap (Lidar
Toolbox) and selectSubmap (Lidar Toolbox) to keep the submap updated. If there are not enough
segments to localize the vehicle using segment matching, use registration to estimate the pose.

% Visualize the map.
figure('Visible','on')
hAx = pcshow(mapSegments.Location,'p');
title('Localization on a Prebuilt Map')

% Set parameter to update submap.
submapThreshold = 30;

 Build Map and Localize Using Segment Matching

8-195

% Initialize the poses and previous point cloud for registration.
prevPtCloud = ptCloud;
relPose = rigid3d;
prevAbsPose = rigid3d;

% Segment each point cloud and localize by finding segment matches.
for n = 2:numel(ptCloudLoc)
 ptCloud = ptCloudLoc(n);

 % Preprocess the point cloud.
 ptCloud = helperPreProcessPointCloud(ptCloud,egoRadius,cylinderRadius);

 % Segment the point cloud and extract features.
 labels = segmentLidarData(ptCloud,distThreshold,angleThreshold, ...
 'NumClusterPoints',minNumPoints);
 features = extractEigenFeatures(ptCloud,labels);

 % Localize the point cloud.
 absPoseMap = findPose(sMap,features,'MatchThreshold',1,'MinNumInliers',5);

 % Do registration when the position cannot be estimated with segment
 % matching.
 if isempty(absPoseMap)
 relPose = pcregisterndt(ptCloud,prevPtCloud,gridStep, ...
 'InitialTransform',relPose);
 absPoseMap = rigid3d(relPose.T*prevAbsPose.T);
 end

 % Display position estimate in the map.
 poseTranslation = absPoseMap.Translation;
 quat = quaternion(absPoseMap.Rotation','rotmat','point');
 theta = eulerd(quat,'ZYX','point');
 pos = [poseTranslation 5 9 3.5 theta(2) theta(3) theta(1)];
 showShape('cuboid',pos,'Color','green','Parent',hAx,'Opacity',0.8,'LineWidth',0.5)

 % Determine if selected submap needs to be updated.
 [isInside,distToEdge] = isInsideSubmap(sMap,poseTranslation);
 needSelectSubmap = ~isInside ... % Current pose is outside submap.
 || any(distToEdge(1:2) < submapThreshold); % Current pose is close to submap edge.

 % Select a new submap.
 if needSelectSubmap
 sMap = selectSubmap(sMap,poseTranslation,submapSize);
 end

 prevAbsPose = absPoseMap;
 prevPtCloud = ptCloud;
end

8 Featured Examples

8-196

References

[1] R. Dube, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena. "SegMatch: Segment Based
Place Recognition in 3D Point Clouds." IEEE International Conference on Robotics and Automation
(ICRA), 2017.

Supporting Functions

helperReadVelodyneSLAMData reads point clouds from PNG image files from the Velodyne SLAM
Dataset.

helperPreProcessPointCloud selects a cylindrical neighborhood and removes the ground from a
point cloud.

function ptCloud = helperPreProcessPointCloud(ptCloud,egoRadius,cylinderRadius)

% Compute the distance between each point and the origin.
dists = hypot(ptCloud.Location(:,:,1),ptCloud.Location(:,:,2));

% Select the points inside the cylinder radius and outside the ego radius.
cylinderIdx = dists <= cylinderRadius & dists >= egoRadius;
ptCloud = select(ptCloud,cylinderIdx,'OutputSize','full');

% Remove ground.
[~,ptCloud] = segmentGroundSMRF(ptCloud,'ElevationThreshold',0.05);

 Build Map and Localize Using Segment Matching

8-197

end

8 Featured Examples

8-198

Build a Map with Lidar Odometry and Mapping (LOAM) Using
Unreal Engine Simulation

This example shows how to build a map with the lidar odometry and mapping (LOAM) [1] on page 8-
0 algorithm by using synthetic lidar data from the Unreal Engine® simulation environment. In this
example, you learn how to:

• Record and visualize synthetic lidar sensor data from a 3D simulation environment using the
Unreal Engine.

• Use the LOAM algorithm to register the recorded point clouds and build a map.

Set Up Scenario in Simulation Environment

Load the prebuilt Large Parking Lot scene and a preselected reference trajectory. For information on
how to generate a reference trajectory interactively by selecting a sequence of waypoints, see the
“Select Waypoints for Unreal Engine Simulation” on page 8-894 example.

% Load reference path
data = load("parkingLotReferenceData.mat");

% Set reference trajectory of the ego vehicle
refPosesX = data.refPosesX;
refPosesY = data.refPosesY;
refPosesT = data.refPosesT;

% Set poses of the parked vehicles
parkedPoses = data.parkedPoses;

% Display the reference trajectory and the parked vehicle locations
sceneName = "LargeParkingLot";
hScene = figure(Name="Large Parking Lot",NumberTitle="off");
helperShowSceneImage(sceneName);
hold on
plot(refPosesX(:,2),refPosesY(:,2),LineWidth=2,DisplayName="Reference Path");
scatter(parkedPoses(:,1),parkedPoses(:,2),[],"filled",DisplayName="Parked Vehicles");
xlim([-60 40])
ylim([10 60])
hScene.Position = [100 100 1000 500]; % Resize figure
title("Large Parking Lot")
legend

 Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation

8-199

Open the Simulink® model, and add additional vehicles to the scene using the
helperAddParkedVehicle function.

modelName = 'GenerateLidarDataOfParkingLot';
open_system(modelName)
snapnow
helperAddParkedVehicles(modelName,parkedPoses)

Record and Visualize Data

Use the Simulation 3D Vehicle with Ground Following block to simulate a vehicle moving along the
specified reference trajectory. Use the Simulation 3D Lidar block to mount a lidar on the center of the
roof of the vehicle, and record the sensor data.

close(hScene)

if ~ispc
 error("Unreal Engine Simulation is supported only on Microsoft" + char(174) + " Windows" + char(174) + ".");
end

% Run simulation
simOut = sim(modelName);

close_system(modelName,0)

Use the helperGetPointClouds on page 8-0 function and the helperGetLidarGroundTruth
on page 8-0 function to extract the lidar data and the ground truth poses.

ptCloudArr = helperGetPointClouds(simOut);
groundTruthPosesLidar = helperGetLidarGroundTruth(simOut);

8 Featured Examples

8-200

Detect Edge Points and Surface Points

The LOAM algorithm uses edge points and surface points for registration and mapping. The
detectLOAMFeatures (Lidar Toolbox) function outputs a LOAMPoints (Lidar Toolbox) object, which
stores the selected edge points and surface points. It includes the label of each point, which can be
sharp-edge, less-sharp-edge, planar-surface, or less-planar-surface. Use the pcregisterloam (Lidar
Toolbox) function to register two organized point clouds.

ptCloud = ptCloudArr(1);
nextPtCloud = ptCloudArr(2);
gridStep = 1;
tform = pcregisterloam(ptCloud,nextPtCloud,gridStep);
disp(tform)

 rigid3d with properties:

 Rotation: [3×3 single]
 Translation: [-0.2341 0.0101 0.0041]

Alternatively, for more control over the trade-off between accuracy and speed, you can first detect the
LOAM feature points, and then perform LOAM registration using pcregisterloam (Lidar Toolbox).
These steps are recommended before LOAM registration:

1 Detect LOAM feature points using the detectLOAMFeatures (Lidar Toolbox) function.
2 Downsample the less planar surface points using the downsampleLessPlanar (Lidar Toolbox)

object function. This step helps speed up registration using the pcregisterloam (Lidar
Toolbox) function.

Because the detection algorithm relies on the neighbors of each point to classify edge points and
surface points, as well as to identify unreliable points on the boundaries of occluded regions,
preprocessing steps like downsampling, denoising and ground removal are not recommended before
feature point detection. To remove noise from data farther from the sensor, and to speed up
registration, filter the point cloud by range. The helperRangeFilter on page 8-0 function selects
a cylindrical neighborhood around the sensor, given a specified cylinder radius, and excludes data
that is too close to the sensor and might include part of the vehicle.

egoRadius = 2;
cylinderRadius = 30;
ptCloud = helperRangeFilter(ptCloud,egoRadius,cylinderRadius);
nextPtCloud = helperRangeFilter(nextPtCloud,egoRadius,cylinderRadius);

figure
hold on
title("Cylindrical Neighborhood")
pcshow(ptCloud)
view(2)

 Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation

8-201

Next, detect LOAM feature points using the detectLOAMFeatures (Lidar Toolbox) function. Tuning
this function requires empirical analysis. The detectLOAMFeatures (Lidar Toolbox) name-value
arguments provide a trade-off between registration accuracy and speed. To improve the accuracy of
the registration, you must minimize the root mean squared error of the Euclidean distance between
the aligned points. Track and minimize the root mean squared error output rmse of the
pcregisterloam (Lidar Toolbox) function as you increase the value of the NumRegionsPerLaser,
MaxSharpEdgePoints, MaxLessSharpEdgePoints, and MaxPlanarSurfacePoints arguments
of detectLOAMFeatures (Lidar Toolbox).

maxPlanarSurfacePoints = 8;
points = detectLOAMFeatures(ptCloud,MaxPlanarSurfacePoints=maxPlanarSurfacePoints);
nextPoints = detectLOAMFeatures(nextPtCloud,MaxPlanarSurfacePoints=maxPlanarSurfacePoints);

figure
hold on
title("LOAM Points")
show(points,MarkerSize=12)

8 Featured Examples

8-202

[~,rmse] = pcregisterloam(points,nextPoints);
disp(rmse)

 0.2951

detectLOAMFeatures (Lidar Toolbox) first identifies sharp edge points, less sharp edge points, and
planar surface points. All remaining points that are not considered unreliable points, and have a
curvature value below the threshold are classified as less planar surface points. Downsampling the
less planar surface points can speed up registration when using pcregisterloam (Lidar Toolbox).

points = downsampleLessPlanar(points,gridStep);

figure
hold on
title('LOAM Points After Downsampling the Less Planar Surface Points')
show(points,'MarkerSize',12)

 Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation

8-203

Build Map Using Lidar Odometry

The LOAM algorithm consists of two main components that are integrated to compute an accurate
transformation: Lidar Odometry and Lidar Mapping. Use the pcregisterloam (Lidar Toolbox)
function with the one-to-one matching method to get the estimated transformation using the Lidar
Odometry algorithm. The one-to-one matching method matches each point to its nearest neighbor,
matching edge points to edge points and surface points to surface points. Use these matches to
compute an estimate of the transformation. Use pcregisterloam (Lidar Toolbox) with the one-to-
one matching method to incrementally build a map of the parking lot. Use a pcviewset object to
manage the data.

Initialize the poses and the point cloud view set.

absPose = groundTruthPosesLidar(1);
relPose = rigid3d;
vSetOdometry = pcviewset;

Add the first view to the view set.

viewId = 1;
vSetOdometry = addView(vSetOdometry,viewId,absPose);

8 Featured Examples

8-204

Register the point clouds incrementally and visualize the vehicle position in the parking lot scene.

% Display the parking lot scene with the reference trajectory
hScene = figure(Name="Large Parking Lot",NumberTitle="off");
helperShowSceneImage(sceneName);
hold on
plot(refPosesX(:,2),refPosesY(:,2),LineWidth=2)
xlim([-60 40])
ylim([10 60])
hScene.Position = [100 100 1000 500];

numSkip = 5;
for k = (numSkip+1)+1:numSkip:numel(ptCloudArr)
 prevPoints = points;
 viewId = viewId + 1;
 ptCloud = ptCloudArr(k);

 % Apply a range filter to the point cloud
 ptCloud = helperRangeFilter(ptCloud,egoRadius,cylinderRadius);

 % Detect LOAM points and downsample the less planar surface points
 points = detectLOAMFeatures(ptCloud,MaxPlanarSurfacePoints=maxPlanarSurfacePoints);
 points = downsampleLessPlanar(points,gridStep);

 % Register the points using the previous relative pose as an initial
 % transformation
 relPose = pcregisterloam(points,prevPoints,InitialTransform=relPose);

 % Update the absolute pose and store it in the view set
 absPose = rigid3d(relPose.T * absPose.T);
 vSetOdometry = addView(vSetOdometry,viewId,absPose);

 % Visualize the absolute pose in the parking lot scene
 plot(absPose.Translation(1),absPose.Translation(2),Color="r",Marker=".",MarkerSize=8);
 xlim([-60 40])
 ylim([10 60])
 title("Build a Map Using Lidar Odometry")
 legend(["Ground Truth","Estimated Position"])
 pause(0.001)
 view(2)
end

 Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation

8-205

Improve the Accuracy of the Map with Lidar Mapping

Lidar Mapping uses more points for registration and relies on a local map to find more accurate
poses. Use the pcregisterloam (Lidar Toolbox) function with the one-to-many matching method to
get the estimated transformation using the Lidar Mapping registration algorithm. The one-to-many
matching method matches each point to multiple nearest neighbors. Then, it uses these matches to
compute the transformation. You can use the one-to-many matching method of Lidar Mapping to
refine the rough estimate from the one-to-one matching method of Lidar Odometry. Lidar Mapping
registers against a local map that contains points from multiple laser scans. Using this matching
method, there are more points available to compute the transformation using the one-to-many
matching method. Use the helperLidarMap object to manage the points in the map and select a
local map for registration using the selectLocalMap object function of helperLidarMap.

Initialize the poses.

absPose = groundTruthPosesLidar(1);
relPose = rigid3d;
vSetMapping = pcviewset;

Detect LOAM points in the first point cloud.

ptCloud = ptCloudArr(1);
ptCloud = helperRangeFilter(ptCloud,egoRadius,cylinderRadius);
points = detectLOAMFeatures(ptCloud,'MaxPlanarSurfacePoints',maxPlanarSurfacePoints);
points = downsampleLessPlanar(points,gridStep);

Add the first view to the view set.

viewId = 1;
vSetMapping = addView(vSetMapping,viewId,absPose);

Create a map using the helperLidarMap class, and add points to the map using the addPoints
object function of helperLidarMap.

8 Featured Examples

8-206

lidarMap = helperLidarMap;
lidarMap = addPoints(lidarMap,points,absPose);

Select a local map using the selectLocalMap object function of helperLidarMap.

sz = [50 50 100];
lidarMap = selectLocalMap(lidarMap,absPose.Translation,sz);

Use pcregisterloam (Lidar Toolbox) with the one-to-one matching method to get an estimated pose
using Lidar Odometry. Then, use pcregisterloam (Lidar Toolbox) with the points in the local map
and the one-to-many matching method to refine this pose. Get the points in the local map for
registration using the getLocalMap object function of helperLidarMap. The getLocalMap object
function returns the points inside the local map selected using selectLocalMap. Downsample the
points in the map using the downsamplePoints object function of helperLidarMap to remove
duplicate points from the map.

% Display the parking lot scene with the reference trajectory
hScene = figure(Name="Large Parking Lot",NumberTitle="off");
helperShowSceneImage(sceneName);
hold on
plot(refPosesX(:,2),refPosesY(:,2),LineWidth=2)
xlim([-60 40])
ylim([10 60])
hScene.Position = [100 100 1000 500];

numSkip = 5;
for k = (numSkip+1)+1:numSkip:numel(ptCloudArr)
 prevPtCloud = ptCloud;
 prevPoints = points;
 viewId = viewId + 1;
 ptCloud = ptCloudArr(k);

 % Apply a range filter to the point cloud
 ptCloud = helperRangeFilter(ptCloud,egoRadius,cylinderRadius);

 % Detect LOAM points and downsample the less planar surface points
 points = detectLOAMFeatures(ptCloud,MaxPlanarSurfacePoints=maxPlanarSurfacePoints);
 points = downsampleLessPlanar(points,gridStep);

 % Register the points using the previous relative pose as an initial
 % transformation
 relPose = pcregisterloam(points,prevPoints,MatchingMethod="one-to-one",InitialTransform=relPose);

 % Update the absolute pose
 absPose = rigid3d(relPose.T * absPose.T);

 % Get the LOAM points in the local map using the estimated absolute
 % pose
 mapPoints = getLocalMap(lidarMap,absPose);

 % getLocalMap returns the mapPoints aligned to the last points
 % detected. Find the refinement transformation that improves the
 % alignment of the points
 poseRefinement = pcregisterloam(points,mapPoints,MatchingMethod="one-to-many",InitialTransform=rigid3d);

 % Refine the absolute pose using the pose refinement transformation
 absPose = rigid3d(poseRefinement.T * absPose.T);

 Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation

8-207

 % Store the refined absolute pose in the view set
 vSetMapping = addView(vSetMapping,viewId,absPose);

 % Add the new points to the map
 lidarMap = addPoints(lidarMap,points,absPose);

 % Downsample the map to remove duplicate points
 lidarMap = downsamplePoints(lidarMap,0.5);

 % Select a new local map using the new absolute pose
 lidarMap = selectLocalMap(lidarMap,absPose.Translation,sz);

 % Visualize the absolute pose in the parking lot scene
 plot(absPose.Translation(1),absPose.Translation(2),Color="r",Marker=".",MarkerSize=8)
 xlim([-60 40])
 ylim([10 60])
 title("Build a Map Using Lidar Mapping")
 legend(["Ground Truth","Estimated Position"])
 pause(0.001)
 view(2)
end

Compare Results

Visualize the estimated trajectories and compare them to the ground truth. Notice that combining
Lidar Odometry and Lidar Mapping results in a more accurate map.

figure
plot(refPosesX(:,2),refPosesY(:,2),LineWidth=2,DisplayName="Ground Truth")
hold on

% Get the positions estimated with Lidar Odometry
odometryPositions = vertcat(vSetOdometry.Views.AbsolutePose.Translation);

8 Featured Examples

8-208

plot(odometryPositions(:,1),odometryPositions(:,2),LineWidth=2,DisplayName="Odometry")

% Get the positions estimated with Lidar Odometry and Mapping
mappingPositions = vertcat(vSetMapping.Views.AbsolutePose.Translation);
plot(mappingPositions(:,1),mappingPositions(:,2),LineWidth=2,DisplayName="Odometry and Mapping")

legend
title("Compare Trajectories")

References

[1] Zhang, Ji, and Sanjiv Singh. “LOAM: Lidar Odometry and Mapping in Real-Time.” In Robotics:
Science and Systems X. Robotics: Science and Systems Foundation, 2014. https://doi.org/10.15607/
RSS.2014.X.007.

Supporting Functions

helperGetPointClouds extracts an array of pointCloud objects that contain lidar sensor data.

function ptCloudArr = helperGetPointClouds(simOut)

 Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation

8-209

https://doi.org/10.15607/RSS.2014.X.007
https://doi.org/10.15607/RSS.2014.X.007

% Extract signal
ptCloudData = simOut.ptCloudData.signals.values;

% Create a pointCloud array
ptCloudArr = pointCloud(ptCloudData(:,:,:,2)); % Ignore first frame
for n = 3:size(ptCloudData,4)
 ptCloudArr(end+1) = pointCloud(ptCloudData(:,:,:,n)); %#ok<AGROW>
end

end

helperGetLidarGroundTruth extracts an array of rigid3d objects that contain the ground truth
location and orientation.

function gTruth = helperGetLidarGroundTruth(simOut)

numFrames = size(simOut.lidarLocation.time,1);
gTruth = repmat(rigid3d,numFrames-1,1);

for i = 2:numFrames
 gTruth(i-1).Translation = squeeze(simOut.lidarLocation.signals.values(:,:,i));
 % Ignore the roll and the pitch rotations since the ground is flat
 yaw = double(simOut.lidarOrientation.signals.values(:,3,i));
 gTruth(i-1).Rotation = [cos(yaw) sin(yaw) 0;
 -sin(yaw) cos(yaw) 0;
 0 0 1];
end
end

helperRangeFilter filters the point cloud by range.

function ptCloud = helperRangeFilter(ptCloud,egoRadius,cylinderRadius)

% Compute the distance between each point and the origin
dists = hypot(ptCloud.Location(:,:,1),ptCloud.Location(:,:,2));

% Select the points inside the cylinder radius and outside the ego radius
cylinderIdx = dists <= cylinderRadius & dists >= egoRadius;
ptCloud = select(ptCloud,cylinderIdx,OutputSize="full");

end

8 Featured Examples

8-210

Code Generation for Tracking and Sensor Fusion
This example shows how to generate C code for a MATLAB® function that processes data recorded
from a test vehicle and tracks the objects around it.

Automatic generation of code from MATLAB code has two key benefits:

1 Prototypes can be developed and debugged in the MATLAB environment. Once the MATLAB
work is done, automatic C code generation makes the algorithms deployable to various targets.
Additionally, the C code can be further tested by running the compiled MEX file in a MATLAB
environment using the same visualization and analysis tools that were available during the
prototyping phase.

2 After generating C code, you can generate executable code, which in many cases runs faster than
the MATLAB code. The improved run time can be used to develop and deploy real-time sensor
fusion and tracking systems. It also provides a better way to batch test the tracking systems on a
large number of data sets.

The example explains how to modify the MATLAB code in the “Forward Collision Warning Using
Sensor Fusion” on page 8-218 example to support code generation.

This example requires a MATLAB® Coder™ license for generating C code.

Modify and Run MATLAB Code

You can learn about the basics of code generation using MATLAB Coder from the “Introduction to
Code Generation with Feature Matching and Registration” example.

To generate C code, MATLAB Coder requires MATLAB code to be in the form of a function.
Furthermore, the arguments of the function cannot be MATLAB classes.

In this example, the code for the forward collision warning (FCW) example has been restructured
such that the functions that perform sensor fusion and tracking reside in a separate file, called
trackingForFCW_kernel.m. Review this file for important information about memory allocation for
code generation.

To preserve the state of the multiObjectTracker between calls to trackingForFCW_kernel.m,
the tracker is defined as a persistent variable.

This function takes as an input a frame of the recorded data that includes:

1 Vision objects - A struct that contains 10 vision objects.
2 Radar objects - A struct that contains 36 radar objects.
3 Inertial measurement - A struct containing speed and yaw rate.
4 Lane reports - A struct array with parameters for the left and right lane boundaries.

Similarly, the outputs from a function that supports code generation cannot be objects. The outputs
from trackingForFCW_kernel.m are:

1 Confirmed tracks - A struct array that contains a variable number of tracks.
2 Ego lane - A struct array with the parameters of left and right lane boundaries.
3 Number of tracks - An integer scalar.

 Code Generation for Tracking and Sensor Fusion

8-211

4 Information about the most important object (MIO) and warning level from the FCW logic.

By restructuring the code this way, you can reuse the same display tools used in the FCW example.
These tools still run in MATLAB and do not require code generation.

Run the following lines of code to load the recorded data and prepare the display in a similar way to
the FCW example.

% If a previous tracker is defined, clear it
clear trackingForFCW_kernel

% Set up the display
videoFile = '01_city_c2s_fcw_10s.mp4';
sensorConfigFile = 'SensorConfigurationData.mat';
[videoReader, videoDisplayHandle, bepPlotters, sensor] = helperCreateFCWDemoDisplay(videoFile,sensorConfigFile);

% Read the recorded detections file
detfile = '01_city_c2s_fcw_10s_sensor.mat';
[visionObjects, radarObjects, imu, lanes, timeStep, numSteps] = helperReadSensorRecordingsFile(detfile);

% An initial ego lane is calculated. If the recorded lane information is
% invalid, define the lane boundaries as straight lines half a lane
% distance on each side of the car.
laneWidth = 3.6; % meters
egoLane = struct('left', [0 0 laneWidth/2], 'right', [0 0 -laneWidth/2]);

% Prepare some time variables
timeStamp = 0; % Time since the beginning of the recording
index = 0; % Index into the recorded sensor data

% Define the position and velocity selectors:
% The state vector is in constant acceleration: [x;vx;ax;y;vy;ay]
% Constant acceleration position: [x;y] = [1 0 0 0 0 0; 0 0 0 1 0 0] * State
positionSelector = [1 0 0 0 0 0; 0 0 0 1 0 0];
% Constant acceleration velocity: [x;y] = [0 1 0 0 0 0; 0 0 0 0 1 0] * State
velocitySelector = [0 1 0 0 0 0; 0 0 0 0 1 0];

8 Featured Examples

8-212

Now run the example by calling the trackingForFCW_kernel function in MATLAB. This initial run
provides a baseline to compare the results and enables you to collect some metrics about the
performance of the tracker when it runs in MATLAB or as a MEX file.

% Allocate memory for number of tracks and time measurement in MATLAB
numTracks = zeros(1, numSteps);
runTimes = zeros(1, numSteps);
while index < numSteps && ishghandle(videoDisplayHandle)
 % Update scenario counters
 index = index + 1;
 timeStamp = timeStamp + timeStep;
 tic;

 % Call the MATLAB tracking kernel file to perform the tracking
 [tracks, egoLane, numTracks(index), mostImportantObject] = trackingForFCW_kernel(...
 visionObjects(index), radarObjects(index), imu(index), lanes(index), egoLane, timeStamp, positionSelector, velocitySelector);

 runTimes(index) = toc; % Gather MATLAB run time data

 % Update video and bird's-eye plot displays
 frame = readFrame(videoReader); % Read video frame
 laneBoundaries = [parabolicLaneBoundary(egoLane.left);parabolicLaneBoundary(egoLane.right)];
 helperUpdateFCWDemoDisplay(frame, videoDisplayHandle, bepPlotters, laneBoundaries, sensor, ...
 tracks, mostImportantObject, positionSelector, velocitySelector, visionObjects(index), radarObjects(index));
end

Compile the MATLAB Function into a MEX File

Use the codegen function to compile the trackingForFCW_kernel function into a MEX file. You
can specify the -report option to generate a compilation report that shows the original MATLAB
code and the associated files that were created during C code generation. Consider creating a
temporary directory where MATLAB Coder can store generated files. Note that unless you use the -o
option to specify the name of the executable, the generated MEX file has the same name as the
original MATLAB file with _mex appended.

 Code Generation for Tracking and Sensor Fusion

8-213

MATLAB Coder requires that you specify the properties of all the input arguments. The inputs are
used by the tracker to create the correct data types and sizes for objects used in the tracking. The
data types and sizes must not change between data frames. One easy way to do this is to define the
input properties by example at the command line using the -args option. For more information, see
“Define Input Properties by Example at the Command Line” (MATLAB Coder).

% Define the properties of the input based on the data in the first time frame.
compInputs = {visionObjects(1), radarObjects(1), imu(1), lanes(1), egoLane, timeStamp, positionSelector, velocitySelector};

% Code generation may take some time.
h = msgbox({'Generating code. This may take a few minutes...';'This message box will close when done.'},'Codegen Message');
% Generate code.
try
 codegen trackingForFCW_kernel -args compInputs;
 close(h)
catch ME
 close(h)
 delete(videoDisplayHandle.Parent.Parent)
 throw(ME)
end

Code generation successful.

Run the Generated Code

Now that the code has been generated, run the exact same scenario with the generated MEX file
trackingForFCW_kernel_mex. Everything else remains the same.

% If a previous tracker is defined, clear it
clear trackingForFCW_kernel_mex

% Allocate memory for number of tracks and time measurement
numTracksMex = zeros(1, numSteps);
runTimesMex = zeros(1, numSteps);

% Reset the data and video counters
index = 0;
videoReader.CurrentTime = 0;

while index < numSteps && ishghandle(videoDisplayHandle)
 % Update scenario counters
 index = index + 1;
 timeStamp = timeStamp + timeStep;
 tic;

 % Call the generated MEX file to perform the tracking
 [tracks, egoLane, numTracksMex(index), mostImportantObject] = trackingForFCW_kernel_mex(...
 visionObjects(index), radarObjects(index), imu(index), lanes(index), egoLane, timeStamp, positionSelector, velocitySelector);

 runTimesMex(index) = toc; % Gather MEX run time data

 % Update video and bird's-eye plot displays
 frame = readFrame(videoReader); % Read video frame
 laneBoundaries = [parabolicLaneBoundary(egoLane.left);parabolicLaneBoundary(egoLane.right)];
 helperUpdateFCWDemoDisplay(frame, videoDisplayHandle, bepPlotters, laneBoundaries, sensor, ...
 tracks, mostImportantObject, positionSelector, velocitySelector, visionObjects(index), radarObjects(index));
end

8 Featured Examples

8-214

Compare the Results of the Two Runs

Compare the results and the performance of the generated code vs. the MATLAB code. The following
plots compare the number of tracks maintained by the trackers at each time step. They also show the
amount of time it took to process each call to the function.

figure(2)
subplot(2,1,1)
plot(2:numSteps, numTracks(2:end), 'rs-', 2:numSteps, numTracksMex(2:end), 'bx-')
title('Number of Tracks at Each Step');
legend('MATLAB', 'MEX')
grid
subplot(2,1,2)
yyaxis left
plot(2:numSteps, runTimesMex(2:end)*1e3);
ylabel('MEX Processing Time (ms)');
yyaxis right
plot(2:numSteps, runTimes(2:end) ./ runTimesMex(2:end))
ylabel('Speed-Up Ratio');
title('MEX Processing Time and Speed-Up Ratio at Each Step')
grid
xlabel('Time Step')

 Code Generation for Tracking and Sensor Fusion

8-215

The top plot shows that the number of tracks that were maintained by each tracker are the same. It
measures the size of the tracking problem in terms of number of tracks.

The bottom plot shows the time required for the MATLAB and generated code functions to process
each step. Note that the first step requires a disproportionately longer time, because the trackers
have to be constructed in the first step. Thus, the first time step is ignored.

The results show that the MEX code is much faster than the MATLAB code. They also show the
number of milliseconds required by the MEX code to perform each update step on your computer. For
example, on a computer with a CPU clock speed of 2.6 GHz running Windows® 7, the time required
for the MEX code to run an update step was less than 4 ms. As a reference, the recorded data used in
this example was sampled every 50 ms, so the MEX run time is short enough to allow real-time
tracking.

Display the CPU clock speed and average speed-up ratio.

p = profile('info');
speedUpRatio = mean(runTimes(2:end) ./ runTimesMex(2:end));
disp(['The generated code is ', num2str(speedUpRatio), ' times faster than the MATLAB code.']);
disp(['The computer clock speed is ', num2str(p.ClockSpeed / 1e9), ' GHz.']);

The generated code is 25.443 times faster than the MATLAB code.
The computer clock speed is 3.6 GHz.

Summary

This example showed how to generate C code from MATLAB code for sensor fusion and tracking.

8 Featured Examples

8-216

The main benefits of automatic code generation are the ability to prototype in the MATLAB
environment, generating a MEX file that can run in the MATLAB environment, and deploying to a
target using C code. In most cases, the generated code is faster than the MATLAB code, and can be
used for batch testing of algorithms and generating real-time tracking systems.

See Also
multiObjectTracker

More About
• “Forward Collision Warning Using Sensor Fusion” on page 8-218
• “Introduction to Code Generation with Feature Matching and Registration”

 Code Generation for Tracking and Sensor Fusion

8-217

Forward Collision Warning Using Sensor Fusion
This example shows how to perform forward collision warning by fusing data from vision and radar
sensors to track objects in front of the vehicle.

Overview

Forward collision warning (FCW) is an important feature in driver assistance and automated driving
systems, where the goal is to provide correct, timely, and reliable warnings to the driver before an
impending collision with the vehicle in front. To achieve the goal, vehicles are equipped with forward-
facing vision and radar sensors. Sensor fusion is required to increase the probability of accurate
warnings and minimize the probability of false warnings.

For the purposes of this example, a test car (the ego vehicle) was equipped with various sensors and
their outputs were recorded. The sensors used for this example were:

1 Vision sensor, which provided lists of observed objects with their classification and information
about lane boundaries. The object lists were reported 10 times per second. Lane boundaries were
reported 20 times per second.

2 Radar sensor with medium and long range modes, which provided lists of unclassified observed
objects. The object lists were reported 20 times per second.

3 IMU, which reported the speed and turn rate of the ego vehicle 20 times per second.
4 Video camera, which recorded a video clip of the scene in front of the car. Note: This video is not

used by the tracker and only serves to display the tracking results on video for verification.

The process of providing a forward collision warning comprises the following steps:

1 Obtain the data from the sensors.
2 Fuse the sensor data to get a list of tracks, i.e., estimated positions and velocities of the objects

in front of the car.
3 Issue warnings based on the tracks and FCW criteria. The FCW criteria are based on the Euro

NCAP AEB test procedure and take into account the relative distance and relative speed to the
object in front of the car.

For more information about tracking multiple objects, see “Multiple Object Tracking”.

The visualization in this example is done using monoCamera and birdsEyePlot. For brevity, the
functions that create and update the display were moved to helper functions outside of this example.
For more information on how to use these displays, see “Annotate Video Using Detections in Vehicle
Coordinates” on page 8-11 and “Visualize Sensor Coverage, Detections, and Tracks” on page 8-319.

This example is a script, with the main body shown here and helper routines in the form of local
functions in the sections that follow. For more details about local functions, see “Add Functions to
Scripts”.

% Set up the display
[videoReader, videoDisplayHandle, bepPlotters, sensor] = helperCreateFCWDemoDisplay('01_city_c2s_fcw_10s.mp4', 'SensorConfigurationData.mat');

% Read the recorded detections file
[visionObjects, radarObjects, inertialMeasurementUnit, laneReports, ...
 timeStep, numSteps] = readSensorRecordingsFile('01_city_c2s_fcw_10s_sensor.mat');

% An initial ego lane is calculated. If the recorded lane information is

8 Featured Examples

8-218

% invalid, define the lane boundaries as straight lines half a lane
% distance on each side of the car
laneWidth = 3.6; % meters
egoLane = struct('left', [0 0 laneWidth/2], 'right', [0 0 -laneWidth/2]);

% Prepare some time variables
time = 0; % Time since the beginning of the recording
currentStep = 0; % Current timestep
snapTime = 9.3; % The time to capture a snapshot of the display

% Initialize the tracker
[tracker, positionSelector, velocitySelector] = setupTracker();

while currentStep < numSteps && ishghandle(videoDisplayHandle)
 % Update scenario counters
 currentStep = currentStep + 1;
 time = time + timeStep;

 % Process the sensor detections as objectDetection inputs to the tracker
 [detections, laneBoundaries, egoLane] = processDetections(...
 visionObjects(currentStep), radarObjects(currentStep), ...
 inertialMeasurementUnit(currentStep), laneReports(currentStep), ...
 egoLane, time);

 % Using the list of objectDetections, return the tracks, updated to time
 confirmedTracks = updateTracks(tracker, detections, time);

 % Find the most important object and calculate the forward collision
 % warning
 mostImportantObject = findMostImportantObject(confirmedTracks, egoLane, positionSelector, velocitySelector);

 % Update video and birds-eye plot displays
 frame = readFrame(videoReader); % Read video frame
 helperUpdateFCWDemoDisplay(frame, videoDisplayHandle, bepPlotters, ...
 laneBoundaries, sensor, confirmedTracks, mostImportantObject, positionSelector, ...
 velocitySelector, visionObjects(currentStep), radarObjects(currentStep));

 % Capture a snapshot
 if time >= snapTime && time < snapTime + timeStep
 snapnow;
 end
end

Create the Multi-Object Tracker

The multiObjectTracker tracks the objects around the ego vehicle based on the object lists
reported by the vision and radar sensors. By fusing information from both sensors, the probability of
a false collision warning is reduced.

The setupTracker function returns the multiObjectTracker. When creating a
multiObjectTracker, consider the following:

1 FilterInitializationFcn: The likely motion and measurement models. In this case, the
objects are expected to have a constant acceleration motion. Although you can configure a linear
Kalman filter for this model, initConstantAccelerationFilter configures an extended
Kalman filter. See the 'Define a Kalman filter' section.

 Forward Collision Warning Using Sensor Fusion

8-219

2 AssignmentThreshold: How far detections can fall from tracks. The default value for this
parameter is 30. If there are detections that are not assigned to tracks, but should be, increase
this value. If there are detections that get assigned to tracks that are too far, decrease this value.
This example uses 35.

3 DeletionThreshold: When a track is confirmed, it should not be deleted on the first update
that no detection is assigned to it. Instead, it should be coasted (predicted) until it is clear that
the track is not getting any sensor information to update it. The logic is that if the track is missed
P out of Q times it should be deleted. The default value for this parameter is 5-out-of-5. In this
case, the tracker is called 20 times a second and there are two sensors, so there is no need to
modify the default.

4 ConfirmationThreshold: The parameters for confirming a track. A new track is initialized
with every unassigned detection. Some of these detections might be false, so all the tracks are
initialized as 'Tentative'. To confirm a track, it has to be detected at least M times in N
tracker updates. The choice of M and N depends on the visibility of the objects. This example
uses the default of 2 detections out of 3 updates.

The outputs of setupTracker are:

• tracker - The multiObjectTracker that is configured for this case.
• positionSelector - A matrix that specifies which elements of the State vector are the position:

position = positionSelector * State
• velocitySelector - A matrix that specifies which elements of the State vector are the velocity:

velocity = velocitySelector * State

 function [tracker, positionSelector, velocitySelector] = setupTracker()
 tracker = multiObjectTracker(...
 'FilterInitializationFcn', @initConstantAccelerationFilter, ...
 'AssignmentThreshold', 35, 'ConfirmationThreshold', [2 3], ...
 'DeletionThreshold', 5);

 % The State vector is:
 % In constant velocity: State = [x;vx;y;vy]
 % In constant acceleration: State = [x;vx;ax;y;vy;ay]

 % Define which part of the State is the position. For example:
 % In constant velocity: [x;y] = [1 0 0 0; 0 0 1 0] * State
 % In constant acceleration: [x;y] = [1 0 0 0 0 0; 0 0 0 1 0 0] * State
 positionSelector = [1 0 0 0 0 0; 0 0 0 1 0 0];

 % Define which part of the State is the velocity. For example:
 % In constant velocity: [x;y] = [0 1 0 0; 0 0 0 1] * State
 % In constant acceleration: [x;y] = [0 1 0 0 0 0; 0 0 0 0 1 0] * State
 velocitySelector = [0 1 0 0 0 0; 0 0 0 0 1 0];
 end

Define a Kalman Filter

The multiObjectTracker defined in the previous section uses the filter initialization function
defined in this section to create a Kalman filter (linear, extended, or unscented). This filter is then
used for tracking each object around the ego vehicle.

function filter = initConstantAccelerationFilter(detection)
% This function shows how to configure a constant acceleration filter. The
% input is an objectDetection and the output is a tracking filter.
% For clarity, this function shows how to configure a trackingKF,

8 Featured Examples

8-220

% trackingEKF, or trackingUKF for constant acceleration.
%
% Steps for creating a filter:
% 1. Define the motion model and state
% 2. Define the process noise
% 3. Define the measurement model
% 4. Initialize the state vector based on the measurement
% 5. Initialize the state covariance based on the measurement noise
% 6. Create the correct filter

 % Step 1: Define the motion model and state
 % This example uses a constant acceleration model, so:
 STF = @constacc; % State-transition function, for EKF and UKF
 STFJ = @constaccjac; % State-transition function Jacobian, only for EKF
 % The motion model implies that the state is [x;vx;ax;y;vy;ay]
 % You can also use constvel and constveljac to set up a constant
 % velocity model, constturn and constturnjac to set up a constant turn
 % rate model, or write your own models.

 % Step 2: Define the process noise
 dt = 0.05; % Known timestep size
 sigma = 1; % Magnitude of the unknown acceleration change rate
 % The process noise along one dimension
 Q1d = [dt^4/4, dt^3/2, dt^2/2; dt^3/2, dt^2, dt; dt^2/2, dt, 1] * sigma^2;
 Q = blkdiag(Q1d, Q1d); % 2-D process noise

 % Step 3: Define the measurement model
 MF = @fcwmeas; % Measurement function, for EKF and UKF
 MJF = @fcwmeasjac; % Measurement Jacobian function, only for EKF

 % Step 4: Initialize a state vector based on the measurement
 % The sensors measure [x;vx;y;vy] and the constant acceleration model's
 % state is [x;vx;ax;y;vy;ay], so the third and sixth elements of the
 % state vector are initialized to zero.
 state = [detection.Measurement(1); detection.Measurement(2); 0; detection.Measurement(3); detection.Measurement(4); 0];

 % Step 5: Initialize the state covariance based on the measurement
 % noise. The parts of the state that are not directly measured are
 % assigned a large measurement noise value to account for that.
 L = 100; % A large number relative to the measurement noise
 stateCov = blkdiag(detection.MeasurementNoise(1:2,1:2), L, detection.MeasurementNoise(3:4,3:4), L);

 % Step 6: Create the correct filter.
 % Use 'KF' for trackingKF, 'EKF' for trackingEKF, or 'UKF' for trackingUKF
 FilterType = 'EKF';

 % Creating the filter:
 switch FilterType
 case 'EKF'
 filter = trackingEKF(STF, MF, state,...
 'StateCovariance', stateCov, ...
 'MeasurementNoise', detection.MeasurementNoise(1:4,1:4), ...
 'StateTransitionJacobianFcn', STFJ, ...
 'MeasurementJacobianFcn', MJF, ...
 'ProcessNoise', Q ...
);
 case 'UKF'
 filter = trackingUKF(STF, MF, state, ...

 Forward Collision Warning Using Sensor Fusion

8-221

 'StateCovariance', stateCov, ...
 'MeasurementNoise', detection.MeasurementNoise(1:4,1:4), ...
 'Alpha', 1e-1, ...
 'ProcessNoise', Q ...
);
 case 'KF' % The ConstantAcceleration model is linear and KF can be used
 % Define the measurement model: measurement = H * state
 % In this case:
 % measurement = [x;vx;y;vy] = H * [x;vx;ax;y;vy;ay]
 % So, H = [1 0 0 0 0 0; 0 1 0 0 0 0; 0 0 0 1 0 0; 0 0 0 0 1 0]
 %
 % Note that ProcessNoise is automatically calculated by the
 % ConstantAcceleration motion model
 H = [1 0 0 0 0 0; 0 1 0 0 0 0; 0 0 0 1 0 0; 0 0 0 0 1 0];
 filter = trackingKF('MotionModel', '2D Constant Acceleration', ...
 'MeasurementModel', H, 'State', state, ...
 'MeasurementNoise', detection.MeasurementNoise(1:4,1:4), ...
 'StateCovariance', stateCov);
 end
end

Process and Format the Detections

The recorded information must be processed and formatted before it can be used by the tracker. This
has the following steps:

1 Filtering out unnecessary radar clutter detections. The radar reports many objects that
correspond to fixed objects, which include: guard-rails, the road median, traffic signs, etc. If
these detections are used in the tracking, they create false tracks of fixed objects at the edges of
the road and therefore must be removed before calling the tracker. Radar objects are considered
nonclutter if they are either stationary in front of the car or moving in its vicinity.

2 Formatting the detections as input to the tracker, i.e., an array of objectDetection elements.
See the processVideo and processRadar supporting functions at the end of this example.

 function [detections,laneBoundaries, egoLane] = processDetections...
 (visionFrame, radarFrame, IMUFrame, laneFrame, egoLane, time)
 % Inputs:
 % visionFrame - objects reported by the vision sensor for this time frame
 % radarFrame - objects reported by the radar sensor for this time frame
 % IMUFrame - inertial measurement unit data for this time frame
 % laneFrame - lane reports for this time frame
 % egoLane - the estimated ego lane
 % time - the time corresponding to the time frame

 % Remove clutter radar objects
 [laneBoundaries, egoLane] = processLanes(laneFrame, egoLane);
 realRadarObjects = findNonClutterRadarObjects(radarFrame.object,...
 radarFrame.numObjects, IMUFrame.velocity, laneBoundaries);

 % Return an empty list if no objects are reported

 % Counting the total number of objects
 detections = {};
 if (visionFrame.numObjects + numel(realRadarObjects)) == 0
 return;
 end

8 Featured Examples

8-222

 % Process the remaining radar objects
 detections = processRadar(detections, realRadarObjects, time);

 % Process video objects
 detections = processVideo(detections, visionFrame, time);
 end

Update the Tracker

To update the tracker, call the updateTracks method with the following inputs:

1 tracker - The multiObjectTracker that was configured earlier. See the 'Create the Multi-
Object Tracker' section.

2 detections - A list of objectDetection objects that was created by processDetections
3 time - The current scenario time.

The output from the tracker is a struct array of tracks.

Find the Most Important Object and Issue a Forward Collision Warning

The most important object (MIO) is defined as the track that is in the ego lane and is closest in front
of the car, i.e., with the smallest positive x value. To lower the probability of false alarms, only
confirmed tracks are considered.

Once the MIO is found, the relative speed between the car and MIO is calculated. The relative
distance and relative speed determine the forward collision warning. There are 3 cases of FCW:

1 Safe (green): There is no car in the ego lane (no MIO), the MIO is moving away from the car, or
the distance to the MIO remains constant.

2 Caution (yellow): The MIO is moving closer to the car, but is still at a distance above the FCW
distance. FCW distance is calculated using the Euro NCAP AEB Test Protocol. Note that this
distance varies with the relative speed between the MIO and the car, and is greater when the
closing speed is higher.

3 Warn (red): The MIO is moving closer to the car, and its distance is less than the FCW distance,
.

Euro NCAP AEB Test Protocol defines the following distance calculation:

where:

 is the forward collision warning distance.

 is the relative velocity between the two vehicles.

 is the maximum deceleration, defined to be 40% of the gravity acceleration.

 function mostImportantObject = findMostImportantObject(confirmedTracks,egoLane,positionSelector,velocitySelector)

 % Initialize outputs and parameters
 MIO = []; % By default, there is no MIO
 trackID = []; % By default, there is no trackID associated with an MIO
 FCW = 3; % By default, if there is no MIO, then FCW is 'safe'

 Forward Collision Warning Using Sensor Fusion

8-223

 threatColor = 'green'; % By default, the threat color is green
 maxX = 1000; % Far enough forward so that no track is expected to exceed this distance
 gAccel = 9.8; % Constant gravity acceleration, in m/s^2
 maxDeceleration = 0.4 * gAccel; % Euro NCAP AEB definition
 delayTime = 1.2; % Delay time for a driver before starting to brake, in seconds

 positions = getTrackPositions(confirmedTracks, positionSelector);
 velocities = getTrackVelocities(confirmedTracks, velocitySelector);

 for i = 1:numel(confirmedTracks)
 x = positions(i,1);
 y = positions(i,2);

 relSpeed = velocities(i,1); % The relative speed between the cars, along the lane

 if x < maxX && x > 0 % No point checking otherwise
 yleftLane = polyval(egoLane.left, x);
 yrightLane = polyval(egoLane.right, x);
 if (yrightLane <= y) && (y <= yleftLane)
 maxX = x;
 trackID = i;
 MIO = confirmedTracks(i).TrackID;
 if relSpeed < 0 % Relative speed indicates object is getting closer
 % Calculate expected braking distance according to
 % Euro NCAP AEB Test Protocol
 d = abs(relSpeed) * delayTime + relSpeed^2 / 2 / maxDeceleration;
 if x <= d % 'warn'
 FCW = 1;
 threatColor = 'red';
 else % 'caution'
 FCW = 2;
 threatColor = 'yellow';
 end
 end
 end
 end
 end
 mostImportantObject = struct('ObjectID', MIO, 'TrackIndex', trackID, 'Warning', FCW, 'ThreatColor', threatColor);
 end

8 Featured Examples

8-224

Summary

This example showed how to create a forward collision warning system for a vehicle equipped with
vision, radar, and IMU sensors. It used objectDetection objects to pass the sensor reports to the
multiObjectTracker object that fused them and tracked objects in front of the ego vehicle.

Try using different parameters for the tracker to see how they affect the tracking quality. Try
modifying the tracking filter to use trackingKF or trackingUKF, or to define a different motion
model, e.g., constant velocity or constant turn. Finally, you can try to define your own motion model.

Supporting Functions

readSensorRecordingsFile Reads recorded sensor data from a file

function [visionObjects, radarObjects, inertialMeasurementUnit, laneReports, ...
 timeStep, numSteps] = readSensorRecordingsFile(sensorRecordingFileName)
% Read Sensor Recordings
% The |ReadDetectionsFile| function reads the recorded sensor data file.
% The recorded data is a single structure that is divided into the
% following substructures:
%
% # |inertialMeasurementUnit|, a struct array with fields: timeStamp,
% velocity, and yawRate. Each element of the array corresponds to a
% different timestep.
% # |laneReports|, a struct array with fields: left and right. Each element
% of the array corresponds to a different timestep.
% Both left and right are structures with fields: isValid, confidence,
% boundaryType, offset, headingAngle, and curvature.
% # |radarObjects|, a struct array with fields: timeStamp (see below),
% numObjects (integer) and object (struct). Each element of the array
% corresponds to a different timestep.
% |object| is a struct array, where each element is a separate object,
% with the fields: id, status, position(x;y;z), velocity(vx,vy,vz),
% amplitude, and rangeMode.
% Note: z is always constant and vz=0.
% # |visionObjects|, a struct array with fields: timeStamp (see below),

 Forward Collision Warning Using Sensor Fusion

8-225

% numObjects (integer) and object (struct). Each element of the array
% corresponds to a different timestep.
% |object| is a struct array, where each element is a separate object,
% with the fields: id, classification, position (x;y;z),
% velocity(vx;vy;vz), size(dx;dy;dz). Note: z=vy=vz=dx=dz=0
%
% The timeStamp for recorded vision and radar objects is a uint64 variable
% holding microseconds since the Unix epoch. Timestamps are recorded about
% 50 milliseconds apart. There is a complete synchronization between the
% recordings of vision and radar detections, therefore the timestamps are
% not used in further calculations.

A = load(sensorRecordingFileName);
visionObjects = A.vision;
radarObjects = A.radar;
laneReports = A.lane;
inertialMeasurementUnit = A.inertialMeasurementUnit;

timeStep = 0.05; % Data is provided every 50 milliseconds
numSteps = numel(visionObjects); % Number of recorded timesteps
end

processLanes Converts sensor-reported lanes to parabolicLaneBoundary lanes and maintains a
persistent ego lane estimate

function [laneBoundaries, egoLane] = processLanes(laneReports, egoLane)
% Lane boundaries are updated based on the laneReports from the recordings.
% Since some laneReports contain invalid (isValid = false) reports or
% impossible parameter values (-1e9), these lane reports are ignored and
% the previous lane boundary is used.
leftLane = laneReports.left;
rightLane = laneReports.right;

% Check the validity of the reported left lane
cond = (leftLane.isValid && leftLane.confidence) && ...
 ~(leftLane.headingAngle == -1e9 || leftLane.curvature == -1e9);
if cond
 egoLane.left = cast([leftLane.curvature, leftLane.headingAngle, leftLane.offset], 'double');
end

% Update the left lane boundary parameters or use the previous ones
leftParams = egoLane.left;
leftBoundaries = parabolicLaneBoundary(leftParams);
leftBoundaries.Strength = 1;

% Check the validity of the reported right lane
cond = (rightLane.isValid && rightLane.confidence) && ...
 ~(rightLane.headingAngle == -1e9 || rightLane.curvature == -1e9);
if cond
 egoLane.right = cast([rightLane.curvature, rightLane.headingAngle, rightLane.offset], 'double');
end

% Update the right lane boundary parameters or use the previous ones
rightParams = egoLane.right;
rightBoundaries = parabolicLaneBoundary(rightParams);
rightBoundaries.Strength = 1;

8 Featured Examples

8-226

laneBoundaries = [leftBoundaries, rightBoundaries];
end

findNonClutterRadarObjects Removes radar objects that are considered part of the clutter

function realRadarObjects = findNonClutterRadarObjects(radarObject, numRadarObjects, egoSpeed, laneBoundaries)
% The radar objects include many objects that belong to the clutter.
% Clutter is defined as a stationary object that is not in front of the
% car. The following types of objects pass as nonclutter:
%
% # Any object in front of the car
% # Any moving object in the area of interest around the car, including
% objects that move at a lateral speed around the car

 % Allocate memory
 normVs = zeros(numRadarObjects, 1);
 inLane = zeros(numRadarObjects, 1);
 inZone = zeros(numRadarObjects, 1);

 % Parameters
 LaneWidth = 3.6; % What is considered in front of the car
 ZoneWidth = 1.7*LaneWidth; % A wider area of interest
 minV = 1; % Any object that moves slower than minV is considered stationary
 for j = 1:numRadarObjects
 [vx, vy] = calculateGroundSpeed(radarObject(j).velocity(1),radarObject(j).velocity(2),egoSpeed);
 normVs(j) = norm([vx,vy]);
 laneBoundariesAtObject = computeBoundaryModel(laneBoundaries, radarObject(j).position(1));
 laneCenter = mean(laneBoundariesAtObject);
 inLane(j) = (abs(radarObject(j).position(2) - laneCenter) <= LaneWidth/2);
 inZone(j) = (abs(radarObject(j).position(2) - laneCenter) <= max(abs(vy)*2, ZoneWidth));
 end
 realRadarObjectsIdx = union(...
 intersect(find(normVs > minV), find(inZone == 1)), ...
 find(inLane == 1));

 realRadarObjects = radarObject(realRadarObjectsIdx);
end

calculateGroundSpeed Calculates the true ground speed of a radar-reported object from the
relative speed and the ego vehicle speed

function [Vx,Vy] = calculateGroundSpeed(Vxi,Vyi,egoSpeed)
% Inputs
% (Vxi,Vyi) : relative object speed
% egoSpeed : ego vehicle speed
% Outputs
% [Vx,Vy] : ground object speed

 Vx = Vxi + egoSpeed; % Calculate longitudinal ground speed
 theta = atan2(Vyi,Vxi); % Calculate heading angle
 Vy = Vx * tan(theta); % Calculate lateral ground speed

end

processVideo Converts reported vision objects to a list of objectDetection objects

function postProcessedDetections = processVideo(postProcessedDetections, visionFrame, t)
% Process the video objects into objectDetection objects

 Forward Collision Warning Using Sensor Fusion

8-227

numRadarObjects = numel(postProcessedDetections);
numVisionObjects = visionFrame.numObjects;
if numVisionObjects
 classToUse = class(visionFrame.object(1).position);
 visionMeasCov = cast(diag([2,2,2,100]), classToUse);
 % Process Vision Objects:
 for i=1:numVisionObjects
 object = visionFrame.object(i);
 postProcessedDetections{numRadarObjects+i} = objectDetection(t,...
 [object.position(1); object.velocity(1); object.position(2); 0], ...
 'SensorIndex', 1, 'MeasurementNoise', visionMeasCov, ...
 'MeasurementParameters', {1}, ...
 'ObjectClassID', object.classification, ...
 'ObjectAttributes', {object.id, object.size});
 end
end
end

processRadar Converts reported radar objects to a list of objectDetection objects

function postProcessedDetections = processRadar(postProcessedDetections, realRadarObjects, t)
% Process the radar objects into objectDetection objects
numRadarObjects = numel(realRadarObjects);
if numRadarObjects
 classToUse = class(realRadarObjects(1).position);
 radarMeasCov = cast(diag([2,2,2,100]), classToUse);
 % Process Radar Objects:
 for i=1:numRadarObjects
 object = realRadarObjects(i);
 postProcessedDetections{i} = objectDetection(t, ...
 [object.position(1); object.velocity(1); object.position(2); object.velocity(2)], ...
 'SensorIndex', 2, 'MeasurementNoise', radarMeasCov, ...
 'MeasurementParameters', {2}, ...
 'ObjectAttributes', {object.id, object.status, object.amplitude, object.rangeMode});
 end
end
end

fcwmeas The measurement function used in this forward collision warning example

function measurement = fcwmeas(state, sensorID)
% The example measurements depend on the sensor type, which is reported by
% the MeasurementParameters property of the objectDetection. The following
% two sensorID values are used:
% sensorID=1: video objects, the measurement is [x;vx;y].
% sensorID=2: radar objects, the measurement is [x;vx;y;vy].
% The state is:
% Constant velocity state = [x;vx;y;vy]
% Constant turn state = [x;vx;y;vy;omega]
% Constant acceleration state = [x;vx;ax;y;vy;ay]

 if numel(state) < 6 % Constant turn or constant velocity
 switch sensorID
 case 1 % video
 measurement = [state(1:3); 0];
 case 2 % radar
 measurement = state(1:4);
 end

8 Featured Examples

8-228

 else % Constant acceleration
 switch sensorID
 case 1 % video
 measurement = [state(1:2); state(4); 0];
 case 2 % radar
 measurement = [state(1:2); state(4:5)];
 end
 end
end

fcwmeasjac The Jacobian of the measurement function used in this forward collision warning
example

function jacobian = fcwmeasjac(state, sensorID)
% The example measurements depend on the sensor type, which is reported by
% the MeasurementParameters property of the objectDetection. We choose
% sensorID=1 for video objects and sensorID=2 for radar objects. The
% following two sensorID values are used:
% sensorID=1: video objects, the measurement is [x;vx;y].
% sensorID=2: radar objects, the measurement is [x;vx;y;vy].
% The state is:
% Constant velocity state = [x;vx;y;vy]
% Constant turn state = [x;vx;y;vy;omega]
% Constant acceleration state = [x;vx;ax;y;vy;ay]

 numStates = numel(state);
 jacobian = zeros(4, numStates, 'like', state);

 if numel(state) < 6 % Constant turn or constant velocity
 switch sensorID
 case 1 % video
 jacobian(1,1) = 1;
 jacobian(2,2) = 1;
 jacobian(3,3) = 1;
 case 2 % radar
 jacobian(1,1) = 1;
 jacobian(2,2) = 1;
 jacobian(3,3) = 1;
 jacobian(4,4) = 1;
 end
 else % Constant acceleration
 switch sensorID
 case 1 % video
 jacobian(1,1) = 1;
 jacobian(2,2) = 1;
 jacobian(3,4) = 1;
 case 2 % radar
 jacobian(1,1) = 1;
 jacobian(2,2) = 1;
 jacobian(3,4) = 1;
 jacobian(4,5) = 1;
 end

 Forward Collision Warning Using Sensor Fusion

8-229

 end
end

See Also
Functions
updateTracks

Objects
birdsEyePlot | monoCamera | trackingKF | trackingEKF | objectDetection | trackingUKF |
multiObjectTracker

More About
• “Code Generation for Tracking and Sensor Fusion” on page 8-211
• “Annotate Video Using Detections in Vehicle Coordinates” on page 8-11
• “Visualize Sensor Coverage, Detections, and Tracks” on page 8-319
• “Multiple Object Tracking Tutorial” on page 8-255
• “Multiple Object Tracking”

8 Featured Examples

8-230

Adaptive Cruise Control with Sensor Fusion
This example shows how to implement a sensor fusion-based automotive adaptive cruise controller
for a vehicle traveling on a curved road using sensor fusion.

In this example, you:

1 Review a control system that combines sensor fusion and an adaptive cruise controller (ACC).
Two variants of ACC are provided: a classical controller and an Adaptive Cruise Control System
block from Model Predictive Control Toolbox.

2 Test the control system in a closed-loop Simulink model using synthetic data generated by the
Automated Driving Toolbox.

3 Configure the code generation settings for software-in-the-loop simulation, and automatically
generate code for the control algorithm.

Introduction

An adaptive cruise control system is a control system that modifies the speed of the ego vehicle in
response to conditions on the road. As in regular cruise control, the driver sets a desired speed for
the car; in addition, the adaptive cruise control system can slow the ego vehicle down if there is
another vehicle moving slower in the lane in front of it.

For the ACC to work correctly, the ego vehicle must determine how the lane in front of it curves, and
which car is the 'lead car', that is, in front of the ego vehicle in the lane. A typical scenario from the
viewpoint of the ego vehicle is shown in the following figure. The ego vehicle (blue) travels along a
curved road. At the beginning, the lead car is the pink car. Then the purple car cuts into the lane of
the ego vehicle and becomes the lead car. After a while, the purple car changes to another lane, and
the pink car becomes the lead car again. The pink car remains the lead car afterward. The ACC
design must react to the change in the lead car on the road.

Current ACC designs rely mostly on range and range rate measurements obtained from radar, and
are designed to work best along straight roads. An example of such a system is given in “Adaptive
Cruise Control System Using Model Predictive Control” (Model Predictive Control Toolbox) and in

 Adaptive Cruise Control with Sensor Fusion

8-231

“Automotive Adaptive Cruise Control Using FMCW Technology” (Radar Toolbox). Moving from
advanced driver-assistance system (ADAS) designs to more autonomous systems, the ACC must
address the following challenges:

1 Estimating the relative positions and velocities of the cars that are near the ego vehicle and that
have significant lateral motion relative to the ego vehicle.

2 Estimating the lane ahead of the ego vehicle to find which car in front of the ego vehicle is the
closest one in the same lane.

3 Reacting to aggressive maneuvers by other vehicles in the environment, in particular, when
another vehicle cuts into the ego vehicle lane.

This example demonstrates two main additions to existing ACC designs that meet these challenges:
adding a sensor fusion system and updating the controller design based on model predictive control
(MPC). A sensor fusion and tracking system that uses both vision and radar sensors provides the
following benefits:

1 It combines the better lateral measurement of position and velocity obtained from vision sensors
with the range and range rate measurement from radar sensors.

2 A vision sensor can detect lanes, provide an estimate of the lateral position of the lane relative to
the ego vehicle, and position the other cars in the scene relative to the ego vehicle lane. This
example assumes ideal lane detection.

An advanced MPC controller adds the ability to react to more aggressive maneuvers by other vehicles
in the environment. In contrast to a classical controller that uses a PID design with constant gains,
the MPC controller regulates the velocity of the ego vehicle while maintaining a strict safe distance
constraint. Therefore, the controller can apply more aggressive maneuvers when the environment
changes quickly in a similar way to what a human driver would do.

Overview of Test Bench Model and Simulation Results

To open the main Simulink model, use the following command:

open_system('ACCTestBenchExample')

8 Featured Examples

8-232

The model contains two main subsystems:

1 ACC with Sensor Fusion, which models the sensor fusion and controls the longitudinal
acceleration of the vehicle. This component allows you to select either a classical or model
predictive control version of the design.

2 A Vehicle and Environment subsystem, which models the motion of the ego vehicle and models
the environment. A simulation of radar and vision sensors provides synthetic data to the control
subsystem.

To run the associated initialization script before running the model, in the Simulink model, click Run
Setup Script or, at the command prompt, type the following:

helperACCSetUp

The script loads certain constants needed by the Simulink model, such as the scenario object, vehicle
parameters, and ACC design parameters. The default ACC is the classical controller. The script also
creates buses that are required for defining the inputs into and outputs for the control system
referenced model. These buses must be defined in the workspace before model compilation. When
the model compiles, additional Simulink buses are automatically generated by their respective blocks.

 Adaptive Cruise Control with Sensor Fusion

8-233

To plot the results of the simulation and depict the surroundings of the ego vehicle, including the
tracked objects, use the Bird's-Eye Scope. The Bird's-Eye Scope is a model-level visualization tool that
you can open from the Simulink toolstrip. On the Simulation tab, under Review Results, click
Bird's-Eye Scope. After opening the scope, click Find Signals to set up the signals. The following
commands run the simulation to 15 seconds to get a mid-simulation picture and run again all the way
to end of the simulation to gather results.

sim('ACCTestBenchExample','StopTime','15') %Simulate 15 seconds
sim('ACCTestBenchExample') %Simulate to end of scenario

ans =

 Simulink.SimulationOutput:
 logsout: [1x1 Simulink.SimulationData.Dataset]
 tout: [151x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

8 Featured Examples

8-234

The Bird's-Eye Scope shows the results of the sensor fusion. It shows how the radar and vision
sensors detect the vehicles within their sensors coverage areas. It also shows the tracks maintained
by the Multi Object Tracker block. The yellow track shows the most important object (MIO): the
closest track in front of the ego vehicle in its lane. We see that at the beginning of the scenario, the
most important object is the fast-moving car ahead of the ego vehicle. When the passing car gets
closer to the slow-moving car, it crosses to the left lane, and the sensor fusion system recognizes it to
be the MIO. This car is much closer to the ego vehicle and much slower than it. Thus, the ACC must
slow the ego vehicle.

In the following results for the classical ACC system, the:

• Top plot shows the ego vehicle velocity.
• Middle plot shows the relative distance between the ego vehicle and lead car.
• Bottom plot shows the ego vehicle acceleration.

In this example, the raw data from the Tracking and Sensor Fusion system is used for ACC design
without post-processing. You can expect to see some 'spikes' (middle plot) due to the uncertainties in
the sensor model especially when another car cuts into or leaves the ego vehicle lane.

To view the simulation results, use the following command.

helperPlotACCResults(logsout,default_spacing,time_gap)

 Adaptive Cruise Control with Sensor Fusion

8-235

• In the first 11 seconds, the lead car is far ahead of the ego vehicle (middle plot). The ego vehicle
accelerates and reaches the velocity set by the driver (top plot).

• Another car becomes the lead car from 11 to 20 seconds when the car cuts into the ego vehicle
lane (middle plot). When the distance between the lead car and the ego vehicle is large (11-15
seconds), the ego vehicle still travels at the driver-set velocity. When the distance becomes small
(15-20 seconds), the ego vehicle decelerates to maintain a safe distance from the lead car (top
plot).

• From 20 to 34 seconds, the car in front moves to another lane, and a new lead car appears (middle
plot). Because the distance between the lead car and the ego vehicle is large, the ego vehicle
accelerates until it reaches the driver-set velocity at 27 seconds. Then, the ego vehicle continues
to travel at the driver-set velocity (top plot).

• The bottom plot demonstrates that the acceleration is within the range [-3,2] m/s^2. The smooth
transient behavior indicates that the driver comfort is satisfactory.

8 Featured Examples

8-236

In the MPC-based ACC design, the underlying optimization problem is formulated by tracking the
driver-set velocity subject to enforcing a safe distance from the lead car. The MPC controller design is
described in the Adaptive Cruise Controller section. To run the model with the MPC design, first
activate the MPC variant, and then run the following commands. This step requires Model Predictive
Control Toolbox software. You can check the existence of this license using the following code. If no
code exists, a sample of similar results is depicted.

hasMPCLicense = license('checkout','MPC_Toolbox');
if hasMPCLicense
 controller_type = 2;
 sim('ACCTestBenchExample','StopTime','15') %Simulate 15 seconds
 sim('ACCTestBenchExample') %Simulate to end of scenario
else
 load data_mpc
end

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

ans =

 Simulink.SimulationOutput:
 logsout: [1x1 Simulink.SimulationData.Dataset]
 tout: [151x1 double]

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

 Adaptive Cruise Control with Sensor Fusion

8-237

In the simulation results for the MPC-based ACC, similar to the classical ACC design, the objectives of
speed and spacing control are achieved. Compared to the classical ACC design, the MPC-based ACC
is more aggressive as it uses full throttle or braking for acceleration or deceleration. This behavior is
due to the explicit constraint on the relative distance. The aggressive behavior may be preferred
when sudden changes on the road occur, such as when the lead car changes to be a slow car. To make
the controller less aggressive, open the mask of the Adaptive Cruise Control System block, and
reduce the value of the Controller Behavior parameter. As previously noted, the spikes in the
middle plot are due to the uncertainties in the sensor model.

To view the results of the simulation with the MPC-based ACC, use the following command.

helperPlotACCResults(logsout,default_spacing,time_gap)

8 Featured Examples

8-238

In the following, the functions of each subsystem in the Test Bench Model are described in more
detail. The Adaptive Cruise Controller with Sensor Fusion subsystem contains two main components:

1 Tracking and Sensor Fusion subsystem
2 Adaptive Cruise Controller subsystem

open_system('ACCTestBenchExample/ACC with Sensor Fusion')

 Adaptive Cruise Control with Sensor Fusion

8-239

Tracking and Sensor Fusion

The Tracking and Sensor Fusion subsystem processes vision and radar detections coming from the
Vehicle and Environment subsystem and generates a comprehensive situation picture of the
environment around the ego vehicle. Also, it provides the ACC with an estimate of the closest car in
the lane in front of the ego vehicle.

open_system('ACCWithSensorFusionMdlRef/Tracking and Sensor Fusion')

The main block of the Tracking and Sensor Fusion subsystem is the Multi-Object Tracker block,
whose inputs are the combined list of all the sensor detections and the prediction time. The output
from the Multi Object Tracker block is a list of confirmed tracks.

8 Featured Examples

8-240

The Detection Concatenation block concatenates the vision and radar detections. The prediction time
is driven by a clock in the Vehicle and Environment subsystem.

The Detection Clustering block clusters multiple radar detections, since the tracker expects at most
one detection per object per sensor.

The findLeadCar MATLAB function block finds which car is closest to the ego vehicle and ahead of
it in same the lane using the list of confirmed tracks and the curvature of the road. This car is
referred to as the lead car, and may change when cars move into and out of the lane in front of the
ego vehicle. The function provides the position and velocity of the lead car relative to the ego vehicle
and an index to the most important object (MIO) track.

Adaptive Cruise Controller

The adaptive cruise controller has two variants: a classical design (default) and an MPC-based design.
For both designs, the following design principles are applied. An ACC equipped vehicle (ego vehicle)
uses sensor fusion to estimate the relative distance and relative velocity to the lead car. The ACC
makes the ego vehicle travel at a driver-set velocity while maintaining a safe distance from the lead
car. The safe distance between lead car and ego vehicle is defined as

where the default spacing , and time gap are design parameters and is the
longitudinal velocity of the ego vehicle. The ACC generates the longitudinal acceleration for the ego
vehicle based on the following inputs:

• Longitudinal velocity of ego vehicle
• Relative distance between lead car and ego vehicle (from the Tracking and Sensor Fusion system)
• Relative velocity between lead car and ego vehicle (from the Tracking and Sensor Fusion system)

Considering the physical limitations of the ego vehicle, the longitudinal acceleration is constrained to
the range [-3,2] .

In the classical ACC design, if the relative distance is less than the safe distance, then the primary
goal is to slow down and maintain a safe distance. If the relative distance is greater than the safe
distance, then the primary goal is to reach driver-set velocity while maintaining a safe distance.
These design principles are achieved through the Min and Switch blocks.

open_system('ACCWithSensorFusionMdlRef/Adaptive Cruise Controller/ACC Classical')

 Adaptive Cruise Control with Sensor Fusion

8-241

In the MPC-based ACC design, the underlying optimization problem is formulated by tracking the
driver-set velocity subject to a constraint. The constraint enforces that relative distance is always
greater than the safe distance.

To configure the Adaptive Cruise Control System block, use the parameters defined in the
helperACCSetUp file. For example, the linear model for ACC design , and is obtained from
vehicle dynamics. The two Switch blocks implement simple logic to handle large numbers from the
sensor (for example, the sensor may return Inf when it does not detect an MIO).

open_system('ACCWithSensorFusionMdlRef/Adaptive Cruise Controller/ACC Model Predictive Control')

8 Featured Examples

8-242

For more information on MPC design for ACC, see “Adaptive Cruise Control System Using Model
Predictive Control” (Model Predictive Control Toolbox).

Vehicle and Environment

The Vehicle and Environment subsystem is composed of two parts:

1 Vehicle Dynamics and Global Coordinates
2 Actor and Sensor Simulation

open_system('ACCTestBenchExample/Vehicle and Environment')

 Adaptive Cruise Control with Sensor Fusion

8-243

The Vehicle Dynamics subsystem models the vehicle dynamics with the Bicycle Model - Force Input
block from the Automated Driving Toolbox. The vehicle dynamics, with input (longitudinal
acceleration) and front steering angle , are approximated by:

In the state vector, denotes the lateral velocity, denotes the longitudinal velocity and denotes
the yaw angle. The vehicle parameters are provided in the helperACCSetUp file.

The outputs from the vehicle dynamics (such as longitudinal velocity and lateral velocity) are
based on body fixed coordinates. To obtain the trajectory traversed by the vehicle, the body fixed
coordinates are converted into global coordinates through the following relations:

The yaw angle and yaw angle rate are also converted into the units of degrees.

The goal for the driver steering model is to keep the vehicle in its lane and follow the curved road by
controlling the front steering angle . This goal is achieved by driving the yaw angle error and
lateral displacement error to zero (see the following figure), where

8 Featured Examples

8-244

The desired yaw angle rate is given by (denotes the radius for the road curvature).

The Actors and Sensor Simulation subsystem generates the synthetic sensor data required for
tracking and sensor fusion. Before running this example, the Driving Scenario Designer app was used
to create a scenario with a curved road and multiple actors moving on the road. The roads and actors
from this scenario were then saved to the scenario file ACCTestBenchScenario.mat. To see how
you can define the scenario, see the Scenario Creation section.

open_system('ACCTestBenchExample/Vehicle and Environment/Actors and Sensor Simulation')

 Adaptive Cruise Control with Sensor Fusion

8-245

The motion of the ego vehicle is controlled by the control system and is not read from the scenario
file. Instead, the ego vehicle position, velocity, yaw angle, and yaw rate are received as inputs from
the Vehicle Dynamics block and are packed into a single actor pose structure using the packEgo
MATLAB function block.

The Scenario Reader block reads the actor pose data from the scenario file
ACCTestBenchScenario.mat. The block converts the actor poses from the world coordinates of the
scenario into ego vehicle coordinates. The actor poses are streamed on a bus generated by the block.
In this example, you use a Vision Detection Generator block and Radar Detection Generator block.
Both sensors are long-range and forward-looking, and provide good coverage of the front of the ego
vehicle, as needed for ACC. The sensors use the actor poses in ego vehicle coordinates to generate
lists of vehicle detections in front of the ego vehicle. Finally, a clock block is used as an example of
how the vehicle would have a centralized time source. The time is used by the Multi Object Tracker
block.

Scenario Creation

The Driving Scenario Designer app allows you to define roads and vehicles moving on the roads.
For this example, you define two parallel roads of constant curvature. To define the road, you define
the road centers, the road width, and banking angle (if needed). The road centers were chosen by
sampling points along a circular arc, spanning a turn of 60 degrees of constant radius of curvature.

You define all the vehicles in the scenario. To define the motion of the vehicles, you define their
trajectory by a set of waypoints and speeds. A quick way to define the waypoints is by choosing a
subset of the road centers defined earlier, with an offset to the left or right of the road centers to
control the lane in which the vehicles travel.

This example shows four vehicles: a fast-moving car in the left lane, a slow-moving car in the right
lane, a car approaching on the opposite side of the road, and a car that starts on the right lane, but
then moves to the left lane to pass the slow-moving car.

8 Featured Examples

8-246

The scenario can be modified using the Driving Scenario Designer app and resaved to the same
scenario file ACCTestBenchScenario.mat. The Scenario Reader block automatically picks up the
changes when simulation is rerun. To build the scenario programmatically, you can use the
helperScenarioAuthoring function.

plotACCScenario

Generating Code for the Control Algorithm

Although the entire model does not support code generation, the ACCWithSensorFusionMdlRef
model is configured to support generating C code using Embedded Coder software. To check if you
have access to Embedded Coder, run:

hasEmbeddedCoderLicense = license('checkout','RTW_Embedded_Coder')

You can generate a C function for the model and explore the code generation report by running:

if hasEmbeddedCoderLicense
 rtwbuild('ACCWithSensorFusionMdlRef')
end

You can verify that the compiled C code behaves as expected using software-in-the-loop (SIL)
simulation. To simulate the ACCWithSensorFusionMdlRef referenced model in SIL mode, use:

if hasEmbeddedCoderLicense
 set_param('ACCTestBenchExample/ACC with Sensor Fusion',...
 'SimulationMode','Software-in-the-loop (SIL)')
end

 Adaptive Cruise Control with Sensor Fusion

8-247

When you run the ACCTestBenchExample model, code is generated, compiled, and executed for the
ACCWithSensorFusionMdlRef model. This enables you to test the behavior of the compiled code
through simulation.

Conclusions

This example shows how to implement an integrated adaptive cruise controller (ACC) on a curved
road with sensor fusion, test it in Simulink using synthetic data generated by the Automated Driving
Toolbox, componentize it, and automatically generate code for it.

bdclose all

See Also
Functions
record | roadBoundaries

Blocks
Vision Detection Generator | Driving Radar Data Generator | Detection Concatenation | Multi-Object
Tracker | Adaptive Cruise Control System

Objects
drivingScenario

More About
• “Adaptive Cruise Control System Using Model Predictive Control” (Model Predictive Control

Toolbox)
• “Automotive Adaptive Cruise Control Using FMCW Technology” (Radar Toolbox)

8 Featured Examples

8-248

Forward Collision Warning Application with CAN FD and TCP/IP
This example shows how to execute a forward collision warning (FCW) application with sensor and
vision data replayed live via CAN FD and TCP/IP protocols. Recorded data from a sensor suite
mounted on a test vehicle are replayed live as if they were coming through the network interfaces of
the vehicle. Vehicle Network Toolbox™ and Instrument Control Toolbox™ provide these interfaces.
This setup is used to test an FCW system developed using features from Automated Driving
Toolbox™. For assistance with the design and development of actual FCW algorithms, refer to the
example “Forward Collision Warning Using Sensor Fusion” on page 8-218.

System Configuration

This example uses virtual CAN FD channels from Vector. These virtual device channels are available
with the installation of the Vector Driver Setup package from www.vector.com.

This example has two primary components:

1 Transmitter: Sends the sensor and vision data via CAN FD and TCP/IP. This portion represents a
sample vehicle environment. It replays prerecorded data as if it were a live vehicle.

2 Receiver: Collects all the data and executes the FCW algorithm and visualizations. This portion
represents the application component.

To execute the example, the transmitter and receiver portions run from separate sessions of
MATLAB®. This replicates the data source existing outside the MATLAB session serving as the
development tool. Furthermore, this example allows you to run the FCW application in multiple
execution modes (interpreted and MEX) with different performance characteristics.

 Forward Collision Warning Application with CAN FD and TCP/IP

8-249

https://www.vector.com

Generate Data

The transmitting application executes via the helperStartTransmitter function. It launches a
separate MATLAB process to run outside of the current MATLAB session. The transmitter initializes
itself and begins sending sensor and vision data automatically. To run the transmitter, use the system
command.

system('matlab -nodesktop -nosplash -r helperStartTransmitter &')

Execute Forward Collision Warning System (Interpreted Mode)

To open the receiving FCW application, execute the helperStartReceiver function. You can click
START to begin data reception, processing, and visualization. You can explore the
helperStartReceiver function to see how the Vehicle Network Toolbox CAN FD functions,
Instrument Control Toolbox TCP/IP functions, and Automated Driving Toolbox capabilities are used in
concert with one another.

helperStartReceiver('interpreted')

8 Featured Examples

8-250

Review Results

When ready, stop the transmitter application using the close window button on its command window.
Click STOP on the receiving FCW application, and then close its window as well.

When the receiving FCW application is stopped, a plot appears detailing performance characteristics
of the application. It shows time spent receiving data, processing the FCW algorithm, and performing
visualizations. Benchmarking is useful to show parts of the setup that need performance
improvement. It is clear that a significant portion of time is spent executing the FCW algorithm. In
the next section, explore code generation as a strategy to improve performance.

 Forward Collision Warning Application with CAN FD and TCP/IP

8-251

Execute Forward Collision Warning System (MEX Mode)

If faster performance is a requirement in your workflow, you can use MATLAB Coder™ to generate
and compile MATLAB code as MEX code. To build this example as MEX code, use the
helperGenerateCode function. The build will compile the FCW application into a MEX function
directly callable within MATLAB.

helperGenerateCode('mex')

Restart the transmitter application.

system('matlab -nodesktop -nosplash -r helperStartTransmitter &')

The receiving FCW application can also be restarted. This time with an input argument to use the
MEX compiled code built in the prior step.

helperStartReceiver('mex')

When ready, stop and close the transmitter and receiving FCW application. Comparing the time plot
for MEX execution to the interpreted mode plot, you can see the performance improvement for the
FCW algorithm.

8 Featured Examples

8-252

Use Physical Hardware and Multiple Computers

The example uses a single computer to simulate the entire system with virtual connectivity. As such,
its performance is meant as an approximation. You can also execute this example using two
computers (one as transmitter, one as receiver). This would represent more of a real live data
scenario. To achieve this, you can make simple modifications to the example code.

Changing the CAN FD communication from virtual to physical devices requires editing the
transmission and reception code to invoke canChannel (Vehicle Network Toolbox) using a hardware
device instead of the virtual channels. You may also need to modify the call to configBusSpeed
(Vehicle Network Toolbox) depending on the capabilities of the hardware. These calls are found in the
helperStartReceiver and dataTransmitter functions of the example.

Changing TCP/IP communication for multiple computers requires adjusting the TCP/IP address of the
transmitter from local host (127.0.0.1) to a static value (192.168.1.2 recommended). This address is
set first on the host transmitting computer. After, modify the tcpipAddr variable in the
helperStartReceiver function to match.

Once configured and connected physically, you can run the transmitter application on one computer
and the FCW application on the other.

See Also
Functions
tcpip | canDatabase | canChannel | configBusSpeed

Objects
birdsEyePlot | multiObjectTracker

More About
• “Forward Collision Warning Using Sensor Fusion” on page 8-218

 Forward Collision Warning Application with CAN FD and TCP/IP

8-253

• “Code Generation for Tracking and Sensor Fusion” on page 8-211

8 Featured Examples

8-254

Multiple Object Tracking Tutorial
This example shows how to perform automatic detection and motion-based tracking of moving objects
in a video useing the multiObjectTracker System object™.

Moving object detection and motion-based tracking are important components of automated driver
assistance systems such as adaptive cruise control, automatic emergency braking, and autonomous
driving. You can divide motion-based object tracking into two parts:

1 Detecting moving objects in each frame.
2 Tracking the moving objects from frame to frame.

Use a pretrained aggregate channel features (ACF) vehicle detector to detect the moving objects.

Then, use the multiObjectTracker object to track the moving objects from frame to frame. The
multiObjectTracker object is responsible for:

1 Assigning detections to tracks.
2 Initializing new tracks based on unassigned detections.
3 Confirming tracks if they have more than M assigned detections in N frames.
4 Updating existing tracks based on assigned detections.
5 Coasting (predicting) existing unassigned tracks.
6 Deleting tracks if they have remained unassigned (coasted) for too long.

In this example, you track vehicles in the frame of the camera, measuring vehicle positions in pixels
and time in frame counts. You estimate the motion of each track using a Kalman filter. The filter
predicts the pixel location of the track in each frame, and determines the likelihood of each detection
being assigned to each track. To initialize the filter that you design, use the
FilterInitializationFcn property of the multiObjectTracker.

For more information, see “Multiple Object Tracking”.

Set Up Vehicle Detector and Video Objects

Create an ACF vehicle detector, pretrained with unoccluded images from the front and rear sides of
vehicles.

detector = vehicleDetectorACF("front-rear-view");

Create objects to read and display the video frames.

vReader = VideoReader("05_highway_lanechange_25s.mp4");
trackPlayer = vision.VideoPlayer(Position=[700 400 700 400]);

Create Multi-Object Tracker

Create a multiObjectTracker, specifying these properties:

1 FilterInitializationFcn — Function that specifies the motion model and measurement
model for the Kalman filter. In this example, because you expect the vehicles to have a constant
velocity, specify the helperInitDemoFilter function, which configures a linear Kalman filter
to track the vehicle motion. For more information, see Supporting Functions on page 8-0
section.

 Multiple Object Tracking Tutorial

8-255

2 AssignmentThreshold — Maximum accurate normalized distance from a track at which the
tracker can assign a detection to that track. If there are detections that are not assigned to
tracks, but should be, increase this value. If there are detections that get assigned to tracks that
are too far, decrease this value. For this example, specify a threshold of 30.

3 DeletionThreshold — Number of updates for which the tracker maintains a track without a
detection before deletion. In this example, specify a value of 15 frames. Because the video has 20
frames per second, , the tracker deletes tracks that go 0.75 seconds without an assigned
detection.

4 ConfirmationThreshold — Number of detections a track must receive and the number of
updates in which it must receive them for confirmation. The tracker initializes a track with every
unassigned detection. Because some of these detections might be false, so initially, all tracks are
'Tentative'. To confirm a track, it has to be detected at least M out of N frames. The choice of
M and N depends on the visibility of the objects. This example assumes a visibility of 3 out of 5
frames.

tracker = multiObjectTracker(...
FilterInitializationFcn=@helperInitDemoFilter, ...
AssignmentThreshold=30, ...
DeletionThreshold=15, ...
ConfirmationThreshold=[3 5] ...
);

Detect and Track Objects

Use a loop to run the video clip, detect moving objects in the video, and track them across video
frames using these steps in each iteration:

1 Obtain the bounding boxes for all vehicles in the frame using the pretrained ACF vehicle
detector.

2 Discard bounding boxes with a lower than 5% confidence score, and calculate centroids for the
rest.

3 Create a cell array of objectDetection objects, using the centroids of the detected bounding
boxes as the measurements and the current frameCount as the time input.

4 Obtain the confirmed tracks, based on the new detections, by using the tracker function.
5 Display the tracking results for each frame.

When creating the objectDetection cell array,specify these properties for each
objectDetection object.:

• MeasurementNoise — The object detection measurements are noisy. To model that, this example
defines a measurement noise covariance of 100. This means that the variance in measurements is
10 pixels in both the x- and y- directions.

• ObjectClassID — Object class identifier, specified in this example as 1. The tracker treats all
subsequent detections with this ID as known objects. If a detection with this ID cannot be
assigned to an existing track, then the tracker immediately confirms a new track from it.

• ObjectAttributes — The detected bounding boxes that get passed to the track display are
added to this argument.

% Measurement noise for vehicle detections
measurementNoise = 100;

frameCount = 1;

8 Featured Examples

8-256

while hasFrame(vReader)
 % Read new frame and resize it to the YOLO v2 detector input size
 frame = readFrame(vReader);

 % Detect vehicles in the frame and retain bounding boxes with greater than 5% confidence score
 [bboxes,scores] = detect(detector,frame);
 bboxes = bboxes(scores>5,:);

 % Calculate the centroids of the bounding boxes
 centroids = [bboxes(:,1)+floor(bboxes(:,3)/2) bboxes(:,2)+floor(bboxes(:,4)/2)];

 % Formulate the detections as a list of objectDetection objects
 numDetections = size(centroids,1);
 detections = cell(numDetections,1);
 for i = 1:numDetections
 detections{i} = objectDetection(frameCount,centroids(i,:)', ...
 MeasurementNoise=measurementNoise, ...
 ObjectAttributes=struct(BoundingBox=bboxes(i,:)),ObjectClassID=1);
 end

 % Update tracks based on detections
 confirmedTracks = tracker(detections,frameCount);

 % Display tracking results and increase frame count by 1
 displayTrackingResults(trackPlayer,confirmedTracks,frame);
 frameCount = frameCount + 1;
end

 Multiple Object Tracking Tutorial

8-257

Conclusion and Next Steps

In this example, you created a motion-based system for detecting and tracking multiple moving
objects. Try using a different video to see if you can detect and track objects. Try modifying the
parameters of the multiObjectTracker.

The tracking in this example was based solely on motion, with the assumption that all objects move in
a straight line with constant speed. When the motion of an object significantly deviates from this
model, the example can produce tracking errors. Notice the mistake in tracking partially occluded
vehicles when the ego vehicle changes lanes.

You can reduce the likelihood of tracking errors by using a more complex motion model, such as
constant acceleration or constant turn. You can also try defining a different tracking filter, such as
trackingEKF or trackingUKF.

Supporting Functions

Define a Kalman Filter

When defining a tracking filter for the motion in this example, helperInitDemoFilter follows
these steps:

Step 1: Define the motion model and state

8 Featured Examples

8-258

In this example, use a constant velocity model in a 2-D rectangular frame.

1 The state is [x;vx;y;vy].
2 The state transition model matrix is A = [1 dt 0 0; 0 1 0 0; 0 0 1 dt; 0 0 0 1].
3 Assume that dt = 1.

Step 2: Define the process noise

The process noise represents the parts of the process that are not taken into account in the model.
For example, in a constant velocity model, the acceleration is neglected.

Step 3: Define the measurement model

In this example, only the position ([x;y]) is measured. So, the measurement model is H = [1 0 0
0; 0 0 1 0].

Note: To preconfigure these parameters, define the 'MotionModel' property as '2D Constant
Velocity'.

Step 4: Initialize the state vector based on the sensor measurement

In this example, because the measurement is [x;y] and the state is [x;vx;y;vy], initializing the
state vector is straightforward. Because there is no measurement of the velocity, initialize the vx and
vy components to 0.

Step 5: Define an initial state covariance

In this example, only positions are measured directly. Hence define the initial state covariance for
position components to be same as the corresponding measurement noise values. Because there are
no direct measurments for velocity, define the covariance for velocity components to have a larger
value.

Step 6: Create the correct filter

In this example, all the models are linear, so use trackingKF as the tracking filter.

function filter = helperInitDemoFilter(detection)
 % Initialize a Kalman filter for this example.

 % Define the initial state.
 state = [detection.Measurement(1); 0; detection.Measurement(2); 0];

 % Define the initial state covariance.
 stateCov = diag([detection.MeasurementNoise(1,1) ...
 detection.MeasurementNoise(1,1)*100 ...
 detection.MeasurementNoise(2,2) ...
 detection.MeasurementNoise(2,2)*100]);

 % Create the tracking filter.
 filter = trackingKF('MotionModel','2D Constant Velocity', ...
 'State',state, ...
 'StateCovariance',stateCov, ...
 'MeasurementNoise',detection.MeasurementNoise);
end

 Multiple Object Tracking Tutorial

8-259

Display Tracking Results

The displayTrackingResults function draws a bounding box and label ID for each track on the
video frame. It then displays the frame in the video player.

function displayTrackingResults(videoPlayer,confirmedTracks,frame)
 if ~isempty(confirmedTracks)
 % Display the objects. If an object has not been detected
 % in this frame, display its predicted bounding box.
 numRelTr = numel(confirmedTracks);
 boxes = zeros(numRelTr,4);
 ids = zeros(numRelTr,1, 'int32');
 predictedTrackInds = zeros(numRelTr,1);
 for tr = 1:numRelTr
 % Get bounding boxes.
 boxes(tr,:) = confirmedTracks(tr).ObjectAttributes.BoundingBox;

 % Get IDs.
 ids(tr) = confirmedTracks(tr).TrackID;

 if confirmedTracks(tr).IsCoasted
 predictedTrackInds(tr) = tr;
 end
 end

 predictedTrackInds = predictedTrackInds(predictedTrackInds > 0);

 % Create labels for objects that display the predicted rather
 % than the actual location.
 labels = cellstr(int2str(ids));

 isPredicted = cell(size(labels));
 isPredicted(predictedTrackInds) = {' predicted'};
 labels = strcat(labels,isPredicted);

 % Draw the objects on the frame.
 frame = insertObjectAnnotation(frame,"rectangle",boxes,labels);
 end

 % Display the mask and the frame.
 videoPlayer.step(frame);
end

See Also
Objects
trackingKF | trackingEKF | trackingUKF | objectDetection | vision.VideoPlayer |
VideoReader | multiObjectTracker

More About
• “Track Multiple Vehicles Using a Camera” on page 8-261
• “Multiple Object Tracking”
• “Motion-Based Multiple Object Tracking”

8 Featured Examples

8-260

Track Multiple Vehicles Using a Camera
This example shows how to detect and track multiple vehicles with a monocular camera mounted in a
vehicle.

Overview

Automated Driving Toolbox™ provides pretrained vehicle detectors and a multi-object tracker to
facilitate tracking vehicles around the ego vehicle. The vehicle detectors are based on ACF features
and Faster R-CNN, a deep-learning-based object detection technique. The detectors can be easily
interchanged to see their effect on vehicle tracking.

The tracking workflow consists of the following steps:

1 Define camera intrinsics and camera mounting position.
2 Load and configure a pretrained vehicle detector.
3 Set up a multi-object tracker.
4 Run the detector for each video frame.
5 Update the tracker with detection results.
6 Display the tracking results in a video.

Configure Vehicle Detector and Multi-Object Tracker

In this example, you use a pretrained ACF vehicle detector and configure this detector to incorporate
camera information. By default, the detector scans the entire image at multiple scales. By knowing
the camera parameters, you can configure the detector to detect vehicles on the ground plane only at
reasonable scales.

% Load the monoCamera object that contains the camera information.
d = load('FCWDemoMonoCameraSensor.mat', 'sensor');

% Load a pretrained ACF vehicle detector. The ACF detector uses "Aggregate
% Channel Features", which is fast to compute in practice. The 'full-view'
% model is trained on images of the front, rear, left, and right side of
% vehicles.
detector = vehicleDetectorACF('full-view');

To try the Faster R-CNN vehicle detector, use vehicleDetectorFasterRCNN instead. This detector
requires a Deep Learning Toolbox™ license.

Configure the detector using the sensor information. The detector only tries to find vehicles at image
regions above the ground plane. This can reduce computation and prevent spurious detections.

% The width of common vehicles is between 1.5 to 2.5 meters. Only a
% bounding box of width within this range is considered as a detection
% candidate in image.
vehicleWidth = [1.5, 2.5];

% Configure the detector using the monoCamera sensor and desired width.
detector = configureDetectorMonoCamera(detector, d.sensor, vehicleWidth);

% Initialize an multi-object tracker including setting the filter,
% the detection-to-track assignment threshold, the coasting and
% confirmation parameters. You can find the |setupTracker| function at the

 Track Multiple Vehicles Using a Camera

8-261

% end of this example.
[tracker, positionSelector] = setupTracker();

Track Vehicles in a Video

At each time step, run the detector, update the tracker with detection results, and display the
tracking results in a video.

% Set up Video Reader and Player.
videoFile = '05_highway_lanechange_25s.mp4';
videoReader = VideoReader(videoFile);
videoPlayer = vision.DeployableVideoPlayer();

currentStep = 0;
snapshot = [];
snapTimeStamp = 120;
cont = hasFrame(videoReader);
while cont
 % Update frame counters.
 currentStep = currentStep + 1;

 % Read the next frame.
 frame = readFrame(videoReader);

 % Run the detector and package the returned results into an object
 % required by multiObjectTracker. You can find the |detectObjects|
 % function at the end of this example.
 detections = detectObjects(detector, frame, currentStep);

 % Using the list of objectDetections, return the tracks, updated for
 % 'currentStep' time.
 confirmedTracks = updateTracks(tracker, detections, currentStep);

 % Remove the tracks for vehicles that are far away.
 confirmedTracks = removeNoisyTracks(confirmedTracks, positionSelector, d.sensor.Intrinsics.ImageSize);

 % Insert tracking annotations.
 frameWithAnnotations = insertTrackBoxes(frame, confirmedTracks, positionSelector, d.sensor);

 % Display the annotated frame.
 videoPlayer(frameWithAnnotations);

 % Take snapshot for publishing at snapTimeStamp seconds.
 if currentStep == snapTimeStamp
 snapshot = frameWithAnnotations;
 end

 % Exit the loop if the video player figure is closed by user.
 cont = hasFrame(videoReader) && isOpen(videoPlayer);
end

Show the tracked vehicles and display the distance to the ego vehicle.

if ~isempty(snapshot)
 figure
 imshow(snapshot)
end

8 Featured Examples

8-262

The tracking workflow presented here can be easily integrated into the “Visual Perception Using
Monocular Camera” on page 8-107 example, where the vehicle detection step can be enhanced with
the tracker. To learn about additional tracking capabilities in Automated Driving Toolbox, see
monoCamera and multiObjectTracker.

Supporting Functions

setupTracker function creates a multiObjectTracker to track multiple objects with Kalman
filters. When creating a multiObjectTracker consider the following:

• FilterInitializationFcn: The likely motion and measurement models. In this case, the
objects are expected to have a constant velocity motion. See the 'Define a Kalman filter' section.

• AssignmentThreshold: How far detections can fall from tracks. The default value for this
parameter is 30. If there are detections that are not assigned to tracks, but should be, increase
this value. If there are detections that get assigned to tracks that are too far, decrease this value.
This example uses 50.

• DeletionThreshold: How many times can the track be not assigned a detection (missed) in the
last Q steps before its deletion. Coasting is a term used for updating the track without an assigned
detection (predicting). The default value for this parameter is 5 misses out of 5 last updates.

• ConfirmationThreshold: The parameters for confirming a track. A new track is initialized with
every unassigned detection. Some of these detections might be false, so all the tracks are

 Track Multiple Vehicles Using a Camera

8-263

initialized as Tentative. To confirm a track, it has to be detected at least M times in N tracker
updates. The choice of M and N depends on the visibility of the objects. This example uses the
default of 3 detections out of 5 updates.

The outputs of setupTracker are:

• tracker - The multiObjectTracker that is configured for this case.
• positionSelector - A matrix that specifies which elements of the State vector are the position:

position = positionSelector * State

function [tracker, positionSelector] = setupTracker()
 % Create the tracker object.
 tracker = multiObjectTracker('FilterInitializationFcn', @initBboxFilter, ...
 'AssignmentThreshold', 50, ...
 'DeletionThreshold', 5, ...
 'ConfirmationThreshold', [3 5]);

 % The State vector is: [x; vx; y; vy; w; vw; h; vh]
 % [x;y;w;h] = positionSelector * State
 positionSelector = [1 0 0 0 0 0 0 0; ...
 0 0 1 0 0 0 0 0; ...
 0 0 0 0 1 0 0 0; ...
 0 0 0 0 0 0 1 0];
end

initBboxFilter function defines a Kalman filter to filter bounding box measurement.

function filter = initBboxFilter(Detection)
% Step 1: Define the motion model and state.
% Use a constant velocity model for a bounding box on the image.
% The state is [x; vx; y; vy; w; wv; h; hv]
% The state transition matrix is:
% [1 dt 0 0 0 0 0 0;
% 0 1 0 0 0 0 0 0;
% 0 0 1 dt 0 0 0 0;
% 0 0 0 1 0 0 0 0;
% 0 0 0 0 1 dt 0 0;
% 0 0 0 0 0 1 0 0;
% 0 0 0 0 0 0 1 dt;
% 0 0 0 0 0 0 0 1]
% Assume dt = 1. This example does not consider time-variant transition
% model for linear Kalman filter.
 dt = 1;
 cvel =[1 dt; 0 1];
 A = blkdiag(cvel, cvel, cvel, cvel);

% Step 2: Define the process noise.
% The process noise represents the parts of the process that the model
% does not take into account. For example, in a constant velocity model,
% the acceleration is neglected.
 G1d = [dt^2/2; dt];
 Q1d = G1d*G1d';
 Q = blkdiag(Q1d, Q1d, Q1d, Q1d);

% Step 3: Define the measurement model.
% Only the position ([x;y;w;h]) is measured.
% The measurement model is

8 Featured Examples

8-264

 H = [1 0 0 0 0 0 0 0; ...
 0 0 1 0 0 0 0 0; ...
 0 0 0 0 1 0 0 0; ...
 0 0 0 0 0 0 1 0];

% Step 4: Map the sensor measurements to an initial state vector.
% Because there is no measurement of the velocity, the v components are
% initialized to 0:
 state = [Detection.Measurement(1); ...
 0; ...
 Detection.Measurement(2); ...
 0; ...
 Detection.Measurement(3); ...
 0; ...
 Detection.Measurement(4); ...
 0];

% Step 5: Map the sensor measurement noise to a state covariance.
% For the parts of the state that the sensor measured directly, use the
% corresponding measurement noise components. For the parts that the
% sensor does not measure, assume a large initial state covariance. That way,
% future detections can be assigned to the track.
 L = 100; % Large value
 stateCov = diag([Detection.MeasurementNoise(1,1), ...
 L, ...
 Detection.MeasurementNoise(2,2), ...
 L, ...
 Detection.MeasurementNoise(3,3), ...
 L, ...
 Detection.MeasurementNoise(4,4), ...
 L]);

% Step 6: Create the correct filter.
% In this example, all the models are linear, so use trackingKF as the
% tracking filter.
 filter = trackingKF(...
 'StateTransitionModel', A, ...
 'MeasurementModel', H, ...
 'State', state, ...
 'StateCovariance', stateCov, ...
 'MeasurementNoise', Detection.MeasurementNoise, ...
 'ProcessNoise', Q);
end

detectObjects function detects vehicles in an image.

function detections = detectObjects(detector, frame, frameCount)
 % Run the detector and return a list of bounding boxes: [x, y, w, h]
 bboxes = detect(detector, frame);

 % Define the measurement noise.
 L = 100;
 measurementNoise = [L 0 0 0; ...
 0 L 0 0; ...
 0 0 L/2 0; ...
 0 0 0 L/2];

 % Formulate the detections as a list of objectDetection reports.

 Track Multiple Vehicles Using a Camera

8-265

 numDetections = size(bboxes, 1);
 detections = cell(numDetections, 1);
 for i = 1:numDetections
 detections{i} = objectDetection(frameCount, bboxes(i, :), ...
 'MeasurementNoise', measurementNoise);
 end
end

removeNoisyTracks function removes noisy tracks. A track is considered to be noisy if its predicted
bounding box is too small. Typically, this implies the vehicle is far away.

function tracks = removeNoisyTracks(tracks, positionSelector, imageSize)

 if isempty(tracks)
 return
 end

 % Extract the positions from all the tracks.
 positions = getTrackPositions(tracks, positionSelector);
 % The track is 'invalid' if the predicted position is about to move out
 % of the image, or if the bounding box is too small.
 invalid = (positions(:, 1) < 1 | ...
 positions(:, 1) + positions(:, 3) > imageSize(2) | ...
 positions(:, 3) <= 20 | ...
 positions(:, 4) <= 20);
 tracks(invalid) = [];
end

insertTrackBoxes inserts bounding boxes in an image and displays the track's position in front of
the car, in world units.

function I = insertTrackBoxes(I, tracks, positionSelector, sensor)

 if isempty(tracks)
 return
 end

 % Allocate memory.
 labels = cell(numel(tracks), 1);
 % Retrieve positions of bounding boxes.
 bboxes = getTrackPositions(tracks, positionSelector);

 for i = 1:numel(tracks)
 box = bboxes(i, :);

 % Convert to vehicle coordinates using monoCamera object.
 xyVehicle = imageToVehicle(sensor, [box(1)+box(3)/2, box(2)+box(4)]);

 labels{i} = sprintf('x=%.1f,y=%.1f',xyVehicle(1),xyVehicle(2));
 end

 I = insertObjectAnnotation(I, 'rectangle', bboxes, labels, 'Color', 'yellow', ...

8 Featured Examples

8-266

 'FontSize', 10, 'TextBoxOpacity', .8, 'LineWidth', 2);
end

See Also
Functions
configureDetectorMonoCamera | vehicleDetectorACF | vehicleDetectorFasterRCNN

Objects
VideoReader | monoCamera | fasterRCNNObjectDetectorMonoCamera |
acfObjectDetectorMonoCamera | objectDetection | vision.DeployableVideoPlayer |
multiObjectTracker | trackingKF

More About
• “Visual Perception Using Monocular Camera” on page 8-107

 Track Multiple Vehicles Using a Camera

8-267

Track Vehicles Using Lidar: From Point Cloud to Track List
This example shows you how to track vehicles using measurements from a lidar sensor mounted on
top of an ego vehicle. Lidar sensors report measurements as a point cloud. The example illustrates
the workflow in MATLAB® for processing the point cloud and tracking the objects. For a Simulink®
version of the example, refer to “Track Vehicles Using Lidar Data in Simulink” (Sensor Fusion and
Tracking Toolbox).The lidar data used in this example is recorded from a highway driving scenario. In
this example, you use the recorded data to track vehicles with a joint probabilistic data association
(JPDA) tracker and an interacting multiple model (IMM) approach.

3-D Bounding Box Detector Model

Due to high resolution capabilities of the lidar sensor, each scan from the sensor contains a large
number of points, commonly known as a point cloud. This raw data must be preprocessed to extract
objects of interest, such as cars, cyclists, and pedestrians. In this example, you use a classical
segmentation algorithm using a distance-based clustering algorithm. For more details about
segmentation of lidar data into objects such as the ground plane and obstacles, refer to the “Ground
Plane and Obstacle Detection Using Lidar” on page 8-172 example. For a deep learning segmentation
workflow, refer to the “Detect, Classify, and Track Vehicles Using Lidar” (Lidar Toolbox) example. In
this example, the point clouds belonging to obstacles are further classified into clusters using the
pcsegdist function, and each cluster is converted to a bounding box detection with the following
format:

, and refer to the x-, y- and z-positions of the bounding box, refers to its yaw angle and , and
 refer to its length, width, and height, respectively. The pcfitcuboid (Lidar Toolbox) function uses

L-shape fitting algorithm to determine the yaw angle of the bounding box.

The detector is implemented by a supporting class HelperBoundingBoxDetector, which wraps
around point cloud segmentation and clustering functionalities. An object of this class accepts a
pointCloud input and returns a list of objectDetection objects with bounding box
measurements.

The diagram shows the processes involved in the bounding box detector model and the Lidar
Toolbox™ functions used to implement each process. It also shows the properties of the supporting
class that control each process.

The lidar data is available at the following location: https://ssd.mathworks.com/supportfiles/lidar/
data/TrackVehiclesUsingLidarExampleData.zip

8 Featured Examples

8-268

https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip
https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip

Download the data files into your temporary directory, whose location is specified by MATLAB's
tempdir function. If you want to place the files in a different folder, change the directory name in the
subsequent instructions.

% Load data if unavailable. The lidar data is stored as a cell array of
% pointCloud objects.
if ~exist('lidarData','var')
 dataURL = 'https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip';
 datasetFolder = fullfile(tempdir,'LidarExampleDataset');
 if ~exist(datasetFolder,'dir')
 unzip(dataURL,datasetFolder);
 end
 % Specify initial and final time for simulation.
 initTime = 0;
 finalTime = 35;
 [lidarData, imageData] = loadLidarAndImageData(datasetFolder,initTime,finalTime);
end

% Set random seed to generate reproducible results.
S = rng(2018);

% A bounding box detector model.
detectorModel = HelperBoundingBoxDetector(...
 'XLimits',[-50 75],... % min-max
 'YLimits',[-5 5],... % min-max
 'ZLimits',[-2 5],... % min-max
 'SegmentationMinDistance',1.8,... % minimum Euclidian distance
 'MinDetectionsPerCluster',1,... % minimum points per cluster
 'MeasurementNoise',blkdiag(0.25*eye(3),25,eye(3)),... % measurement noise in detection report
 'GroundMaxDistance',0.3); % maximum distance of ground points from ground plane

Target State and Sensor Measurement Model

The first step in tracking an object is defining its state, and the models that define the transition of
state and the corresponding measurement. These two sets of equations are collectively known as the
state-space model of the target. To model the state of vehicles for tracking using lidar, this example
uses a cuboid model with following convention:

 refers to the portion of the state that controls the kinematics of the motion center, and is the
yaw angle. The length, width, and height of the cuboid are modeled as constants, whose estimates
evolve in time during correction stages of the filter.

In this example, you use two state-space models: a constant velocity (cv) cuboid model and a constant
turn-rate (ct) cuboid model. These models differ in the way they define the kinematic part of the
state, as described below:

For information about their state transition, refer to the helperConstvelCuboid and
helperConstturnCuboid functions used in this example.

The helperCvmeasCuboid and helperCtmeasCuboid measurement models describe how the
sensor perceives the constant velocity and constant turn-rate states respectively, and they return

 Track Vehicles Using Lidar: From Point Cloud to Track List

8-269

bounding box measurements. Because the state contains information about size of the target, the
measurement model includes the effect of center-point offset and bounding box shrinkage, as
perceived by the sensor, due to effects like self-occlusion [1]. This effect is modeled by a shrinkage
factor that is directly proportional to the distance from the tracked vehicle to the sensor.

The image below demonstrates the measurement model operating at different state-space samples.
Notice the modeled effects of bounding box shrinkage and center-point offset as the objects move
around the ego vehicle.

Set Up Tracker and Visualization

The image below shows the complete workflow to obtain a list of tracks from a pointCloud input.

8 Featured Examples

8-270

Now, set up the tracker and the visualization used in the example.

A joint probabilistic data association tracker (trackerJPDA) coupled with an IMM filter
(trackingIMM) is used to track objects in this example. The IMM filter uses a constant velocity and
constant turn-rate model and is initialized using the supporting function, helperInitIMMFilter,
included with this example. The IMM approach helps a track to switch between motion models and
thus achieve good estimation accuracy during events like maneuvering or lane changing. The
animation below shows the effect of mixing the constant velocity and constant turn-rate model during
prediction stages of the IMM filter.

The IMM filter updates the probability of each model when it is corrected with detections from the
object. The animation below shows the estimated trajectory of a vehicle during a lane change event
and the corresponding estimated probabilities of each model.

 Track Vehicles Using Lidar: From Point Cloud to Track List

8-271

Set the HasDetectableTrackIDsInput property of the tracker as true, which enables you to
specify a state-dependent probability of detection. The detection probability of a track is calculated
by the helperCalcDetectability function, listed at the end of this example.

assignmentGate = [75 1000]; % Assignment threshold;
confThreshold = [7 10]; % Confirmation threshold for history logic
delThreshold = [8 10]; % Deletion threshold for history logic
Kc = 1e-9; % False-alarm rate per unit volume

% IMM filter initialization function
filterInitFcn = @helperInitIMMFilter;

% A joint probabilistic data association tracker with IMM filter
tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn,...
 'TrackLogic','History',...
 'AssignmentThreshold',assignmentGate,...

8 Featured Examples

8-272

 'ClutterDensity',Kc,...
 'ConfirmationThreshold',confThreshold,...
 'DeletionThreshold',delThreshold,...
 'HasDetectableTrackIDsInput',true,...
 'InitializationThreshold',0,...
 'HitMissThreshold',0.1);

The visualization is divided into these main categories:

1 Lidar Preprocessing and Tracking - This display shows the raw point cloud, segmented ground,
and obstacles. It also shows the resulting detections from the detector model and the tracks of
vehicles generated by the tracker.

2 Ego Vehicle Display - This display shows the 2-D bird's-eye view of the scenario. It shows the
obstacle point cloud, bounding box detections, and the tracks generated by the tracker. For
reference, it also displays the image recorded from a camera mounted on the ego vehicle and its
field of view.

3 Tracking Details - This display shows the scenario zoomed around the ego vehicle. It also shows
finer tracking details, such as error covariance in estimated position of each track and its motion
model probabilities, denoted by cv and ct.

% Create display
displayObject = HelperLidarExampleDisplay(imageData{1},...
 'PositionIndex',[1 3 6],...
 'VelocityIndex',[2 4 7],...
 'DimensionIndex',[9 10 11],...
 'YawIndex',8,...
 'MovieName','',... % Specify a movie name to record a movie.
 'RecordGIF',false); % Specify true to record new GIFs

Loop Through Data

Loop through the recorded lidar data, generate detections from the current point cloud using the
detector model and then process the detections using the tracker.

time = 0; % Start time
dT = 0.1; % Time step

% Initiate all tracks.
allTracks = struct([]);

% Initiate variables for comparing MATLAB and MEX simulation.
numTracks = zeros(numel(lidarData),2);

% Loop through the data
for i = 1:numel(lidarData)
 % Update time
 time = time + dT;

 % Get current lidar scan
 currentLidar = lidarData{i};

 % Generator detections from lidar scan.
 [detections,obstacleIndices,groundIndices,croppedIndices] = detectorModel(currentLidar,time);

 % Calculate detectability of each track.
 detectableTracksInput = helperCalcDetectability(allTracks,[1 3 6]);

 Track Vehicles Using Lidar: From Point Cloud to Track List

8-273

 % Pass detections to track.
 [confirmedTracks,tentativeTracks,allTracks,info] = tracker(detections,time,detectableTracksInput);
 numTracks(i,1) = numel(confirmedTracks);

 % Get model probabilities from IMM filter of each track using
 % getTrackFilterProperties function of the tracker.
 modelProbs = zeros(2,numel(confirmedTracks));
 for k = 1:numel(confirmedTracks)
 c1 = getTrackFilterProperties(tracker,confirmedTracks(k).TrackID,'ModelProbabilities');
 modelProbs(:,k) = c1{1};
 end

 % Update display
 if isvalid(displayObject.PointCloudProcessingDisplay.ObstaclePlotter)
 % Get current image scan for reference image
 currentImage = imageData{i};

 % Update display object
 displayObject(detections,confirmedTracks,currentLidar,obstacleIndices,...
 groundIndices,croppedIndices,currentImage,modelProbs);
 end

 % Snap a figure at time = 18
 if abs(time - 18) < dT/2
 snapnow(displayObject);
 end
end

% Write movie if requested
if ~isempty(displayObject.MovieName)
 writeMovie(displayObject);
end

% Write new GIFs if requested.
if displayObject.RecordGIF
 % second input is start frame, third input is end frame and last input
 % is a character vector specifying the panel to record.
 writeAnimatedGIF(displayObject,10,170,'trackMaintenance','ego');
 writeAnimatedGIF(displayObject,310,330,'jpda','processing');
 writeAnimatedGIF(displayObject,120,140,'imm','details');
end

8 Featured Examples

8-274

The figure above shows the three displays at time = 18 seconds. The tracks are represented by green
bounding boxes. The bounding box detections are represented by orange bounding boxes. The
detections also have orange points inside them, representing the point cloud segmented as obstacles.
The segmented ground is shown in purple. The cropped or discarded point cloud is shown in blue.

Generate C Code

You can generate C code from the MATLAB® code for the tracking and the preprocessing algorithm
using MATLAB Coder™. C code generation enables you to accelerate MATLAB code for simulation. To
generate C code, the algorithm must be restructured as a MATLAB function, which can be compiled
into a MEX file or a shared library. For this purpose, the point cloud processing algorithm and the
tracking algorithm is restructured into a MATLAB function, mexLidarTracker. Some variables are
defined as persistent to preserve their state between multiple calls to the function (see
persistent). The inputs and outputs of the function can be observed in the function description
provided in the "Supporting Files" section at the end of this example.

MATLAB Coder requires specifying the properties of all the input arguments. An easy way to do this
is by defining the input properties by example at the command line using the -args option. For more
information, see “Define Input Properties by Example at the Command Line” (MATLAB Coder). Note
that the top-level input arguments cannot be objects of the handle class. Therefore, the function
accepts the x, y and z locations of the point cloud as an input. From the stored point cloud, this
information can be extracted using the Location property of the pointCloud object. This
information is also directly available as the raw data from the lidar sensor.

 Track Vehicles Using Lidar: From Point Cloud to Track List

8-275

% Input lists
inputExample = {lidarData{1}.Location, 0};

% Create configuration for MEX generation
cfg = coder.config('mex');

% Replace cfg with the following to generate static library and perform
% software-in-the-loop simulation. This requires an Embedded Coder license.
%
% cfg = coder.config('lib'); % Static library
% cfg.VerificationMode = 'SIL'; % Software-in-the-loop

% Generate code if file does not exist.
if ~exist('mexLidarTracker_mex','file')
 h = msgbox({'Generating code. This may take a few minutes...';'This message box will close when done.'},'Codegen Message');
 % -config allows specifying the codegen configuration
 % -o allows specifying the name of the output file
 codegen -config cfg -o mexLidarTracker_mex mexLidarTracker -args inputExample
 close(h);
else
 clear mexLidarTracker_mex;
end

Rerun simulation with MEX Code

Rerun the simulation using the generated MEX code, mexLidarTracker_mex. Reset time

time = 0;

for i = 1:numel(lidarData)
 time = time + dT;

 currentLidar = lidarData{i};

 [detectionsMex,obstacleIndicesMex,groundIndicesMex,croppedIndicesMex,...
 confirmedTracksMex, modelProbsMex] = mexLidarTracker_mex(currentLidar.Location,time);

 % Record data for comparison with MATLAB execution.
 numTracks(i,2) = numel(confirmedTracksMex);
end

Compare results between MATLAB and MEX Execution

disp(isequal(numTracks(:,1),numTracks(:,2)));

 1

Notice that the number of confirmed tracks is the same for MATLAB and MEX code execution. This
assures that the lidar preprocessing and tracking algorithm returns the same results with generated
C code as with the MATLAB code.

Results

Now, analyze different events in the scenario and understand how the combination of lidar
measurement model, joint probabilistic data association, and interacting multiple model filter, helps
achieve a good estimation of the vehicle tracks.

8 Featured Examples

8-276

Track Maintenance

The animation above shows the simulation between time = 3 seconds and time = 16 seconds. Notice
that tracks such as T10 and T6 maintain their IDs and trajectory during the time span. However,
track T9 is lost because the tracked vehicle was missed (not detected) for a long time by the sensor.
Also, notice that the tracked objects are able to maintain their shape and kinematic center by
positioning the detections onto the visible portions of the vehicles. For example, as Track T7 moves
forward, bounding box detections start to fall on its visible rear portion and the track maintains the
actual size of the vehicle. This illustrates the offset and shrinkage effect modeled in the measurement
functions.

Capturing Maneuvers

The animation shows that using an IMM filter helps the tracker to maintain tracks on maneuvering
vehicles. Notice that the vehicle tracked by T4 changes lanes behind the ego vehicle. The tracker is
able maintain a track on the vehicle during this maneuvering event. Also notice in the display that its
probability of following the constant turn model, denoted by ct, increases during the lane change
maneuver.

Joint Probabilistic Data Association

 Track Vehicles Using Lidar: From Point Cloud to Track List

8-277

This animation shows that using a joint probabilistic data association tracker helps in maintaining
tracks during ambiguous situations. Here, vehicles tracked by T43 and T73, have a low probability of
detection due to their large distance from the sensor. Notice that the tracker is able to maintain
tracks during events when one of the vehicles is not detected. During the event, the tracks first
coalesce, which is a known phenomenon in JPDA, and then separate as soon as the vehicle was
detected again.

Summary

This example showed how to use a JPDA tracker with an IMM filter to track objects using a lidar
sensor. You learned how a raw point cloud can be preprocessed to generate detections for
conventional trackers, which assume one detection per object per sensor scan. You also learned how
to define a cuboid model to describe the kinematics, dimensions, and measurements of extended
objects being tracked by the JPDA tracker. In addition, you generated C code from the algorithm and
verified its execution results with the MATLAB simulation.

Supporting Files

This section highlights the code from some important supporting files used in this example. The
complete list of supporting files can be found in the current working directory after opening the
example in MATLAB.

% *helperLidarModel*
%
% This function defines the lidar model to simulate shrinkage of the
% bounding box measurement and center-point offset. This function is used
% in the |helperCvmeasCuboid| and |helperCtmeasCuboid| functions to obtain
% bounding box measurement from the state.

8 Featured Examples

8-278

%
% <include>helperLidarModel.m</include>
%

helperInverseLidarModel

This function defines the inverse lidar model to initiate a tracking filter using a lidar bounding box
measurement. This function is used in the helperInitIMMFilter function to obtain state estimates
from a bounding box measurement.

function [pos,posCov,dim,dimCov,yaw,yawCov] = helperInverseLidarModel(meas,measCov)
% This function returns the position, dimension, yaw using a bounding
% box measurement.

% Copyright 2019 The MathWorks, Inc.

% Shrink rate.
s = 3/50;
sz = 2/50;

% x,y and z of measurement
x = meas(1,:);
y = meas(2,:);
z = meas(3,:);

[az,~,r] = cart2sph(x,y,z);

% Shift x and y position.
Lshrink = abs(s*r.*(cos(az)));
Wshrink = abs(s*r.*(sin(az)));
Hshrink = sz*r;

shiftX = Lshrink;
shiftY = Wshrink;
shiftZ = Hshrink;

x = x + sign(x).*shiftX/2;
y = y + sign(y).*shiftY/2;
z = z - shiftZ/2;

pos = [x;y;z];
posCov = measCov(1:3,1:3,:);

yaw = meas(4,:);
yawCov = measCov(4,4,:);

% Dimensions are initialized for a standard passenger car with low
% uncertainity.
dim = [4.7;1.8;1.4];
dimCov = 0.01*eye(3);
end

HelperBoundingBoxDetector

This is the supporting class HelperBoundingBoxDetector to accept a point cloud input and return
a list of objectDetection

 Track Vehicles Using Lidar: From Point Cloud to Track List

8-279

classdef HelperBoundingBoxDetector < matlab.System
 % HelperBoundingBoxDetector A helper class to segment the point cloud
 % into bounding box detections.
 % The step call to the object does the following things:
 %
 % 1. Removes point cloud outside the limits.
 % 2. From the survived point cloud, segments out ground
 % 3. From the obstacle point cloud, forms clusters and puts bounding
 % box on each cluster.

 % Cropping properties
 properties
 % XLimits XLimits for the scene
 XLimits = [-70 70];
 % YLimits YLimits for the scene
 YLimits = [-6 6];
 % ZLimits ZLimits fot the scene
 ZLimits = [-2 10];
 end

 % Ground Segmentation Properties
 properties
 % GroundMaxDistance Maximum distance of point to the ground plane
 GroundMaxDistance = 0.3;
 % GroundReferenceVector Reference vector of ground plane
 GroundReferenceVector = [0 0 1];
 % GroundMaxAngularDistance Maximum angular distance of point to reference vector
 GroundMaxAngularDistance = 5;
 end

 % Bounding box Segmentation properties
 properties
 % SegmentationMinDistance Distance threshold for segmentation
 SegmentationMinDistance = 1.6;
 % MinDetectionsPerCluster Minimum number of detections per cluster
 MinDetectionsPerCluster = 2;
 % MaxZDistanceCluster Maximum Z-coordinate of cluster
 MaxZDistanceCluster = 3;
 % MinZDistanceCluster Minimum Z-coordinate of cluster
 MinZDistanceCluster = -3;
 end

 % Ego vehicle radius to remove ego vehicle point cloud.
 properties
 % EgoVehicleRadius Radius of ego vehicle
 EgoVehicleRadius = 3;
 end

 properties
 % MeasurementNoise Measurement noise for the bounding box detection
 MeasurementNoise = blkdiag(eye(3),10,eye(3));
 end

 properties (Nontunable)
 MeasurementParameters = struct.empty(0,1);
 end

8 Featured Examples

8-280

 methods
 function obj = HelperBoundingBoxDetector(varargin)
 setProperties(obj,nargin,varargin{:})
 end
 end

 methods (Access = protected)
 function [bboxDets,obstacleIndices,groundIndices,croppedIndices] = stepImpl(obj,currentPointCloud,time)
 % Crop point cloud
 [pcSurvived,survivedIndices,croppedIndices] = cropPointCloud(currentPointCloud,obj.XLimits,obj.YLimits,obj.ZLimits,obj.EgoVehicleRadius);
 % Remove ground plane
 [pcObstacles,obstacleIndices,groundIndices] = removeGroundPlane(pcSurvived,obj.GroundMaxDistance,obj.GroundReferenceVector,obj.GroundMaxAngularDistance,survivedIndices);
 % Form clusters and get bounding boxes
 detBBoxes = getBoundingBoxes(pcObstacles,obj.SegmentationMinDistance,obj.MinDetectionsPerCluster,obj.MaxZDistanceCluster,obj.MinZDistanceCluster);
 % Assemble detections
 if isempty(obj.MeasurementParameters)
 measParams = {};
 else
 measParams = obj.MeasurementParameters;
 end
 bboxDets = assembleDetections(detBBoxes,obj.MeasurementNoise,measParams,time);
 end
 end
end

function detections = assembleDetections(bboxes,measNoise,measParams,time)
% This method assembles the detections in objectDetection format.
numBoxes = size(bboxes,2);
detections = cell(numBoxes,1);
for i = 1:numBoxes
 detections{i} = objectDetection(time,cast(bboxes(:,i),'double'),...
 'MeasurementNoise',double(measNoise),'ObjectAttributes',struct,...
 'MeasurementParameters',measParams);
end
end

function bboxes = getBoundingBoxes(ptCloud,minDistance,minDetsPerCluster,maxZDistance,minZDistance)
 % This method fits bounding boxes on each cluster with some basic
 % rules.
 % Cluster must have at least minDetsPerCluster points.
 % Its mean z must be between maxZDistance and minZDistance.
 % length, width and height are calculated using min and max from each
 % dimension.
 [labels,numClusters] = pcsegdist(ptCloud,minDistance);
 pointData = ptCloud.Location;
 bboxes = nan(7,numClusters,'like',pointData);
 isValidCluster = false(1,numClusters);
 for i = 1:numClusters
 thisPointData = pointData(labels == i,:);
 meanPoint = mean(thisPointData,1);
 if size(thisPointData,1) > minDetsPerCluster && ...
 meanPoint(3) < maxZDistance && meanPoint(3) > minZDistance
 cuboid = pcfitcuboid(pointCloud(thisPointData));
 yaw = cuboid.Orientation(3);
 L = cuboid.Dimensions(1);
 W = cuboid.Dimensions(2);
 H = cuboid.Dimensions(3);
 if abs(yaw) > 45

 Track Vehicles Using Lidar: From Point Cloud to Track List

8-281

 possibles = yaw + [-90;90];
 [~,toChoose] = min(abs(possibles));
 yaw = possibles(toChoose);
 temp = L;
 L = W;
 W = temp;
 end
 bboxes(:,i) = [cuboid.Center yaw L W H]';
 isValidCluster(i) = L < 20 & W < 20;
 end
 end
 bboxes = bboxes(:,isValidCluster);
end

function [ptCloudOut,obstacleIndices,groundIndices] = removeGroundPlane(ptCloudIn,maxGroundDist,referenceVector,maxAngularDist,currentIndices)
 % This method removes the ground plane from point cloud using
 % pcfitplane.
 [~,groundIndices,outliers] = pcfitplane(ptCloudIn,maxGroundDist,referenceVector,maxAngularDist);
 ptCloudOut = select(ptCloudIn,outliers);
 obstacleIndices = currentIndices(outliers);
 groundIndices = currentIndices(groundIndices);
end

function [ptCloudOut,indices,croppedIndices] = cropPointCloud(ptCloudIn,xLim,yLim,zLim,egoVehicleRadius)
 % This method selects the point cloud within limits and removes the
 % ego vehicle point cloud using findNeighborsInRadius
 locations = ptCloudIn.Location;
 locations = reshape(locations,[],3);
 insideX = locations(:,1) < xLim(2) & locations(:,1) > xLim(1);
 insideY = locations(:,2) < yLim(2) & locations(:,2) > yLim(1);
 insideZ = locations(:,3) < zLim(2) & locations(:,3) > zLim(1);
 inside = insideX & insideY & insideZ;

 % Remove ego vehicle
 nearIndices = findNeighborsInRadius(ptCloudIn,[0 0 0],egoVehicleRadius);
 nonEgoIndices = true(ptCloudIn.Count,1);
 nonEgoIndices(nearIndices) = false;
 validIndices = inside & nonEgoIndices;
 indices = find(validIndices);
 croppedIndices = find(~validIndices);
 ptCloudOut = select(ptCloudIn,indices);
end

mexLidarTracker

This function implements the point cloud preprocessing display and the tracking algorithm using a
functional interface for code generation.

function [detections,obstacleIndices,groundIndices,croppedIndices,...
 confirmedTracks, modelProbs] = mexLidarTracker(ptCloudLocations,time)

persistent detectorModel tracker detectableTracksInput currentNumTracks

8 Featured Examples

8-282

if isempty(detectorModel) || isempty(tracker) || isempty(detectableTracksInput) || isempty(currentNumTracks)

 % Use the same starting seed as MATLAB to reproduce results in SIL
 % simulation.
 rng(2018);

 % A bounding box detector model.
 detectorModel = HelperBoundingBoxDetector(...
 'XLimits',[-50 75],... % min-max
 'YLimits',[-5 5],... % min-max
 'ZLimits',[-2 5],... % min-max
 'SegmentationMinDistance',1.8,... % minimum Euclidian distance
 'MinDetectionsPerCluster',1,... % minimum points per cluster
 'MeasurementNoise',blkdiag(0.25*eye(3),25,eye(3)),... % measurement noise in detection report.
 'GroundMaxDistance',0.3); % maximum distance of ground points from ground plane

 assignmentGate = [75 1000]; % Assignment threshold;
 confThreshold = [7 10]; % Confirmation threshold for history logic
 delThreshold = [8 10]; % Deletion threshold for history logic
 Kc = 1e-9; % False-alarm rate per unit volume

 filterInitFcn = @helperInitIMMFilter;

 tracker = trackerJPDA('FilterInitializationFcn',filterInitFcn,...
 'TrackLogic','History',...
 'AssignmentThreshold',assignmentGate,...
 'ClutterDensity',Kc,...
 'ConfirmationThreshold',confThreshold,...
 'DeletionThreshold',delThreshold,...
 'HasDetectableTrackIDsInput',true,...
 'InitializationThreshold',0,...
 'MaxNumTracks',30,...
 'HitMissThreshold',0.1);

 detectableTracksInput = zeros(tracker.MaxNumTracks,2);

 currentNumTracks = 0;
end

ptCloud = pointCloud(ptCloudLocations);

% Detector model
[detections,obstacleIndices,groundIndices,croppedIndices] = detectorModel(ptCloud,time);

% Call tracker
[confirmedTracks,~,allTracks] = tracker(detections,time,detectableTracksInput(1:currentNumTracks,:));
% Update the detectability input
currentNumTracks = numel(allTracks);
detectableTracksInput(1:currentNumTracks,:) = helperCalcDetectability(allTracks,[1 3 6]);

% Get model probabilities
modelProbs = zeros(2,numel(confirmedTracks));
if isLocked(tracker)
 for k = 1:numel(confirmedTracks)
 c1 = getTrackFilterProperties(tracker,confirmedTracks(k).TrackID,'ModelProbabilities');
 probs = c1{1};
 modelProbs(1,k) = probs(1);
 modelProbs(2,k) = probs(2);

 Track Vehicles Using Lidar: From Point Cloud to Track List

8-283

 end
end

end

helperCalcDetectability

The function calculates the probability of detection for each track. This function is used to generate
the "DetectableTracksIDs" input for the trackerJPDA.

function detectableTracksInput = helperCalcDetectability(tracks,posIndices)
% This is a helper function to calculate the detection probability of
% tracks for the lidar tracking example. It may be removed in a future
% release.

% Copyright 2019 The MathWorks, Inc.

% The bounding box detector has low probability of segmenting point clouds
% into bounding boxes are distances greater than 40 meters. This function
% models this effect using a state-dependent probability of detection for
% each tracker. After a maximum range, the Pd is set to a high value to
% enable deletion of track at a faster rate.
if isempty(tracks)
 detectableTracksInput = zeros(0,2);
 return;
end
rMax = 75;
rAmbig = 40;
stateSize = numel(tracks(1).State);
posSelector = zeros(3,stateSize);
posSelector(1,posIndices(1)) = 1;
posSelector(2,posIndices(2)) = 1;
posSelector(3,posIndices(3)) = 1;
pos = getTrackPositions(tracks,posSelector);
if coder.target('MATLAB')
 trackIDs = [tracks.TrackID];
else
 trackIDs = zeros(1,numel(tracks),'uint32');
 for i = 1:numel(tracks)
 trackIDs(i) = tracks(i).TrackID;
 end
end
[~,~,r] = cart2sph(pos(:,1),pos(:,2),pos(:,3));
probDetection = 0.9*ones(numel(tracks),1);
probDetection(r > rAmbig) = 0.4;
probDetection(r > rMax) = 0.99;
detectableTracksInput = [double(trackIDs(:)) probDetection(:)];
end

loadLidarAndImageData

Stitches Lidar and Camera data for processing using initial and final time specified.

function [lidarData,imageData] = loadLidarAndImageData(datasetFolder,initTime,finalTime)
initFrame = max(1,floor(initTime*10));

8 Featured Examples

8-284

lastFrame = min(350,ceil(finalTime*10));
load (fullfile(datasetFolder,'imageData_35seconds.mat'),'allImageData');
imageData = allImageData(initFrame:lastFrame);

numFrames = lastFrame - initFrame + 1;
lidarData = cell(numFrames,1);

% Each file contains 70 frames.
initFileIndex = floor(initFrame/70) + 1;
lastFileIndex = ceil(lastFrame/70);

frameIndices = [1:70:numFrames numFrames + 1];

counter = 1;
for i = initFileIndex:lastFileIndex
 startFrame = frameIndices(counter);
 endFrame = frameIndices(counter + 1) - 1;
 load(fullfile(datasetFolder,['lidarData_',num2str(i)]),'currentLidarData');
 lidarData(startFrame:endFrame) = currentLidarData(1:(endFrame + 1 - startFrame));
 counter = counter + 1;
end
end

References

[1] Arya Senna Abdul Rachman, Arya. "3D-LIDAR Multi Object Tracking for Autonomous Driving:
Multi-target Detection and Tracking under Urban Road Uncertainties." (2017).

See Also
trackerJPDA | trackingIMM | pointCloud

More About
• “Ground Plane and Obstacle Detection Using Lidar” on page 8-172
• “Extended Object Tracking of Highway Vehicles with Radar and Camera” on page 8-327
• “Track Vehicles Using Lidar Data in Simulink” on page 8-414
• “Detect, Classify, and Track Vehicles Using Lidar” (Lidar Toolbox)

 Track Vehicles Using Lidar: From Point Cloud to Track List

8-285

Sensor Fusion Using Synthetic Radar and Vision Data
This example shows how to generate a scenario, simulate sensor detections, and use sensor fusion to
track simulated vehicles. The main benefit of using scenario generation and sensor simulation over
sensor recording is the ability to create rare and potentially dangerous events and test the vehicle
algorithms with them.

This example covers the entire programmatic workflow for generating synthetic data. To generate
synthetic data interactively instead, use the Driving Scenario Designer app. For an example, see
“Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2.

Generate the Scenario

Scenario generation comprises generating a road network, defining vehicles that move on the roads,
and moving the vehicles.

In this example, you test the ability of the sensor fusion to track a vehicle that is passing on the left of
the ego vehicle. The scenario simulates a highway setting, and additional vehicles are in front of and
behind the ego vehicle.

% Define an empty scenario.
scenario = drivingScenario;
scenario.SampleTime = 0.01;

Add a stretch of 500 meters of typical highway road with two lanes. The road is defined using a set of
points, where each point defines the center of the road in 3-D space. Add a Jersey barrier to the right
edge of the road.

roadCenters = [0 0; 50 0; 100 0; 250 20; 500 40];
mainRoad = road(scenario, roadCenters, 'lanes',lanespec(2));
barrier(scenario,mainRoad);

Create the ego vehicle and three cars around it: one that overtakes the ego vehicle and passes it on
the left, one that drives right in front of the ego vehicle and one that drives right behind the ego
vehicle. All the cars follow the trajectory defined by the road waypoints by using the trajectory
driving policy. The passing car will start on the right lane, move to the left lane to pass, and return to
the right lane.

% Create the ego vehicle that travels at 25 m/s along the road. Place the
% vehicle on the right lane by subtracting off half a lane width (1.8 m)
% from the centerline of the road.
egoCar = vehicle(scenario, 'ClassID', 1);
trajectory(egoCar, roadCenters(2:end,:) - [0 1.8], 25); % On right lane

% Add a car in front of the ego vehicle
leadCar = vehicle(scenario, 'ClassID', 1);
trajectory(leadCar, [70 0; roadCenters(3:end,:)] - [0 1.8], 25); % On right lane

% Add a car that travels at 35 m/s along the road and passes the ego vehicle
passingCar = vehicle(scenario, 'ClassID', 1);
waypoints = [0 -1.8; 50 1.8; 100 1.8; 250 21.8; 400 32.2; 500 38.2];
trajectory(passingCar, waypoints, 35);

% Add a car behind the ego vehicle
chaseCar = vehicle(scenario, 'ClassID', 1);
trajectory(chaseCar, [25 0; roadCenters(2:end,:)] - [0 1.8], 25); % On right lane

8 Featured Examples

8-286

Define Radar and Vision Sensors

In this example, you simulate an ego vehicle that has 6 radar sensors and 2 vision sensors covering
the 360 degrees field of view. The sensors have some overlap and some coverage gap. The ego vehicle
is equipped with a long-range radar sensor and a vision sensor on both the front and the back of the
vehicle. Each side of the vehicle has two short-range radar sensors, each covering 90 degrees. One
sensor on each side covers from the middle of the vehicle to the back. The other sensor on each side
covers from the middle of the vehicle forward. The figure in the next section shows the coverage.

sensors = cell(8,1);
% Front-facing long-range radar sensor at the center of the front bumper of the car.
sensors{1} = drivingRadarDataGenerator('SensorIndex', 1, 'RangeLimits', [0 174], ...
 'MountingLocation', [egoCar.Wheelbase + egoCar.FrontOverhang, 0, 0.2], 'FieldOfView', [20, 5]);

% Rear-facing long-range radar sensor at the center of the rear bumper of the car.
sensors{2} = drivingRadarDataGenerator('SensorIndex', 2, 'MountingAngles', [180 0 0], ...
 'MountingLocation', [-egoCar.RearOverhang, 0, 0.2], 'RangeLimits', [0 30], 'FieldOfView', [20, 5]);

% Rear-left-facing short-range radar sensor at the left rear wheel well of the car.
sensors{3} = drivingRadarDataGenerator('SensorIndex', 3, 'MountingAngles', [120 0 0], ...
 'MountingLocation', [0, egoCar.Width/2, 0.2], 'RangeLimits', [0 30], 'ReferenceRange', 50, ...
 'FieldOfView', [90, 5], 'AzimuthResolution', 10, 'RangeResolution', 1.25);

% Rear-right-facing short-range radar sensor at the right rear wheel well of the car.
sensors{4} = drivingRadarDataGenerator('SensorIndex', 4, 'MountingAngles', [-120 0 0], ...
 'MountingLocation', [0, -egoCar.Width/2, 0.2], 'RangeLimits', [0 30], 'ReferenceRange', 50, ...
 'FieldOfView', [90, 5], 'AzimuthResolution', 10, 'RangeResolution', 1.25);

% Front-left-facing short-range radar sensor at the left front wheel well of the car.
sensors{5} = drivingRadarDataGenerator('SensorIndex', 5, 'MountingAngles', [60 0 0], ...
 'MountingLocation', [egoCar.Wheelbase, egoCar.Width/2, 0.2], 'RangeLimits', [0 30], ...
 'ReferenceRange', 50, 'FieldOfView', [90, 5], 'AzimuthResolution', 10, ...
 'RangeResolution', 1.25);

% Front-right-facing short-range radar sensor at the right front wheel well of the car.
sensors{6} = drivingRadarDataGenerator('SensorIndex', 6, 'MountingAngles', [-60 0 0], ...
 'MountingLocation', [egoCar.Wheelbase, -egoCar.Width/2, 0.2], 'RangeLimits', [0 30], ...
 'ReferenceRange', 50, 'FieldOfView', [90, 5], 'AzimuthResolution', 10, ...
 'RangeResolution', 1.25);

% Front-facing camera located at front windshield.
sensors{7} = visionDetectionGenerator('SensorIndex', 7, 'FalsePositivesPerImage', 0.1, ...
 'SensorLocation', [0.75*egoCar.Wheelbase 0], 'Height', 1.1);

% Rear-facing camera located at rear windshield.
sensors{8} = visionDetectionGenerator('SensorIndex', 8, 'FalsePositivesPerImage', 0.1, ...
 'SensorLocation', [0.2*egoCar.Wheelbase 0], 'Height', 1.1, 'Yaw', 180);

% Register actor profiles with the sensors.
profiles = actorProfiles(scenario);
for m = 1:numel(sensors)
 if isa(sensors{m},'drivingRadarDataGenerator')
 sensors{m}.Profiles = profiles;
 else
 sensors{m}.ActorProfiles = profiles;
 end
end

 Sensor Fusion Using Synthetic Radar and Vision Data

8-287

Create a Tracker

Create a multiObjectTracker to track the vehicles that are close to the ego vehicle. The tracker
uses the initSimDemoFilter supporting function to initialize a constant velocity linear Kalman
filter that works with position and velocity.

Tracking is done in 2-D. Although the sensors return measurements in 3-D, the motion itself is
confined to the horizontal plane, so there is no need to track the height.

tracker = multiObjectTracker('FilterInitializationFcn', @initSimDemoFilter, ...
 'AssignmentThreshold', 30, 'ConfirmationThreshold', [4 5]);
positionSelector = [1 0 0 0; 0 0 1 0]; % Position selector
velocitySelector = [0 1 0 0; 0 0 0 1]; % Velocity selector

% Create the display and return a handle to the bird's-eye plot
BEP = createDemoDisplay(egoCar, sensors);

Simulate the Scenario

The following loop moves the vehicles, calls the sensor simulation, and performs the tracking.

Note that the scenario generation and sensor simulation can have different time steps. Specifying
different time steps for the scenario and the sensors enables you to decouple the scenario simulation
from the sensor simulation. This is useful for modeling actor motion with high accuracy
independently from the sensor's measurement rate.

Another example is when the sensors have different update rates. Suppose one sensor provides
updates every 20 milliseconds and another sensor provides updates every 50 milliseconds. You can
specify the scenario with an update rate of 10 milliseconds and the sensors will provide their updates
at the correct time.

8 Featured Examples

8-288

In this example, the scenario generation has a time step of 0.01 second, while the sensors detect
every 0.1 second. The sensors return a logical flag, isValidTime, that is true if the sensors
generated detections. This flag is used to call the tracker only when there are detections.

Another important note is that the sensors can simulate multiple detections per target, in particular
when the targets are very close to the radar sensors. Because the tracker assumes a single detection
per target from each sensor, you must cluster the detections before the tracker processes them. This
is done by setting TargetReportFormat to 'Clustered detections', which is the default. The sensor
model may also output raw detection data, or track updates using an internal tracker.

toSnap = true;
while advance(scenario) && ishghandle(BEP.Parent)
 % Get the scenario time
 time = scenario.SimulationTime;

 % Get the position of the other vehicle in ego vehicle coordinates
 ta = targetPoses(egoCar);

 % Simulate the sensors
 detectionClusters = {};
 isValidTime = false(1,8);
 for i = 1:8
 [sensorDets,numValidDets,isValidTime(i)] = sensors{i}(ta, time);
 if numValidDets
 for j = 1:numValidDets
 % Vision detections do not report SNR. The tracker requires
 % that they have the same object attributes as the radar
 % detections. This adds the SNR object attribute to vision
 % detections and sets it to a NaN.
 if ~isfield(sensorDets{j}.ObjectAttributes{1}, 'SNR')
 sensorDets{j}.ObjectAttributes{1}.SNR = NaN;
 end

 % Remove the Z-component of measured position and velocity
 % from the Measurement and MeasurementNoise fields
 sensorDets{j}.Measurement = sensorDets{j}.Measurement([1 2 4 5]);
 sensorDets{j}.MeasurementNoise = sensorDets{j}.MeasurementNoise([1 2 4 5],[1 2 4 5]);
 end
 detectionClusters = [detectionClusters; sensorDets]; %#ok<AGROW>
 end
 end

 % Update the tracker if there are new detections
 if any(isValidTime)
 if isa(sensors{1},'drivingRadarDataGenerator')
 vehicleLength = sensors{1}.Profiles.Length;
 else
 vehicleLength = sensors{1}.ActorProfiles.Length;
 end
 confirmedTracks = updateTracks(tracker, detectionClusters, time);

 % Update bird's-eye plot
 updateBEP(BEP, egoCar, detectionClusters, confirmedTracks, positionSelector, velocitySelector);
 end

 % Snap a figure for the document when the car passes the ego vehicle
 if ta(1).Position(1) > 0 && toSnap

 Sensor Fusion Using Synthetic Radar and Vision Data

8-289

 toSnap = false;
 snapnow
 end
end

Summary

This example shows how to generate a scenario, simulate sensor detections, and use these detections
to track moving vehicles around the ego vehicle.

You can try to modify the scenario road, or add or remove vehicles. You can also try to add, remove,
or modify the sensors on the ego vehicle, or modify the tracker parameters.

Supporting Functions

initSimDemoFilter

This function initializes a constant velocity filter based on a detection.

function filter = initSimDemoFilter(detection)
% Use a 2-D constant velocity model to initialize a trackingKF filter.
% The state vector is [x;vx;y;vy]
% The detection measurement vector is [x;y;vx;vy]
% As a result, the measurement model is H = [1 0 0 0; 0 0 1 0; 0 1 0 0; 0 0 0 1]
H = [1 0 0 0; 0 0 1 0; 0 1 0 0; 0 0 0 1];
filter = trackingKF('MotionModel', '2D Constant Velocity', ...
 'State', H' * detection.Measurement, ...
 'MeasurementModel', H, ...
 'StateCovariance', H' * detection.MeasurementNoise * H, ...
 'MeasurementNoise', detection.MeasurementNoise);
end

8 Featured Examples

8-290

createDemoDisplay

This function creates a three-panel display:

1 Top-left corner of display: A top view that follows the ego vehicle.
2 Bottom-left corner of display: A chase-camera view that follows the ego vehicle.
3 Right-half of display: A birdsEyePlot display.

function BEP = createDemoDisplay(egoCar, sensors)
 % Make a figure
 hFigure = figure('Position', [0, 0, 1200, 640], 'Name', 'Sensor Fusion with Synthetic Data Example');
 movegui(hFigure, [0 -1]); % Moves the figure to the left and a little down from the top

 % Add a car plot that follows the ego vehicle from behind
 hCarViewPanel = uipanel(hFigure, 'Position', [0 0 0.5 0.5], 'Title', 'Chase Camera View');
 hCarPlot = axes(hCarViewPanel);
 chasePlot(egoCar, 'Parent', hCarPlot);

 % Add a car plot that follows the ego vehicle from a top view
 hTopViewPanel = uipanel(hFigure, 'Position', [0 0.5 0.5 0.5], 'Title', 'Top View');
 hCarPlot = axes(hTopViewPanel);
 chasePlot(egoCar, 'Parent', hCarPlot, 'ViewHeight', 130, 'ViewLocation', [0 0], 'ViewPitch', 90);

 % Add a panel for a bird's-eye plot
 hBEVPanel = uipanel(hFigure, 'Position', [0.5 0 0.5 1], 'Title', 'Bird''s-Eye Plot');

 % Create bird's-eye plot for the ego vehicle and sensor coverage
 hBEVPlot = axes(hBEVPanel);
 frontBackLim = 60;
 BEP = birdsEyePlot('Parent', hBEVPlot, 'Xlimits', [-frontBackLim frontBackLim], 'Ylimits', [-35 35]);

 % Plot the coverage areas for radars
 for i = 1:6
 cap = coverageAreaPlotter(BEP,'FaceColor','red','EdgeColor','red');
 if isa(sensors{i},'drivingRadarDataGenerator')
 plotCoverageArea(cap, sensors{i}.MountingLocation(1:2),...
 sensors{i}.RangeLimits(2), sensors{i}.MountingAngles(1), sensors{i}.FieldOfView(1));
 else
 plotCoverageArea(cap, sensors{i}.SensorLocation,...
 sensors{i}.MaxRange, sensors{i}.Yaw, sensors{i}.FieldOfView(1));
 end
 end

 % Plot the coverage areas for vision sensors
 for i = 7:8
 cap = coverageAreaPlotter(BEP,'FaceColor','blue','EdgeColor','blue');
 if isa(sensors{i},'drivingRadarDataGenerator')
 plotCoverageArea(cap, sensors{i}.MountingLocation(1:2),...
 sensors{i}.RangeLimits(2), sensors{i}.MountingAngles(1), 45);
 else
 plotCoverageArea(cap, sensors{i}.SensorLocation,...
 sensors{i}.MaxRange, sensors{i}.Yaw, 45);
 end
 end

 % Create a vision detection plotter put it in a struct for future use
 detectionPlotter(BEP, 'DisplayName','vision', 'MarkerEdgeColor','blue', 'Marker','^');

 Sensor Fusion Using Synthetic Radar and Vision Data

8-291

 % Combine all radar detections into one entry and store it for later update
 detectionPlotter(BEP, 'DisplayName','radar', 'MarkerEdgeColor','red');

 % Add road borders to plot
 laneMarkingPlotter(BEP, 'DisplayName','lane markings');

 % Add the tracks to the bird's-eye plot. Show last 10 track updates.
 trackPlotter(BEP, 'DisplayName','track', 'HistoryDepth',10);

 axis(BEP.Parent, 'equal');
 xlim(BEP.Parent, [-frontBackLim frontBackLim]);
 ylim(BEP.Parent, [-40 40]);

 % Add an outline plotter for ground truth
 outlinePlotter(BEP, 'Tag', 'Ground truth');
end

updateBEP

This function updates the bird's-eye plot with road boundaries, detections, and tracks.

function updateBEP(BEP, egoCar, detections, confirmedTracks, psel, vsel)
 % Update road boundaries and their display
 [lmv, lmf] = laneMarkingVertices(egoCar);
 plotLaneMarking(findPlotter(BEP,'DisplayName','lane markings'),lmv,lmf);

 % update ground truth data
 [position, yaw, length, width, originOffset, color] = targetOutlines(egoCar);
 plotOutline(findPlotter(BEP,'Tag','Ground truth'), position, yaw, length, width, 'OriginOffset', originOffset, 'Color', color);

 % update barrier data
 [bPosition,bYaw,bLength,bWidth,bOriginOffset,bColor,numBarrierSegments] = targetOutlines(egoCar, 'Barriers');
 plotBarrierOutline(findPlotter(BEP,'Tag','Ground truth'),numBarrierSegments,bPosition,bYaw,bLength,bWidth,...
 'OriginOffset',bOriginOffset,'Color',bColor);

 % Prepare and update detections display
 N = numel(detections);
 detPos = zeros(N,2);
 isRadar = true(N,1);
 for i = 1:N
 detPos(i,:) = detections{i}.Measurement(1:2)';
 if detections{i}.SensorIndex > 6 % Vision detections
 isRadar(i) = false;
 end
 end
 plotDetection(findPlotter(BEP,'DisplayName','vision'), detPos(~isRadar,:));
 plotDetection(findPlotter(BEP,'DisplayName','radar'), detPos(isRadar,:));

 % Remove all object tracks that are unidentified by the vision detection
 % generators before updating the tracks display. These have the ObjectClassID
 % parameter value as 0 and include objects such as barriers.
 isNotBarrier = arrayfun(@(t)t.ObjectClassID,confirmedTracks)>0;
 confirmedTracks = confirmedTracks(isNotBarrier);

 % Prepare and update tracks display
 trackIDs = {confirmedTracks.TrackID};
 labels = cellfun(@num2str, trackIDs, 'UniformOutput', false);

8 Featured Examples

8-292

 [tracksPos, tracksCov] = getTrackPositions(confirmedTracks, psel);
 tracksVel = getTrackVelocities(confirmedTracks, vsel);
 plotTrack(findPlotter(BEP,'DisplayName','track'), tracksPos, tracksVel, tracksCov, labels);
end

 Sensor Fusion Using Synthetic Radar and Vision Data

8-293

See Also
Apps
Driving Scenario Designer

Objects
birdsEyePlot | drivingRadarDataGenerator | visionDetectionGenerator |
multiObjectTracker | drivingScenario

Functions
vehicle | trajectory | targetPoses | updateTracks

More About
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” on page 8-295

8 Featured Examples

8-294

Sensor Fusion Using Synthetic Radar and Vision Data in
Simulink

This example shows how to implement a synthetic data simulation for tracking and sensor fusion in
Simulink® with Automated Driving Toolbox™. It closely follows the “Sensor Fusion Using Synthetic
Radar and Vision Data” on page 8-286 MATLAB® example.

Introduction

Simulating synthetic radar and vision detections provides the ability to create rare and potentially
dangerous events and test the vehicle algorithms with them. This example covers the entire synthetic
data workflow in Simulink.

Setup and Overview of the Model

Prior to running this example, the Driving Scenario Designer app was used to create the same
scenario defined in “Sensor Fusion Using Synthetic Radar and Vision Data” on page 8-286. The roads
and actors from this scenario were then saved to the scenario file OpenLoop.mat.

The Scenario Reader block reads the actor pose data from the saved file. The block converts the actor
poses from the world coordinates of the scenario into ego vehicle coordinates. The actor poses are
streamed on a bus generated by the block.

The actor poses are used by the Sensor Simulation subsystem, which generates synthetic radar and
vision detections. The simulated detections are concatenated at the input to the Multi-Object Tracker
block, whose output is a list of confirmed tracks. Finally, the Bird's-Eye Scope visualizes the actors,
the vision and radar detections, the confirmed tracks and the road boundaries. The following sections
describe the main blocks of this model.

Simulating Sensor Detections

In this example, you simulate an ego vehicle that has 6 radar sensors and 2 vision sensors covering
the 360 degrees field of view. The sensors have some overlap and some coverage gap. The ego vehicle
is equipped with a long-range radar sensor and a vision sensor on both the front and the back of the
vehicle. Each side of the vehicle has two short-range radar sensors, each covering 90 degrees. One
sensor on each side covers from the middle of the vehicle to the back. The other sensor on each side
covers from the middle of the vehicle forward.

 Sensor Fusion Using Synthetic Radar and Vision Data in Simulink

8-295

When you open the Sensor Simulation subsystem, you can see the two Vision Detection Generator
blocks, configured to generate detections from the front and the back of the ego vehicle. The output
from the vision detection generators is connected to a Detection Concatenation block. Next, the
subsystem contains six Driving Radar Data Generator blocks, configured as described in the previous
paragraph. The outputs of the radar data generators are configured to report the clustered centroid
of the detections generated from each target.

8 Featured Examples

8-296

 Sensor Fusion Using Synthetic Radar and Vision Data in Simulink

8-297

Tracking and Sensor Fusion

The detections from the vision and radar sensors must first be concatenated to form a single input to
the Multi-Object Tracker block. The concatenation is done using an additional Detection
Concatenation block.

The Multi-Object Tracker block is responsible for fusing the data from all the detections and tracking
the objects around the ego vehicle. The multi-object tracker is configured with the same parameters
that were used in the corresponding MATLAB example, “Sensor Fusion Using Synthetic Radar and
Vision Data” on page 8-286. The output from the Multi-Object Tracker block is a list of confirmed
tracks.

Creating and Propagating Buses

The inputs and outputs from the various blocks in this example are all Simulink.Bus (Simulink)
objects. To simplify compiling the model and creating the buses, all the Vision Detection Generator,
Driving Radar Data Generator, Multi-Object Tracker, and Detection Concatenation blocks have a
property that defines the source of the output bus name. When set to 'Auto', the buses are created
automatically and their names are propagated to the block that consumes this bus as an input. When
set to 'Property', you can define the name of the output bus. The following images show the
detections bus, a single detection bus, the tracks bus, and a single track bus.

8 Featured Examples

8-298

 Sensor Fusion Using Synthetic Radar and Vision Data in Simulink

8-299

Display

The Bird's-Eye Scope is a model-level visualization tool that you can open from the Simulink toolstrip.
On the Simulation tab, under Review Results, click Bird's-Eye Scope. After opening the scope,
click Find Signals to set up the signals. Then run the simulation to display the actors, vision and
radar detections, tracks, and road boundaries. The following image shows the bird's-eye scope for
this example.

8 Featured Examples

8-300

See Also
Apps
Driving Scenario Designer

Blocks
Detection Concatenation | Multi-Object Tracker | Driving Radar Data Generator | Vision Detection
Generator

 Sensor Fusion Using Synthetic Radar and Vision Data in Simulink

8-301

Objects
drivingScenario

Functions
roadBoundaries | record

More About
• “Sensor Fusion Using Synthetic Radar and Vision Data” on page 8-286
• “Forward Collision Warning Using Sensor Fusion” on page 8-218
• “Adaptive Cruise Control with Sensor Fusion” on page 8-231
• “Code Generation for Tracking and Sensor Fusion” on page 8-211
• “Autonomous Emergency Braking with Sensor Fusion” on page 8-303

8 Featured Examples

8-302

Autonomous Emergency Braking with Sensor Fusion
This example shows how to implement autonomous emergency braking (AEB) using a sensor fusion
algorithm.

Introduction

Autonomous emergency braking is an advanced active safety system that helps drivers avoid or
mitigate collisions with other vehicles.

The European New Car Assessment Programme (Euro NCAP®) has included the AEB city and
interurban systems in its safety rating since 2014. The Euro NCAP continues to promote AEB systems
for protecting vulnerable road users, such as pedestrians and cyclists.

Today, AEB systems mostly use radar and vision sensors to identify potential collision partners ahead
of the ego vehicle. These systems often require multiple sensors to obtain accurate, reliable, and
robust detections while minimizing false positives. To combine the data from various sensors,
multiple sensor AEB systems use sensor fusion technology. This example shows how to implement
AEB using a sensor fusion algorithm. In this example, you:

1 Explore the test bench model — The model contains the sensors and environment, sensor
fusion and tracking, decision logic, controls, and vehicle dynamics.

2 Model the AEB Controller — Use Simulink® and Stateflow® to integrate a braking controller
for braking control and a nonlinear model predictive controller (NLMPC) for acceleration and
steering controls.

3 Simulate the test bench model — You can configure the test bench model for different
scenarios based on Euro NCAP test protocols.

4 Generate C++ code — Generate C++ code and test the software-in-the-loop(SIL) simulation for
the sensor fusion, decision logic, and control algorithms.

5 Explore additional scenarios — These scenarios test the system under additional conditions.

Explore Test Bench Model

In this example, you use a system-level simulation test bench model to explore the behavior of the
controller for an AEB system.

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot,"toolbox","driving","drivingdemos"))
helperDrivingProjectSetup("AutonomousEmergencyBraking.zip",workDir=pwd);

To reduce Command Window output, turn off model predictive controller (MPC) update messages.

mpcverbosity("off");

Open the system-level simulation test bench model.

open_system("AEBTestBench");

 Autonomous Emergency Braking with Sensor Fusion

8-303

Opening this model runs the helperSLAEBSetup helper function, which initializes the scenario
using the drivingScenario object in the base workspace. It runs the default test scenario,
scenario_25_AEB_PedestrianTurning_Nearside_10kph, that contains an ego vehicle and a
pedestrian. This setup function also configures the controller design parameters, vehicle model
parameters, and Simulink bus signals required for defining the inputs and outputs for the
AEBTestBench model.

The test bench model contains these modules:

• Sensors and Environment — Subsystem that specifies the road, actors, camera, and radar
sensor used for simulation.

• Sensor Fusion and Tracking — Algorithm model that fuses vehicle detections from the
camera to those from the radar sensor.

• AEB Decision Logic — Algorithm model that specifies the lateral and longitudinal decision
logic that provides most important object (MIO) related information and ego vehicle reference
path information to the controller.

• AEB Controller — Algorithm model that specifies the steering angle and acceleration controls.
• Vehicle Dynamics — Subsystem that specifies the dynamic model of the ego vehicle.
• Metrics Assessment — Subsystem that assesses system-level behavior.

The Vehicle Dynamics subsystem models the ego vehicle using a Bicycle Model, and updates its
state using commands received from the AEB Controller model. For more details on the Vehicle
Dynamics subsystem, see the “Highway Lane Following” on page 8-922 example.

To plot synthetic sensor detections, tracked objects, and ground truth data, use the Bird's-Eye Scope.
The Bird's-Eye Scope is a model-level visualization tool that you can open from the Simulink model
toolbar. On the Simulation tab, under Review Results, click Bird's-Eye Scope. After opening the
scope, click Update Signals to set up the signals. The dashboard panel displays these ego vehicle
parameters: velocity, acceleration, AEB status, forward collision warning (FCW) status, and safety
status.

8 Featured Examples

8-304

The Sensors and Environment subsystem configures the road network, defines target actor
trajectories, and synthesizes sensors. Open the Sensors and Environment subsystem.

open_system("AEBTestBench/Sensors and Environment")

The subsystem specifies the scenario and sensors of the ego vehicle using these blocks:

• The Scenario Reader block reads the drivingScenario object from the base workspace, and
then reads the actor data from that object. The block uses the ego vehicle information to perform
a closed-loop simulation, and then outputs the ground truth information of the scenario actors and
their trajectories in ego vehicle coordinates.

• The Driving Radar Data Generator block generates radar sensor data from a driving scenario.
• The Vision Detection Generator block generates detections and measurements from a camera

mounted on the ego vehicle.
• The Reference Path Info block provides a predefined reference trajectory for ego vehicle

navigation. The reference path in the block is created by using the helperEgoRefPathCreator
helper function.

The Sensor Fusion and Tracking algorithm model processes vision and radar detections and
generates the position and velocity of the tracks relative to the ego vehicle. Open the
AEBSensorFusion algorithm model.

open_system("AEBSensorFusion");

 Autonomous Emergency Braking with Sensor Fusion

8-305

The AEBSensorFusion model contains these blocks:

• Detection Concatenation — Combines the vision and radar detections onto a single output bus.

• Multi-Object Tracker — Performs sensor fusion and outputs the tracks of stationary and moving
objects. These tracks are updated at Prediction Time, specified by a Digital Clock block in the
Sensors and Environment subsystem.

The AEBDecisionLogic algorithm model specifies lateral and longitudinal decisions based on the
predefined ego reference path and tracks. Open the AEBDecisionLogic algorithm model.

open_system("AEBDecisionLogic");

8 Featured Examples

8-306

The AEB Decision Logic algorithm model contains these blocks:

• Ego Reference Path Generator — Estimates the curvature, relative yaw angle, and lateral
deviation of the ego vehicle using the current ego position and the reference path information
from Sensors and Environment subsystem. The block also determines if the ego vehicle
reached its goal.

• Find Lead Car — Finds the lead car, which is the MIO in front of the ego vehicle in the same
lane. This block outputs the relative distance and relative velocity between the ego vehicle and the
MIO.

Model AEB Controller

The AEBController algorithm model implements the main algorithm to specify the longitudinal and
lateral controls. Open the AEBController algorithm model.

open_system("AEBController");

The AEBController model contains these subsystems:

• Controller Mode Selector — Releases the vehicle accelerator when AEB is activated.

• NLMPC Controller — reads the ego longitudinal velocity, curvature sequence, relative yaw
angle, and lateral deviation, and then outputs the steering angle and acceleration for the ego
vehicle. Open the NLMPC Controller referenced subsystem.

open_system("AEBController/NLMPC Controller")

 Autonomous Emergency Braking with Sensor Fusion

8-307

This example uses a nonlinear MPC controller with a prediction model that has seven states, three
output variables, and two manipulated variables.

States

• Lateral velocity
• Yaw rate
• Longitudinal velocity
• Longitudinal acceleration
• Lateral deviation
• Relative yaw angle
• Output disturbance of relative yaw angle

Output Variables

• Longitudinal velocity
• Lateral deviation
• Sum of the yaw angle and yaw angle output disturbance

Manipulated Variables

• Acceleration
• Steering

The controller models the product of the road curvature and the longitudinal velocity as a measured
disturbance. The prediction horizon and control horizon are specified by the helperSLAEBSetup
function. The state function for the nonlinear plant model and its Jacobian are specified by
helperNLMPCStateFcn function and helperNLMPCStateJacFcn function, respectively. The
continuous-time prediction model for the NLMPC controller uses the output equation defined in the
helperNLMPCOutputFcn function. The constraints for the manipulated variables, and the weights in
the standard MPC cost function are defined in the helperSLAEBSetup function when it creates the
nlmpc object. In this example, the NLMPC controller does not support zero initial velocity for the ego
vehicle.

8 Featured Examples

8-308

In this example, an extended Kalman filter (EKF) provides state estimation for the seven states. The
state transition function for the EKF is defined in the helperEKFStateFcn function, and the
measurement function is defined in helperEKFMeasFcn function. For more details on designing a
nonlinear MPC controller, see “Lane Following Using Nonlinear Model Predictive Control” (Model
Predictive Control Toolbox).

The Braking Controller subsystem implements the FCW and AEB control algorithm based on a
stopping time calculation approach.

Stopping time refers to the time from when the ego vehicle first applies its brakes, , to
when it comes to a complete stop. You can find stopping time by using this equation:

,

where is the velocity of the ego vehicle.

The FCW system alerts the driver about an imminent collision with a lead vehicle. The driver is
expected to react to the alert and apply the brake with a delay time, .

The total travel time of the ego vehicle before colliding with the lead vehicle can be expressed as:

When the time-to-collision (TTC) with the lead vehicle is less than , the FCW alert activates.

If the driver fails to apply the brake in time, such as due to distraction, the AEB system acts
independently of the driver to avoid or mitigate the collision. The AEB systems typically apply
cascaded braking, which consists of multi-stage partial braking followed by full braking [1].

 Autonomous Emergency Braking with Sensor Fusion

8-309

Open the Braking Controller subsystem.

open_system("AEBController/Braking Controller")

The Braking Controller subsystem contains these blocks:

• TTCCalculation — Calculates the TTC using the relative distance and velocity of the lead
vehicle.

• StoppingTimeCalculation — Calculates stopping times for the FCW, first- and second-stage
partial braking (PB), and full braking (FB).

• AEBLogic — State machine that compares the TTC with the calculated stopping times to
determine the FCW and AEB activations.

8 Featured Examples

8-310

AEB Controller outputs the steering angle and acceleration commands that determine whether to
accelerate or decelerate.

Explore Metrics Assessment

The Metrics Assessment subsystem enables system-level metric evaluations using the ground
truth information from the scenario. Open the Metrics Assessment subsystem.

open_system("AEBTestBench/Metrics Assessment");

In this example, you can assess the AEB system using these metrics:

• Check Collision — Verifies whether the ego vehicle collide with the target actor at any point
during the simulation.

• Check Safety — Verifies that the ego vehicle is within the prescribed threshold safetyGoal
throughout the simulation. Use the helperAEBSetup post-load callback function to define
safetyGoal.

Simulate AEB Model

Simulate the test bench model with scenarios based on Euro NCAP test protocols. Euro NCAP offers a
series of test protocols that test the performance of AEB systems in car-to-car rear (CCR) [2] and
vulnerable road user (VRU) [3] scenarios.

This example uses a closed-loop simulation of these two scenarios. You then analyze the results.

• scenario_23_AEB_PedestrianChild_Nearside_50width
• scenario_25_AEB_PedestrianTurning_Nearside_10kph

Simulate scenario_23_AEB_PedestrianChild_Nearside_50width

 Autonomous Emergency Braking with Sensor Fusion

8-311

Configure the AEBTestBench model for the
scenario_23_AEB_PedestrianChild_Nearside_50width scenario. In this scenario, a child
pedestrian is crossing from the right side of the road to the left. The ego vehicle, which is traveling
forward, collides with the child pedestrian. At collision time, the pedestrian is 50% of the way across
the width of the ego vehicle.

helperSLAEBSetup(scenarioFcnName="scenario_23_AEB_PedestrianChild_Nearside_50width");

The test bench model reads the drivingScenario object and runs a simulation.

Simulate the model for 0.1 seconds.

sim("AEBTestBench",StopTime="0.1"); % Simulate for 0.1 seconds

The Bird's-Eye Scope shows the ground truth data of the vehicles and child pedestrian. It also
shows radar detections, vision detections, and objects tracked by the multi-object tracker. At a
simulation time of 0.1 seconds, the camera and radar sensor do not detect the child pedestrian, as
other the vehicles obstruct their line of sight.

Simulate the model for 2.8 seconds.

8 Featured Examples

8-312

sim("AEBTestBench",StopTime="2.8"); % Simulate for 2.8 seconds

Update the bird's-eye scope. Notice that the sensor fusion and tracking algorithm detects the child
pedestrian as the MIO, and that the AEB system applies the brake to avoid a collision.

The dashboard panel shows that the AEB system applies cascaded brake to stop the ego vehicle
before the collision point. The color of the AEB indicator specifies the level of AEB activation.

• Gray — AEB is not activated.
• Yellow — First stage partial brake is activated.
• Orange — Second stage partial brake is activated.
• Red — Full brake is activated.

Simulate the scenario to the end. Then, plot the results by using the helperPlotAEBResults helper
function.

sim("AEBTestBench"); % Simulate to end of scenario

helperPlotAEBResults(logsout,scenarioFcnName);

 Autonomous Emergency Braking with Sensor Fusion

8-313

• TTC vs. Stopping Time — Compares the time-to-collision and the stopping times for the FCW,
first stage partial brake, second stage partial brake, and full brake, respectively.

• FCW and AEB Status — Displays the FCW and AEB activation status based on the comparison
results from the first plot.

• Ego Car Acceleration — Shows the acceleration of the ego vehicle.
• Ego Car Yaw and Yaw Rate — Shows the yaw and yaw rate of the ego vehicle.
• Ego Car Velocity — Shows the velocity of the ego vehicle.
• Headway — Shows the headway between the ego vehicle and the MIO.

In the first 2 seconds, the ego vehicle speeds up to reach its specified velocity. At 2.3 seconds, the
sensors first detect the child pedestrian. Immediately after the detection, the FCW system activates.

At 2.4 seconds, the AEB system applies the first stage of the partial brake, and the ego vehicle starts
to slow down.

8 Featured Examples

8-314

When the ego vehicle comes to a complete stop at 4.1 seconds, the headway between the ego vehicle
and the child pedestrian is about 2.1 meters. The AEB system fully avoids a collision in this scenario.

Simulate with scenario_25_AEB_PedestrianTurning_Nearside_10kph

Configure the AEBTestBench model for the
scenario_25_AEB_PedestrianTurning_Nearside_10kph scenario. In this scenario, the ego
vehicle makes a right turn at an intersection, and collides with an adult pedestrian crossing the road
from the opposite side of the intersection. At the time of collision, the pedestrian is 50% of the way
across the width of the frontal structure of the ego vehicle.

helperSLAEBSetup(scenarioFcnName="scenario_25_AEB_PedestrianTurning_Nearside_10kph");

Simulate the model and plot the results.

sim("AEBTestBench");

helperPlotAEBResults(logsout,scenarioFcnName);

 Autonomous Emergency Braking with Sensor Fusion

8-315

For the first 9.5 seconds, the ego vehicle travels at its specified velocity. At 9.5 seconds, the sensors
first detect the pedestrian in the intersection, after the ego vehicle has turned right. Despite the short
headway between the ego vehicle and the pedestrian, the AEB system applies only the first partial
brake due to the low velocity of the ego vehicle.

Generate C++ Code

If you have the licenses for Simulink Coder™ and Embedded Coder™, you can generate ready-to-
deploy code for algorithm models such as AEB sensor fusion, AEB decision logic, and AEB controller
for an embedded real-time (ERT) target.

You can verify that the compiled C++ code behaves as expected using software-in-the-loop
simulation. To simulate the referenced models in SIL mode, enter these commands.

set_param("AEBTestBench/Sensor Fusion and Tracking", ...
 SimulationMode="Software-in-the-loop (SIL)")

8 Featured Examples

8-316

set_param("AEBTestBench/AEB Decision Logic", ...
 SimulationMode="Software-in-the-loop (SIL)")
set_param("EBTestBench/AEB Controller", ...
 SimulationMode="Software-in-the-loop (SIL)")

When you run the AEBTestBench model, code is generated, compiled, and executed for the
AEBSensorFusion, AEBDecisionLogic and AEBController models. This enables you to test the
behavior of the compiled code through simulation.

Explore Additional Scenarios

In this example, you have explored the system behavior for the
scenario_25_AEB_PedestrianTurning_Nearside_10kph and
scenario_23_AEB_PedestrianChild_Nearside_50width scenarios. This example provides
additional scenarios that are compatible with the AEBTestBench model:

• scenario_01_AEB_Bicyclist_Longitudinal_25width
• scenario_02_AEB_Bicyclist_Longitudinal_50width
• scenario_03_AEB_Bicyclist_Longitudinal_75width
• scenario_04_AEB_CCRb_2_initialGap_12m
• scenario_05_AEB_CCRb_2_initialGap_40m
• scenario_06_AEB_CCRb_6_initialGap_12m
• scenario_07_AEB_CCRb_6_initialGap_40m
• scenario_08_AEB_CCRm_50overlap
• scenario_09_AEB_CCRm__50overlap
• scenario_10_AEB_CCRm_75overlap
• scenario_11_AEB_CCRm__75overlap
• scenario_12_AEB_CCRm_100overlap
• scenario_13_AEB_CCRs_50overlap
• scenario_14_AEB_CCRs__50overlap
• scenario_15_AEB_CCRs_75overlap
• scenario_16_AEB_CCRs__75overlap
• scenario_17_AEB_CCRs_100overlap
• scenario_18_AEB_Pedestrian_Farside_50width
• scenario_19_AEB_Pedestrian_Longitudinal_25width
• scenario_20_AEB_Pedestrian_Longitudinal_50width
• scenario_21_AEB_Pedestrian_Nearside_25width
• scenario_22_AEB_Pedestrian_Nearside_75width
• scenario_23_AEB_PedestrianChild_Nearside_50width
• scenario_24_AEB_PedestrianTurning_Farside_10kph
• scenario_25_AEB_PedestrianTurning_Nearside_10kph [Default]
• scenario_26_AEB_CCFtap_VUT_10kph_GVT_30kph

These scenarios have been created using the Driving Scenario Designer app, and then exported to
scenario files. You can configure the AEBTestBench model and workspace to simulate these

 Autonomous Emergency Braking with Sensor Fusion

8-317

scenarios using the helperSLAEBSetup function. For example, to configure the simulation for the
scenario_01_AEB_Bicyclist_Longitudinal_25width scenario, enter this command.

helperSLAEBSetup(scenarioFcnName="scenario_01_AEB_Bicyclist_Longitudinal_25width");

When you are finished with this example, enable MPC update messages once again.

mpcverbosity("on");

References

[1] Hulshof, Wesley, Iain Knight, Alix Edwards, Matthew Avery, and Colin Grover. "Autonomous
Emergency Braking Test Results." In Proceedings of the 23rd International Technical Conference on
the Enhanced Safety of Vehicles (ESV) , Paper Number 13-0168. Seoul, Korea: ESV Conference, 2013.

[2] European New Car Assessment Programme (Euro NCAP). Test Protocol – _AEB Systems . Version
2.0.1. Euro NCAP, November, 2017.

[3] European New Car Assessment Programme (Euro NCAP). Test Protocol – AEB VRU Systems.
Version 2.0.2. Euro NCAP, November, 2017.

See Also
Apps
Driving Scenario Designer

Blocks
Vehicle Body 3DOF | Driving Radar Data Generator | Vision Detection Generator

Objects
drivingScenario | birdsEyePlot

More About
• “Autonomous Emergency Braking with Vehicle Variants” on page 8-1331
• “Automate Testing for Autonomous Emergency Braking” on page 8-1322
• “Forward Collision Warning Using Sensor Fusion” on page 8-218
• “Adaptive Cruise Control with Sensor Fusion” on page 8-231
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” on page 8-295
• “Euro NCAP Driving Scenarios in Driving Scenario Designer” on page 5-44

8 Featured Examples

8-318

Visualize Sensor Coverage, Detections, and Tracks
Configure and use a Bird's-Eye Plot to display sensor coverage, detections and tracking results
around the ego vehicle.

Overview

Displaying data recorded in vehicle coordinates on a 2-dimensional map around the ego vehicle is an
important part of analyzing sensor coverages, detections and tracking results. Use birdsEyePlot to
display a snapshot of this information for a certain time or to stream data and efficiently update the
display.

This example reads pre-recorded sensor data and tracking results. It includes the following:

• Lane information
• Vision objects
• Radar objects
• Positions, velocities, covariance matrices, and labels of the tracks
• Most important object

The above information was recorded at a high rate of 20 updates per second, except vision detections
that were recorded at 10 updates per second.

A sensor configuration file defines the position and coverage areas of a vision sensor and a radar
sensor with two coverage modes. These coverage areas will be displayed on the bird's-eye plot.

Note that the birdsEyePlot object sets up a very specific vehicle coordinate system, where the X-
axis points forward from the vehicle, the Y-axis points to the left of the vehicle, and the Z-axis points
up from the ground. The origin of the coordinate system is typically defined as the center of the rear
axle, and the positions of the sensors are defined relative to the origin. For more details, see
“Coordinate Systems in Automated Driving Toolbox” on page 1-2.

Defining Scene Limits and Sensor Coverage

Configuring a bird's-eye plot takes two steps. In the first step, the bird's-eye plot is created, which
sets up the coordinate system described above, where the x-axis is directed upwards and y-axis is
directed to the left. It is possible to define the axes limits in each direction. In this forward looking
example, we define the scene up to 90 meters in front of the ego vehicle and 35 meters on each side.

% Create a bird's-eye plot and limit its axes
BEP = birdsEyePlot('Xlimits', [0 90], 'Ylimits', [-35 35]);

In the second step, the bird's-eye plotters are created. The bird's-eye plot offers the following variety
of plotters, each configured for plotting a specific data type. They include:

• coverageAreaPlotter - Plot sensor coverage areas
• detectionPlotter - Plot object detections
• trackPlotter - Plot tracks, track uncertainties, and history trails
• laneBoundaryPlotter - Plot lane boundaries
• pathPlotter - Plot object trajectory

% Create a coverageAreaPlotter for a vision sensor and two radar modes
cap(1) = coverageAreaPlotter(BEP,'FaceColor','blue','EdgeColor','blue');

 Visualize Sensor Coverage, Detections, and Tracks

8-319

cap(2) = coverageAreaPlotter(BEP,'FaceColor','red','EdgeColor','red');
cap(3) = coverageAreaPlotter(BEP,'FaceColor','red','EdgeColor','red');

Load sensor configuration data. Sensor configuration includes:

• The position of the sensors relative to the axes origin (X,Y), in meters
• The sensor range, in meters
• The sensor yaw angle relative to the x-axis, in degrees
• The sensor field of view (FOV), in degrees

load('SensorConfigurationData.mat');
% Use the sensor configuration to plot the sensor coverage areas. Vision
% sensor uses the shaded blue coverage area and radar modes are shaded in
% red.
for i = 1:3
 plotCoverageArea(cap(i), [sensorParams(i).X, sensorParams(i).Y],...
 sensorParams(i).Range, sensorParams(i).YawAngle, sensorParams(i).FoV);
end

% Add title
title('Bird''s-Eye Plot')

The display above shows the coverage of the vision sensor and two radar sensor modes.

The vision sensor is positioned 3.30 meters in front of the origin (rear axle) at the center of the car,
with a range of 150 meters and a FOV of 38 degrees.

8 Featured Examples

8-320

The radar is positioned 3.38 meters in front of the origin at the center of the car. The radar long-
range mode has a range of 174 meters and a FOV of 20 degrees, while the medium-range mode has a
range of 60 meters and a FOV of 90 degrees. Note that the coverage areas are truncated at 90 meters
in front of the ego vehicle and 35 meters on each side.

This example shows a forward looking scenario; however, you can define coverage area in
around the ego vehicle. For example, a sensor that covers from the rear of the vehicle backwards
would be oriented with a yaw angle of .

The next few lines read the recorded data in preparation for the next steps.

% Load recorded data from a file
load('BirdsEyePlotExampleData.mat', 'dataToDisplay');

% Skip to the 125th time step, where there are 5 vision detections and
% multiple radar objects and tracks.
timeStep = 125;

% Extract the various data from the recorded file for that time step
[visionObjectsPos, radarObjectsPos, laneBoundaries, trackPositions, ...
 trackVelocities, trackCovariances, trackLabels, MIOlabel, MIOposition, ...
 MIOvelocity] = readDataFrame(dataToDisplay(timeStep));

Plotting Detections

Next, create plotters to display the recorded vision and radar detections

% create a vision detection plotter put it in a struct for future use
bepPlotters.Vision = detectionPlotter(BEP, 'DisplayName','vision detection', ...
 'MarkerEdgeColor','blue', 'Marker','^');

% Combine all radar detections into one entry and store it for later update
bepPlotters.Radar = detectionPlotter(BEP, 'DisplayName','radar detection', ...
 'MarkerEdgeColor','red');

% Call the vision detections plotter
plotDetection(bepPlotters.Vision, visionObjectsPos);

% Repeat the above for radar detections
plotDetection(bepPlotters.Radar, radarObjectsPos);

 Visualize Sensor Coverage, Detections, and Tracks

8-321

Plotting Tracks and Most-Important Objects

When adding the tracks to the Bird's-Eye Plot, we provide position, velocity and position covariance
information. The plotter takes care of displaying the track history trail, but since this is a single
frame, there will be no history.

% Create a track plotter that shows the last 10 track updates
bepPlotters.Track = trackPlotter(BEP, 'DisplayName','tracked object', ...
 'HistoryDepth',10);

% Create a track plotter to plot the most important object
bepPlotters.MIO = trackPlotter(BEP, 'DisplayName','most important object', ...
 'MarkerFaceColor','black');

% Call the track plotter to plot all the tracks
plotTrack(bepPlotters.Track, trackPositions, trackVelocities, trackCovariances, trackLabels);

% Repeat for the Most Important Object (MIO)
plotTrack(bepPlotters.MIO, MIOposition, MIOvelocity, MIOlabel);

8 Featured Examples

8-322

Plotting the Lane Boundaries

Plotting lane boundaries can utilize the parabolicLaneBoundary object. To use it, we saved the
lane boundaries as parabolicLaneBoundary objects, and call the plotter with it.

% Create a plotter for lane boundaries
bepPlotters.LaneBoundary = laneBoundaryPlotter(BEP, ...
 'DisplayName','lane boundaries', 'Color',[.9 .9 0]);

% Call the lane boundaries plotter
plotLaneBoundary(bepPlotters.LaneBoundary, laneBoundaries);

 Visualize Sensor Coverage, Detections, and Tracks

8-323

Displaying a Scenario from a Recording File

The recording file contains time-dependent sensor detections, tracking information, and lane
boundaries. The next code shows how to play back the recordings and display the results on the
bird's-eye plot that was configured above.

Note: vision detections were provided every other frame. In such cases, it is beneficial to show the
lack of new sensor detections. To do that, simply pass an empty array to the appropriate plotter to
delete the previous detections from the display.

% Rewind to the beginning of the recording file
timeStep = 0;
numSteps = numel(dataToDisplay); % Number of steps in the scenario

% Loop through the scenario as long as the bird's eye plot is open
while timeStep < numSteps && isvalid(BEP.Parent)
 % Promote the timeStep
 timeStep = timeStep + 1;

 % Capture the current time for a realistic display rate
 tic;

 % Read the data for that time step
 [visionObjectsPos, radarObjectsPos, laneBoundaries, trackPositions, ...
 trackVelocities, trackCovariances, trackLabels, MIOlabel, MIOposition, ...
 MIOvelocity] = readDataFrame(dataToDisplay(timeStep));

8 Featured Examples

8-324

 % Plot detections
 plotDetection(bepPlotters.Vision, visionObjectsPos);
 plotDetection(bepPlotters.Radar, radarObjectsPos);

 % Plot tracks and MIO
 plotTrack(bepPlotters.Track, trackPositions, trackVelocities, trackCovariances, trackLabels);
 plotTrack(bepPlotters.MIO, MIOposition, MIOvelocity, MIOlabel);

 % Plot lane boundaries
 plotLaneBoundary(bepPlotters.LaneBoundary, laneBoundaries);

 % The recorded data was obtained at a rate of 20 frames per second.
 % Pause for 50 milliseconds for a more realistic display rate. You
 % would not need this when you process data and form tracks in this
 % loop.
 pause(0.05 - toc)
end

Summary

This example demonstrated how to configure and use a bird's-eye plot object and some of the various
plotters associated with it.

Try using the track and most-important object plotters or using the bird's-eye plot with a different
recording file.

Supporting Functions

readDataFrame - extracts the separate fields from the data provided in dataFrame

function [visionObjectsPos, radarObjectsPos, laneBoundaries, trackPositions, ...
 trackVelocities, trackCovariances, trackLabels, MIOlabel, MIOposition, ...
 MIOvelocity] = readDataFrame(dataFrame)
 visionObjectsPos = dataFrame.visionObjectsPos;
 radarObjectsPos = dataFrame.radarObjectsPos;
 laneBoundaries = dataFrame.laneBoundaries;
 trackPositions = dataFrame.trackPositions;
 trackVelocities = dataFrame.trackVelocities;
 trackCovariances = dataFrame.trackCovariances;
 trackLabels = dataFrame.trackLabels;
 MIOlabel = dataFrame.MIOlabel;
 MIOposition = dataFrame.MIOposition;
 MIOvelocity = dataFrame.MIOvelocity;
end

See Also
Objects
birdsEyePlot

Functions
plotCoverageArea | plotLaneBoundary | plotTrack | plotDetection

More About
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2

 Visualize Sensor Coverage, Detections, and Tracks

8-325

• “Visualize Sensor Data and Tracks in Bird's-Eye Scope” on page 3-2

8 Featured Examples

8-326

Extended Object Tracking of Highway Vehicles with Radar and
Camera

This example shows you how to track highway vehicles around an ego vehicle. Vehicles are extended
objects, whose dimensions span multiple sensor resolution cells. As a result, the sensors report
multiple detections of these objects in a single scan. In this example, you will use different extended
object tracking techniques to track highway vehicles and evaluate the results of their tracking
performance.

Introduction

In conventional tracking approaches such as global nearest neighbor (multiObjectTracker,
trackerGNN), joint probabilistic data association (trackerJPDA) and multi-hypothesis tracking
(trackerTOMHT), tracked objects are assumed to return one detection per sensor scan. With the
development of sensors that have better resolution, such as a high-resolution radar, the sensors
typically return more than one detection of an object. For example, the image below depicts multiple
detections for a single vehicle that spans multiple radar resolution cells. In such cases, the technique
used to track the objects is known as extended object tracking [1].

The key benefit of using a high-resolution sensor is getting more information about the object, such
as its dimensions and orientation. This additional information can improve the probability of detection
and reduce the false alarm rate.

Extended objects present new challenges to conventional trackers, because these trackers assume a
single detection per object per sensor. In some cases, you can cluster the sensor data to provide the

 Extended Object Tracking of Highway Vehicles with Radar and Camera

8-327

conventional trackers with a single detection per object. However, by doing so, the benefit of using a
high-resolution sensor may be lost.

In contrast, extended object trackers can handle multiple detections per object. In addition, these
trackers can estimate not only the kinematic states, such as position and velocity of the object, but
also the dimensions and orientation of the object. In this example, you track vehicles around the ego
vehicle using the following trackers:

• A conventional multi-object tracker using a point-target model, multiObjectTracker
• A GGIW-PHD (Gamma Gaussian Inverse Wishart PHD) tracker, trackerPHD with ggiwphd filter
• A GM-PHD (Gaussian mixture PHD) tracker, trackerPHD with gmphd filter using rectangular

target model

You will evaluate the tracking results of all trackers using trackErrorMetrics and
trackAssignmentMetrics, which provide multiple measures of effectiveness of a tracker. You will
also evaluate the results using the Optimal SubPattern Assignment Metric (OSPA),
trackOSPAMetric, which aims to evaluate the performance of a tracker using a combined score.

Setup

Scenario

In this example, there is an ego vehicle and four other vehicles: a vehicle ahead of the ego vehicle in
the center lane, a vehicle behind the ego vehicle in the center lane, a truck ahead of the ego vehicle
in the right lane and an overtaking vehicle in the left lane.

In this example, you simulate an ego vehicle that has 6 radar sensors and 2 vision sensors covering
the 360-degree field of view. The sensors have some overlap and some coverage gap. The ego vehicle
is equipped with a long-range radar sensor and a vision sensor on both the front and back of the
vehicle. Each side of the vehicle has two short-range radar sensors, each covering 90 degrees. One
sensor on each side covers from the middle of the vehicle to the back. The other sensor on each side
covers from the middle of the vehicle forward.

% Create the scenario
exPath = fullfile(matlabroot,'examples','driving_fusion','main');
addpath(exPath)
[scenario, egoVehicle, sensors] = helperCreateScenario;

% Create the display object
display = helperExtendedTargetTrackingDisplay;

% Create the Animation writer to record each frame of the figure for
% animation writing. Set 'RecordGIF' to true to enable GIF writing.
gifWriter = helperGIFWriter('Figure',display.Figure,...
 'RecordGIF',false);

8 Featured Examples

8-328

Metrics

In this example, you use some key metrics to assess the tracking performance of each tracker. In
particular, you assess the trackers based on their accuracy in estimating the positions, velocities,
dimensions (length and width) and orientations of the objects. These metrics can be evaluated using
the trackErrorMetrics class. To define the error of a tracked target from its ground truth, this
example uses a 'custom' error function, helperExtendedTargetError, listed at the end of this
example.

You will also assess the performance based on metrics such as number of false tracks or redundant
tracks. These metrics can be calculated using the trackAssignmentMetrics class. To define the
distance between a tracked target and a truth object, this example uses a 'custom' error function,
helperExtendedTargetDistance, listed at the end of this example. The function defines the
distance metric as the sum of distances in position, velocity, dimension and yaw.

trackErrorMetrics and trackAssignmentMetrics provide multiple measures of effectiveness of
a tracking algorithm. You will also assess the performance based on the Optimal SubPattern

 Extended Object Tracking of Highway Vehicles with Radar and Camera

8-329

Assignment Metric (OSPA), which provides a single score value for the tracking algorithm at each
time step. This metric can be calculated using the trackOSPAMetric class. The 'custom' distance
function defined for OSPA is same as the assignment metrics.

% Function to return the errors given track and truth.
errorFcn = @(track,truth)helperExtendedTargetError(track,truth);

% Function to return the distance between track and truth.
distFcn = @(track,truth)helperExtendedTargetDistance(track,truth);

% Function to return the IDs from the ground truth. The default
% identifier assumes that the truth is identified with PlatformID. In
% drivingScenario, truth is identified with an ActorID.
truthIdFcn = @(x)[x.ActorID];

% Create metrics object.
tem = trackErrorMetrics(...
 'ErrorFunctionFormat','custom',...
 'EstimationErrorLabels',{'PositionError','VelocityError','DimensionsError','YawError'},...
 'EstimationErrorFcn',errorFcn,...
 'TruthIdentifierFcn',truthIdFcn);

tam = trackAssignmentMetrics(...
 'DistanceFunctionFormat','custom',...
 'AssignmentDistanceFcn',distFcn,...
 'DivergenceDistanceFcn',distFcn,...
 'TruthIdentifierFcn',truthIdFcn,...
 'AssignmentThreshold',30,...
 'DivergenceThreshold',35);

% Create ospa metric object.
tom = trackOSPAMetric(...
 'Distance','custom',...
 'DistanceFcn',distFcn,...
 'TruthIdentifierFcn',truthIdFcn);

Point Object Tracker

The multiObjectTracker System object™ assumes one detection per object per sensor and uses a
global nearest neighbor approach to associate detections to tracks. It assumes that every object can
be detected at most once by a sensor in a scan. In this case, the simulated radar sensors have a high
enough resolution to generate multiple detections per object. If these detections are not clustered,
the tracker generates multiple tracks per object. Clustering returns one detection per cluster, at the
cost of having a larger uncertainty covariance and losing information about the true object
dimensions. Clustering also makes it hard to distinguish between two objects when they are close to
each other, for example, when one vehicle passes another vehicle.

trackerRunTimes = zeros(0,3);
ospaMetric = zeros(0,3);

% Create a multiObjectTracker
tracker = multiObjectTracker(...
 'FilterInitializationFcn', @helperInitPointFilter, ...
 'AssignmentThreshold', 30, ...
 'ConfirmationThreshold', [4 5], ...
 'DeletionThreshold', 3);

8 Featured Examples

8-330

% Reset the random number generator for repeatable results
seed = 2018;
S = rng(seed);
timeStep = 1;

% For multiObjectTracker, the radar reports in Ego Cartesian frame and does
% not report velocity. This allows us to cluster detections from multiple
% sensors.
for i = 1:6
 sensors{i}.HasRangeRate = false;
 sensors{i}.DetectionCoordinates = 'Body';
end

Run the scenario.

while advance(scenario) && ishghandle(display.Figure)
 % Get the scenario time
 time = scenario.SimulationTime;

 % Collect detections from the ego vehicle sensors
 [detections,isValidTime] = helperDetect(sensors, egoVehicle, time);

 % Update the tracker if there are new detections
 if any(isValidTime)
 % Detections must be clustered first for the point tracker
 detectionClusters = helperClusterRadarDetections(detections);

 % Update the tracker
 tic
 % confirmedTracks are in scenario coordinates
 confirmedTracks = updateTracks(tracker, detectionClusters, time);
 t = toc;

 % Update the metrics
 % a. Obtain ground truth
 groundTruth = scenario.Actors(2:end); % All except Ego

 % b. Update assignment metrics
 tam(confirmedTracks,groundTruth);
 [trackIDs,truthIDs] = currentAssignment(tam);

 % c. Update error metrics
 tem(confirmedTracks,trackIDs,groundTruth,truthIDs);

 % d. Update ospa metric
 ospaMetric(timeStep,1) = tom(confirmedTracks, groundTruth);

 % Update bird's-eye-plot
 % Convert tracks to ego coordinates for display
 confirmedTracksEgo = helperConvertToEgoCoordinates(egoVehicle, confirmedTracks);
 display(egoVehicle, sensors, detections, confirmedTracksEgo, detectionClusters);
 drawnow;

 % Record tracker run times
 trackerRunTimes(timeStep,1) = t;
 timeStep = timeStep + 1;

 % Capture frames for animation

 Extended Object Tracking of Highway Vehicles with Radar and Camera

8-331

 gifWriter();
 end
end

% Capture the cumulative track metrics. The error metrics show the averaged
% value of the error over the simulation.
assignmentMetricsMOT = tam.trackMetricsTable;
errorMetricsMOT = tem.cumulativeTruthMetrics;

% Write GIF if requested
writeAnimation(gifWriter,'multiObjectTracking');

These results show that, with clustering, the tracker can keep track of the objects in the scene.
However, it also shows that the track associated with the overtaking vehicle (yellow) moves from the
front of the vehicle at the beginning of the scenario to the back of the vehicle at the end. At the
beginning of the scenario, the overtaking vehicle is behind the ego vehicle (blue), so radar and vision
detections are made from its front. As the overtaking vehicle passes the ego vehicle, radar detections
are made from the side of the overtaking vehicle and then from its back, and the track moves to the
back of the vehicle.

You can also see that the clustering is not perfect. When the passing vehicle passes the vehicle that is
behind the ego vehicle (purple), both tracks are slightly shifted to the left due to the imperfect
clustering. A redundant track is created on the track initially due to multiple clusters created when
part of the side edge is missed. Also, a redundant track appears on the passing vehicle during the end
because the distances between its detections increase.

GGIW-PHD Extended Object Tracker

In this section, you use a GGIW-PHD tracker (trackerPHD with ggiwphd) to track objects. Unlike
multiObjectTracker, which uses one filter per track, the GGIW-PHD is a multi-target filter which

8 Featured Examples

8-332

describes the probability hypothesis density (PHD) of the scenario. To model the extended target,
GGIW-PHD uses the following distributions:

Gamma: Positive value to describe expected number of detections.

Gaussian: State vector to describe target's kinematic state.

Inverse-Wishart: Positive-definite matrix to describe the elliptical extent.

The model assumes that each distribution is independent of each other. Thus, the probability
hypothesis density (PHD) in GGIW-PHD filter is described by a weighted sum of the probability
density functions of several GGIW components.

A PHD tracker requires calculating the detectability of each component in the density. The calculation
of detectability requires configurations of each sensor used with the tracker. You define these
configurations for trackerPHD using the trackingSensorConfiguration class. Review the
helperCreateSensorConfigurations function to see how sensor properties can be utilized to
define the sensor configurations for the tracker.

% Set up sensor configurations
%
sensorConfigurations = helperCreateSensorConfigurations(sensors,egoVehicle);

% The transform function and filter initialization functions are state and
% filter dependent. Therefore, they are not set in the helper function.
for i = 1:numel(sensorConfigurations)
 % You can use a different technique to initialize a filter for each
 % sensor by using a different function for each configuration.
 sensorConfigurations{i}.FilterInitializationFcn = @helperInitGGIWFilter;

 % Tracks are defined in constant turn-rate state-space in the scenario
 % coordinates. The MeasurementFcn for constant turn-rate model can be
 % used as the transform function.
 sensorConfigurations{i}.SensorTransformFcn = @ctmeas;
end

Define the tracker.

In contrast to a point object tracker, which usually takes into account one partition (cluster) of
detections, the trackerPHD creates multiple possible partitions of a set of detections and evaluates it
against the current components in the PHD filter. The 3 and 5 in the function below defines the lower
and upper Mahalanobis distance between detections. This is equivalent to defining that each cluster
of detection must be a minimum of 3 resolutions apart and maximum of 5 resolutions apart from each
other. The helper function wraps around partitionDetections and doesn't use range-rate
measurements for partitioning detections from side radars.

partFcn = @(x)helperPartitioningFcn(x,3,5);

tracker = trackerPHD('SensorConfigurations', sensorConfigurations,...
 'PartitioningFcn',partFcn,...
 'AssignmentThreshold',450,...% Minimum negative log-likelihood of a detection cell (multiple detections per cell) to add birth components.
 'ExtractionThreshold',0.75,...% Weight threshold of a filter component to be declared a track
 'ConfirmationThreshold',0.85,...% Weight threshold of a filter component to be declared a confirmed track
 'MergingThreshold',50,...% Threshold to merge components
 'HasSensorConfigurationsInput',true... % Tracking is performed in scenario frame and hence sensor configurations change with time
);

 Extended Object Tracking of Highway Vehicles with Radar and Camera

8-333

Run the simulation.

% Release and restart all objects.
restart(scenario);
release(tem);
release(tam);
% No penality for trackerPHD
tam.AssignmentThreshold = tam.AssignmentThreshold - 2;
release(display);
display.PlotClusteredDetection = false;
gifWriter.pFrames = {};
for i = 1:numel(sensors)
 release(sensors{i});
 if i <= 6
 sensors{i}.HasRangeRate = true;
 sensors{i}.DetectionCoordinates = 'Sensor spherical';
 end
end

% Restore random seed.
rng(seed)

% First time step
timeStep = 1;
% Run the scenario
while advance(scenario) && ishghandle(display.Figure)
 % Get the scenario time
 time = scenario.SimulationTime;

 % Get the poses of the other vehicles in ego vehicle coordinates
 ta = targetPoses(egoVehicle);

 % Collect detections from the ego vehicle sensors
 [detections, isValidTime, configurations] = helperDetect(sensors, egoVehicle, time, sensorConfigurations);

 % Update the tracker with all the detections. Note that there is no
 % need to cluster the detections before passing them to the tracker.
 % Also, the sensor configurations are passed as an input to the
 % tracker.
 tic
 % confirmedTracks are in scenario coordinates
 confirmedTracks = tracker(detections,configurations,time);
 t = toc;

 % Update the metrics
 % a. Obtain ground truth
 groundTruth = scenario.Actors(2:end); % All except Ego

 % b. Update assignment metrics
 tam(confirmedTracks,groundTruth);
 [trackIDs,truthIDs] = currentAssignment(tam);

 % c. Update error metrics
 tem(confirmedTracks,trackIDs,groundTruth,truthIDs);

 % d. Update ospa metric
 ospaMetric(timeStep,2) = tom(confirmedTracks, groundTruth);

8 Featured Examples

8-334

 % Update the bird's-eye plot
 % Convert tracks to ego coordinates for display
 confirmedTracksEgo = helperConvertToEgoCoordinates(egoVehicle, confirmedTracks);
 display(egoVehicle, sensors, detections, confirmedTracksEgo);
 drawnow;

 % Record tracker run times
 trackerRunTimes(timeStep,2) = t;
 timeStep = timeStep + 1;

 % Capture frames for GIF
 gifWriter();
end

% Capture the truth and track metrics tables
assignmentMetricsGGIWPHD = tam.trackMetricsTable;
errorMetricsGGIWPHD = tem.cumulativeTruthMetrics;

% Write GIF if requested
writeAnimation(gifWriter,'ggiwphdTracking');

These results show that the GGIW-PHD can handle multiple detections per object per sensor, without
the need to cluster these detections first. Moreover, by using the multiple detections, the tracker
estimates the position, velocity, dimensions and orientation of each object. The dashed elliptical shape
in the figure demonstrates the expected extent of the target. The filter initialization function specifies
multiple possible sizes and their relative weights using multiple components. The list can be
expanded to add more sizes with added computational complexity. In contrast, you can also initialize
one component per detection with a higher uncertainty in dimensions. This will enable the tracker to
estimate the dimensions of the objects automatically. That said, the accuracy of the estimate will
depend on the observability of the target dimensions and is susceptible to shrinkage and enlargement
of track dimensions as the targets move around the ego vehicle.

The GGIW-PHD filter assumes that detections are distributed around the target's elliptical center.
Therefore, the tracks tend to follow observable portions of the vehicle. Such observable portions
include rear face of the vehicle that is directly ahead of the ego vehicle or the front face of the vehicle
directly behind the ego vehicle for example, the rear and front face of the vehicle directly ahead and
behind of the ego vehicle respectively. In contrast, the length and width of the passing vehicle was
fully observed during the simulation. Therefore, its estimated ellipse has a better overlap with the
actual shape.

 Extended Object Tracking of Highway Vehicles with Radar and Camera

8-335

GM-PHD Rectangular Object Tracker

In this section, you use a GM-PHD tracker (trackerPHD with gmphd) and a rectangular target model
(initctrectgmphd (Sensor Fusion and Tracking Toolbox)) to track objects. Unlike ggiwphd, which
uses an elliptical shape to track extent, gmphd allows you to use a Gaussian distribution to define the
shape of your choice. The rectangular target model is defined by motion models, ctrect (Sensor
Fusion and Tracking Toolbox) and ctrectjac (Sensor Fusion and Tracking Toolbox) and
measurement models, ctrectmeas (Sensor Fusion and Tracking Toolbox) and ctrectmeasjac
(Sensor Fusion and Tracking Toolbox).

The sensor configurations defined for trackerPHD earlier remain the same, except for definition of
SensorTransformFcn and FilterInitializationFcn.

for i = 1:numel(sensorConfigurations)
 sensorConfigurations{i}.FilterInitializationFcn = @helperInitRectangularFilter; % Initialize a rectangular target gmphd
 sensorConfigurations{i}.SensorTransformFcn = @ctrectcorners; % Use corners to calculate detection probability
end

% Define tracker using new sensor configurations
tracker = trackerPHD('SensorConfigurations', sensorConfigurations,...
 'PartitioningFcn',partFcn,...
 'AssignmentThreshold',600,...% Minimum negative log-likelihood of a detection cell to add birth components
 'ExtractionThreshold',0.85,...% Weight threshold of a filter component to be declared a track
 'ConfirmationThreshold',0.95,...% Weight threshold of a filter component to be declared a confirmed track
 'MergingThreshold',50,...% Threshold to merge components
 'HasSensorConfigurationsInput',true... % Tracking is performed in scenario frame and hence sensor configurations change with time
);

% Release and restart all objects.
restart(scenario);

8 Featured Examples

8-336

for i = 1:numel(sensors)
 release(sensors{i});
end
release(tem);
release(tam);
release(display);
display.PlotClusteredDetection = false;
gifWriter.pFrames = {};

% Restore random seed.
rng(seed)

% First time step
timeStep = 1;

% Run the scenario
while advance(scenario) && ishghandle(display.Figure)
 % Get the scenario time
 time = scenario.SimulationTime;

 % Get the poses of the other vehicles in ego vehicle coordinates
 ta = targetPoses(egoVehicle);

 % Collect detections from the ego vehicle sensors
 [detections, isValidTime, configurations] = helperDetect(sensors, egoVehicle, time, sensorConfigurations);

 % Update the tracker with all the detections. Note that there is no
 % need to cluster the detections before passing them to the tracker.
 % Also, the sensor configurations are passed as an input to the
 % tracker.
 tic
 % confirmedTracks are in scenario coordinates
 confirmedTracks = tracker(detections,configurations,time);
 t = toc;

 % Update the metrics
 % a. Obtain ground truth
 groundTruth = scenario.Actors(2:end); % All except Ego

 % b. Update assignment metrics
 tam(confirmedTracks,groundTruth);
 [trackIDs,truthIDs] = currentAssignment(tam);

 % c. Update error metrics
 tem(confirmedTracks,trackIDs,groundTruth,truthIDs);

 % d. Update ospa metric
 ospaMetric(timeStep,3) = tom(confirmedTracks, groundTruth);

 % Update the bird's-eye plot
 % Convert tracks to ego coordinates for display
 confirmedTracksEgo = helperConvertToEgoCoordinates(egoVehicle, confirmedTracks);
 display(egoVehicle, sensors, detections, confirmedTracksEgo);
 drawnow;

 % Record tracker run times
 trackerRunTimes(timeStep,3) = t;
 timeStep = timeStep + 1;

 Extended Object Tracking of Highway Vehicles with Radar and Camera

8-337

 % Capture frames for GIF
 gifWriter();
end

% Capture the truth and track metrics tables
assignmentMetricsGMPHD = tam.trackMetricsTable;
errorMetricsGMPHD = tem.cumulativeTruthMetrics;

% Write GIF if requested
writeAnimation(gifWriter,'gmphdTracking');

% Return the random number generator to its previous state
rng(S)
rmpath(exPath)

These results show that the GM-PHD can also handle multiple detections per object per sensor.
Similar to GGIW-PHD, it also estimates the size and orientation of the object. The filter initialization
function uses a similar approach as the GGIW-PHD tracker and initializes multiple components for
different sizes.

You can notice that the estimated tracks, which are modeled as rectangles, have a good fit with the
simulated ground truth object, depicted by the solid color patches. In particular, the tracks are able to
correctly track the shape of the vehicle along with the kinematic center.

Evaluate Tracking Performance

Evaluate the tracking performance of each tracker using quantitative metrics such as the estimation
error in position, velocity, dimensions and orientation. Also evaluate the track assignments using
metrics such as redundant and false tracks.

8 Featured Examples

8-338

Assignment metrics

helperPlotAssignmentMetrics(assignmentMetricsMOT, assignmentMetricsGGIWPHD, assignmentMetricsGMPHD);

The assignment metrics illustrate that redundant and false tracks were initialized and confirmed by
the point object tracker. These tracks result due to imperfect clustering, where detections belonging
to the same target were clustered into more than one clustered detection. In contrast, the GGIW-PHD
tracker and the GM-PHD tracker maintain tracks on all four targets and do not create any false or
redundant tracks. These metrics show that both extended object trackers correctly partition the
detections and associate them with the correct tracks.

Error metrics

helperPlotErrorMetrics(errorMetricsMOT, errorMetricsGGIWPHD, errorMetricsGMPHD);

 Extended Object Tracking of Highway Vehicles with Radar and Camera

8-339

The plot shows the average estimation errors for the three types of trackers used in this example.
Because the point object tracker does not estimate the yaw and dimensions of the objects, they are
now shown in the plots. The point object tracker is able to estimate the kinematics of the objects with
a reasonable accuracy. The position error of the vehicle behind the ego vehicle is higher because it
was dragged to the left when the passing vehicle overtakes this vehicle. This is also an artifact of
imperfect clustering when the objects are close to each other.

As described earlier, the GGIW-PHD tracker assumes that measurements are distributed around the
object's extent, which results in center of the tracks on observable parts of the vehicle. This can also
be seen in the position error metrics for TruthID 2 and 4. The tracker is able to estimate the
dimensions of the object with about 0.3 meters accuracy for the vehicles ahead and behind the ego
vehicle. Because of higher certainty defined for the vehicles' dimensions in the
helperInitGGIWFilter function, the tracker does not collapse the length of these vehicles, even
when the best-fit ellipse has a very low length. As the passing vehicle (TruthID 3) was observed on all
dimensions, its dimensions are measured more accurately than the other vehicles. However, as the
passing vehicle maneuvers with respect to the ego vehicle, the error in yaw estimate is higher.

The GM-PHD in this example uses a rectangular shaped target model and uses received
measurements to evaluate expected measurements on the boundary of the target. This model helps
the tracker estimate the shape and orientation more accurately. However, the process of evaluating
expected measurements on the edges of a rectangular target is computationally more expensive.

OSPA Metric

8 Featured Examples

8-340

As described earlier, the OSPA metric aims to describe the performance of a tracking algorithm using
a single score. Notice that the OSPA sufficiently captures the performance of the tracking algorithm
which decreases from GM-PHD to GGIW-PHD to the point-target tracker, as described using the error
and assignment metrics.

ospaFig = figure;
plot(ospaMetric,'LineWidth',2);
legend('Point Target Tracker','GGIW-PHD Tracker','Rectangular GM-PHD Tracker');
xlabel('Time step (k)');
ylabel('OSPA');

Compare Time Performance

Previously, you learned about different techniques, the assumptions they make about target models,
and the resulting tracking performance. Now compare the run-times of the trackers. Notice that
GGIW-PHD filter offers significant computational advantages over the GM-PHD, at the cost of
decreased tracking performance.

runTimeFig = figure;
h = plot(trackerRunTimes(3:end,:)./trackerRunTimes(3:end,1),'LineWidth',2);
legend('Point Target Tracker','GGIW-PHD Tracker','Rectangular GM-PHD Tracker');
xlabel('Time step (k)');
ylabel('$$\frac{t_{tracker}}{t_{multiObjectTracker}}$$','interpreter','latex','fontsize',14);
ylim([0 max([h.YData]) + 1]);

 Extended Object Tracking of Highway Vehicles with Radar and Camera

8-341

Summary

This example showed how to track objects that return multiple detections in a single sensor scan
using different approaches. These approaches can be used to track objects with high-resolution
sensors, such as a radar or laser sensor.

References

[1] Granström, Karl, Marcus Baum, and Stephan Reuter. "Extended Object Tracking: Introduction,
Overview and Applications." Journal of Advances in Information Fusion. Vol. 12, No. 2, December
2017.

[2] Granström, Karl, Christian Lundquist, and Umut Orguner. "Tracking rectangular and elliptical
extended targets using laser measurements." 14th International Conference on Information Fusion.
IEEE, 2011.

[3] Granström, Karl. "Extended target tracking using PHD filters." 2012

Supporting Functions

helperExtendedTargetError

Function to define the error between tracked target and the associated ground truth.

function [posError,velError,dimError,yawError] = helperExtendedTargetError(track,truth)
% Errors as a function of target track and associated truth.

8 Featured Examples

8-342

% Get true information from the ground truth.
truePos = truth.Position(1:2)';
% Position is at the rear axle for all vehicles. We would like to compute
% the error from the center of the vehicle
rot = [cosd(truth.Yaw) -sind(truth.Yaw);sind(truth.Yaw) cosd(truth.Yaw)];
truePos = truePos + rot*[truth.Wheelbase/2;0];

trueVel = truth.Velocity(1:2);
trueYaw = truth.Yaw(:);
trueDims = [truth.Length;truth.Width];

% Get estimated value from track.
% GGIW-PHD tracker outputs a struct field 'Extent' and 'SourceIndex'
% GM-PHD tracker outputs struct with but not 'Extent'
% multiObjectTracker outputs objectTrack

if isa(track,'objectTrack')
 estPos = track.State([1 3]);
 estVel = track.State([2 4]);
 % No yaw or dimension information in multiObjectTracker.
 estYaw = nan;
 estDims = [nan;nan];
elseif isfield(track,'Extent') % trackerPHD with GGIWPHD
 estPos = track.State([1 3]);
 estVel = track.State([2 4]);
 estYaw = atan2d(estVel(2),estVel(1));
 d = eig(track.Extent);
 dims = 2*sqrt(d);
 estDims = [max(dims);min(dims)];
else % trackerPHD with GMPHD
 estPos = track.State(1:2);
 estYaw = track.State(4);
 estVel = [track.State(3)*cosd(estYaw);track.State(3)*sind(estYaw)];
 estDims = track.State(6:7);
end

% Compute 2-norm of error for each attribute.
posError = norm(truePos(:) - estPos(:));
velError = norm(trueVel(:) - estVel(:));
dimError = norm(trueDims(:) - estDims(:));
yawError = norm(trueYaw(:) - estYaw(:));
end

helperExtendedTargetDistance

Function to define the distance between a track and a ground truth.

function dist = helperExtendedTargetDistance(track,truth)
% This function computes the distance between track and a truth.

% Copyright 2019-2020 The MathWorks, Inc.

% Errors in each aspect
[posError,velError,dimError,yawError] = helperExtendedTargetError(track,truth);

 Extended Object Tracking of Highway Vehicles with Radar and Camera

8-343

% For multiObjectTracker, add a constant penalty for not estimating yaw
% and dimensions
if isnan(dimError)
 dimError = 1;
end
if isnan(yawError)
 yawError = 1;
end

% Distance is the sum of errors
dist = posError + velError + dimError + yawError;

end

helperInitGGIWFilter

Function to create a ggiwphd filter from a detection cell.

function phd = helperInitGGIWFilter(varargin)
% helperInitGGIWFilter A function to initialize the GGIW-PHD filter for the
% Extended Object Tracking example

% Create a ggiwphd filter using 5 states and the constant turn-rate models.
phd = ggiwphd(zeros(5,1),eye(5),...
 'StateTransitionFcn',@constturn,...
 'StateTransitionJacobianFcn',@constturnjac,...
 'MeasurementFcn',@ctmeas,...
 'MeasurementJacobianFcn',@ctmeasjac,...
 'HasAdditiveMeasurementNoise',true,...
 'HasAdditiveProcessNoise',false,...
 'ProcessNoise',diag([1 1 3]),...
 'MaxNumComponents',1000,...
 'ExtentRotationFcn',@extentRotFcn,...
 'PositionIndex',[1 3]);

% If the function is called with no inputs i.e. the predictive portion of
% the birth density, no components are added to the mixture.
if nargin == 0
 % Nullify to return 0 components.
 nullify(phd);
else
 % When called with detections input, add two components to the filter,
 % one for car and one for truck, More components can be added based on
 % prior knowledge of the scenario, example, pedestrian or motorcycle.
 % This is a "multi-model" type approach. Another approach can be to add
 % only 1 component with a higher covariance in the dimensions. The
 % later is computationally less demanding, but has a tendency to track
 % observable dimensions of the object. For example, if only the back is
 % visible, the measurement noise may cause the length of the object to
 % shrink.

 % Detections
 detections = varargin{1};

 % Enable elevation measurements to create a 3-D filter using

8 Featured Examples

8-344

 % initctggiwphd
 if detections{1}.SensorIndex < 7
 for i = 1:numel(detections)
 detections{i}.Measurement = [detections{i}.Measurement(1);0;detections{i}.Measurement(2:end)];
 detections{i}.MeasurementNoise = blkdiag(detections{i}.MeasurementNoise(1,1),0.4,detections{i}.MeasurementNoise(2:end,2:end));
 detections{i}.MeasurementParameters(1).HasElevation = true;
 end
 end
 phd3d = initctggiwphd(detections);

 % Set states of the 2-D filter using 3-D filter
 phd.States = phd3d.States(1:5);
 phd.StateCovariances = phd3d.StateCovariances(1:5,1:5);

 phd.DegreesOfFreedom = 1000;
 phd.ScaleMatrices = (1000-4)*diag([4.7/2 1.8/2].^2);

 % Add truck dimensions as second component
 append(phd,phd);
 phd.ScaleMatrices(:,:,2) = (1000-4)*diag([8.1/2 2.45/2].^2);
 phd.GammaForgettingFactors = [1.03 1.03];

 % Relative weights of the components. Can be treated as probability of
 % existence of a car vs a truck on road.
 phd.Weights = [0.7 0.3];
end
end

function R = extentRotFcn(x,dT)
 % Rotation of the extent during prediction.
 w = x(5);
 theta = w*dT;
 R = [cosd(theta) -sind(theta);sind(theta) cosd(theta)];
end

helperInitRectangularFilter

Function to create a gmphd rectangular target filter from a detection cell.

function filter = helperInitRectangularFilter(varargin)
% helperInitRectangularFilter A function to initialize the rectangular
% target PHD filter for the Extended Object Tracking example

% Copyright 2019 The MathWorks, Inc.

if nargin == 0
 % If called with no inputs, simply use the initctrectgmphd function to
 % create a PHD filter with no components.
 filter = initctrectgmphd;
 % Set process noise
 filter.ProcessNoise = diag([1 3]);
else
 % When called with detections input, add two components to the filter,
 % one for car and one for truck, More components can be added based on
 % prior knowledge of the scenario, example, pedestrian or motorcycle.
 % This is a "multi-model" type approach. Another approach can be to add

 Extended Object Tracking of Highway Vehicles with Radar and Camera

8-345

 % only 1 component with a higher covariance in the dimensions. The
 % later is computationally less demanding, but has a tendency to track
 % observable dimensions of the object. For example, if only the back is
 % visible, the measurement noise may cause the length of the object to
 % shrink.

 % Detections
 detections = varargin{1};

 % Create a GM-PHD filter with rectangular model
 filter = initctrectgmphd(detections);

 % Length width of a passenger car
 filter.States(6:7,1) = [4.7;1.8];

 % High certainty in dimensions
 lCov = 1e-4;
 wCov = 1e-4;
 lwCorr = 0.5;
 lwCov = sqrt(lCov*wCov)*lwCorr;
 filter.StateCovariances(6:7,6:7,1) = [lCov lwCov;lwCov wCov];

 % Add one more component by appending the filter with itself.
 append(filter,filter);

 % Set length and width to a truck dimensions
 filter.States(6:7,2) = [8.1;2.45];

 % Relative weights of each component
 filter.Weights = [0.7 0.3];
end

end

See Also
multiObjectTracker | drivingScenario | trackErrorMetrics | trackAssignmentMetrics |
ggiwphd

More About
• “Sensor Fusion Using Synthetic Radar and Vision Data” on page 8-286
• “Track-Level Fusion of Radar and Lidar Data” on page 8-384

8 Featured Examples

8-346

Track-to-Track Fusion for Automotive Safety Applications
This example shows how to fuse tracks from two vehicles in order to provide a more comprehensive
estimate of the environment that can be seen by each vehicle. The example demonstrates the use of a
track-level fuser and the object track data format. In this example, you use the driving scenario and
models from Automated Driving Toolbox™ and the tracking and track fusion models from Sensor
Fusion and Tracking Toolbox™.

Motivation

Automotive safety applications rely on the fusion of data from different sensor systems mounted on
the vehicle. Individual vehicles fuse sensor detections by using either a centralized tracker or by
taking a more decentralized approach and fusing tracks produced by individual sensors. In addition
to intravehicle data fusion, the fusion of data from multiple vehicles provides added benefits, which
include better coverage, situational awareness, and safety. [1] This intervehicle sensor fusion
approach takes advantage of the variety of sensors and provides better coverage to each vehicle,
because it uses data updated by sensors on other vehicles in the area. Governments and vehicle
manufacturers have long recognized the need to share information between vehicles in order to
increase automotive safety. For example, the Dedicated Short-Range Communications (DSRC) Service
was established to provide a communications service for intervehicle information sharing. [2]

While sensor fusion across multiple vehicles is beneficial, most vehicles are required to meet certain
safety requirements even if only internal sensors are available. Therefore, the vehicle is likely to be
equipped with a tracker and/or a track fuser that provide situational awareness at the single vehicle
level. As a result, the assumption made in this example is that vehicles share situational awareness by
broadcasting tracks and performing track-to-track fusion.

This example demonstrates the benefit of fusing tracks from two vehicles to enhance situational
awareness and safety. Note that this example does not simulate the communications systems. Instead,
the example assumes that a communications system provides the bandwidth required to transmit
tracks between the two vehicles.

Track-to-Track Architecture

The following block diagram depicts the main functions in the two vehicles.

Vehicle 1 has two sensors, each providing detections to a local tracker. The tracker uses the
detections from the local sensors to track objects and outputs these local tracks to the vehicle track
fuser. Vehicle 2 has a single sensor, which feeds detections to the local tracker on vehicle 2. The local
tracks from vehicle 2 are the input to the local track fuser on vehicle 2.

The track fuser on each vehicle fuses the local vehicle tracks with the tracks received from the other
vehicle's track fuser. After each update, the track fuser on each vehicle broadcasts its fused tracks,
which feed into the next update of the track fuser on the other vehicle.

 Track-to-Track Fusion for Automotive Safety Applications

8-347

In this example, you use a trackerJPDA (Sensor Fusion and Tracking Toolbox) object to define each
vehicle tracker.

% Create trackers for each vehicle
v1Tracker = trackerJPDA('TrackerIndex',1, 'DeletionThreshold', [4 4]); % Vehicle 1 tracker
v2Tracker = trackerJPDA('TrackerIndex',2, 'DeletionThreshold', [4 4]); % Vehicle 2 tracker
posSelector = [1 0 0 0 0 0; 0 0 1 0 0 0];

Note that in this architecture, the fused tracks from one vehicle are used to update the fused tracks
on the other vehicle. These fused tracks are then broadcast back to the first vehicle. To avoid rumor
propagation, be careful how tracks from another vehicle are used to update the track fuser.

Consider the following rumor propagation example: at some update step, vehicle 1 tracks an object
using its internal sensors. Vehicle 1 then fuses the object track and transmits it to vehicle 2, which
now fuses the track with its own tracks and becomes aware of the object. Up to this point, this is
exactly the goal of track-to-track fusion: to enhance the situational awareness of vehicle 2 with
information from vehicle 1. Since vehicle 2 now knows about the object, it starts broadcasting the
track as well, perhaps for the benefit of another vehicle (not shown in the example).

However, vehicle 1 now receives track information from vehicle 2 about the object that only vehicle 1
actually tracks. So, the track fuser on vehicle 1 has to be aware that the tracks it gets from vehicle 2
about this object do not actually contain any new information updated by an independent source. To
make the distinction between tracks that contain new information and tracks that just repeat
information, you must define vehicle 2 as an external source to the track fuser on vehicle 1. Similarly,
vehicle 1 must be defined as an external source to the track fuser on vehicle 2. Furthermore, you
need to define only tracks that are updated by a track fuser based on information from an internal
source as self-reported. By doing so, the track fuser in each vehicle is able to ignore updates from
tracks that bounce back and forth between the track fusers without any new information in them.

8 Featured Examples

8-348

The local tracker of each vehicle tracks objects relative to the vehicle reference frame, called the ego
frame. The track-to-track fusion is done at the scenario frame, which is the global level frame. The
helper egoToScenario function transforms tracks from ego frame to the scenario frame. Similarly,
the function scenarioToEgo transforms tracks from scenario frame to any of the ego frames. Both
transformations rely on the StateParameters property of the objectTrack (Sensor Fusion and
Tracking Toolbox) objects. Note that when the trackFuser object calculates the distance of a
central track (in the scenario frame) to a local track (in any frame), it uses the StateParameters of
the local track to perform the coordinate transformation.

To achieve the above trackFuser definitions, define the following sources as a
fuserSourceConfiguration (Sensor Fusion and Tracking Toolbox) object.

% Define sources for each vehicle
v1TrackerConfiguration = fuserSourceConfiguration('SourceIndex',1,'IsInternalSource',true, ... % v1Tracker is internal to v1Fuser
 "CentralToLocalTransformFcn", @scenarioToEgo, 'LocalToCentralTransformFcn', @egoToScenario); % Coordinate transformation
v2FuserConfiguration = fuserSourceConfiguration('SourceIndex',4,'IsInternalSource',false); % v2Fuser is external to v2Fuser
v1Sources = {v1TrackerConfiguration; v2FuserConfiguration};
v2TrackerConfiguration = fuserSourceConfiguration('SourceIndex',2,'IsInternalSource',true, ... % v2Tracker is internal to v2Fuser
 "CentralToLocalTransformFcn", @scenarioToEgo, 'LocalToCentralTransformFcn', @egoToScenario); % Coordinate transformation
v1FuserConfiguration = fuserSourceConfiguration('SourceIndex',3,'IsInternalSource',false); % v1Fuser is external to v2Fuser
v2Sources = {v2TrackerConfiguration; v1FuserConfiguration};

You can now define each vehicle track fuser as a trackFuser (Sensor Fusion and Tracking Toolbox)
object.

stateParams = struct('Frame','Rectangular','Position',[0 0 0],'Velocity',[0 0 0]);
v1Fuser = trackFuser('FuserIndex',3,...
 'MaxNumSources',2,'SourceConfigurations',v1Sources,...
 'StateFusion','Intersection','DeletionThreshold',[3 3],...
 'StateParameters',stateParams);
v2Fuser = trackFuser('FuserIndex',4,...
 'MaxNumSources',2,'SourceConfigurations',v2Sources,'StateFusion',...
 'Intersection','DeletionThreshold',[3 3],...
 'StateParameters',stateParams);

% Initialize the following variables
fusedTracks1 = objectTrack.empty(0,1);
fusedTracks2 = objectTrack.empty(0,1);
wasFuser1Updated = false;
wasFuser2Updated = false;

Scenario Definition

The following scenario shows two vehicles driving down a street. Vehicle 1 is in the lead, equipped
with two forward-looking sensors: a short-range radar and a vision sensor. Vehicle 2, driving 10
meters behind vehicle 1, is equipped with a long-range radar. The right side of the street contains
parked vehicles. A pedestrian stands between the vehicles. This pedestrian is shown as a dot at about
X = 60 meters.

Due to the short distance between vehicle 2 and vehicle 1, most of the vehicle 2 radar sensor
coverage is occluded by vehicle 1. As a result, most of the tracks that the track fuser on vehicle 2
maintains are first initialized by tracks broadcast from vehicle 1.

% Create the drivingScenario object and the two vehicles
[scenario, vehicle1, vehicle2] = createDrivingScenario;

% Create all the sensors

 Track-to-Track Fusion for Automotive Safety Applications

8-349

[sensors, numSensors, attachedVehicle] = createSensors(scenario);

% Create display
[f,plotters] = createT2TDisplay(scenario, sensors, attachedVehicle);

The following chase plot is seen from the point of view of the second vehicle. An arrow indicates the
position of the pedestrian that is almost entirely occluded by the parked vehicles and the first vehicle.

% Define each vehicle as a vehicle, sensors, a tracker, and plotters
v1 = struct('Actor', {vehicle1}, 'Sensors', {sensors(attachedVehicle==1)}, 'Tracker', {v1Tracker}, 'DetPlotter', {plotters.veh1DetPlotter}, 'TrkPlotter', {plotters.veh1TrkPlotter});
v2 = struct('Actor', {vehicle2}, 'Sensors', {sensors(attachedVehicle==2)}, 'Tracker', {v2Tracker}, 'DetPlotter', {plotters.veh2DetPlotter}, 'TrkPlotter', {plotters.veh2TrkPlotter});

Simulation and Results

The following code runs the simulation.

running = true;

% For repeatable results, set the random number seed
s = rng;
rng(2019)
snaptimes = [0.5, 2.6, 4.4, 6.3, inf];
snaps = cell(numel(snaptimes,1));
i = 1;
f.Visible = 'on';
while running && ishghandle(f)
 time = scenario.SimulationTime;

8 Featured Examples

8-350

 % Detect and track at the vehicle level
 [tracks1,wasTracker1Updated] = detectAndTrack(v1,time,posSelector);
 [tracks2,wasTracker2Updated] = detectAndTrack(v2,time,posSelector);

 % Keep the tracks from the previous fuser update
 oldFusedTracks1 = fusedTracks1;
 oldFusedTracks2 = fusedTracks2;

 % Update the fusers
 if wasTracker1Updated || wasFuser2Updated
 tracksToFuse1 = [tracks1;oldFusedTracks2];
 if isLocked(v1Fuser) || ~isempty(tracksToFuse1)
 [fusedTracks1,~,~,info1] = v1Fuser(tracksToFuse1,time);
 wasFuser1Updated = true;
 pos = getTrackPositions(fusedTracks1,posSelector);
 plotTrack(plotters.veh1FusePlotter,pos);
 else
 wasFuser1Updated = false;
 fusedTracks1 = objectTrack.empty(0,1);
 end
 else
 wasFuser1Updated = false;
 fusedTracks1 = objectTrack.empty(0,1);
 end
 if wasTracker2Updated || wasFuser1Updated
 tracksToFuse2 = [tracks2;oldFusedTracks1];
 if isLocked(v2Fuser) || ~isempty(tracksToFuse2)
 [fusedTracks2,~,~,info2] = v2Fuser(tracksToFuse2,time);
 wasFuser2Updated = true;
 pos = getTrackPositions(fusedTracks2,posSelector);
 ids = string([fusedTracks2.TrackID]');
 plotTrack(plotters.veh2FusePlotter,pos,ids);
 else
 wasFuser2Updated = false;
 fusedTracks2 = objectTrack.empty(0,1);
 end
 else
 wasFuser2Updated = false;
 fusedTracks2 = objectTrack.empty(0,1);
 end

 % Update the display
 updateT2TDisplay(plotters, scenario, sensors, attachedVehicle)

 % Advance the scenario one time step and exit the loop if the scenario is complete
 running = advance(scenario);

 % Snap a shot at required times
 if time >= snaptimes(i)
 snaps{i} = getframe(f);
 i = i + 1;
 end
end

 Track-to-Track Fusion for Automotive Safety Applications

8-351

The figure shows the scene and tracking results at the end of the scenario.

Tracking at the Beginning of the Simulation

When the simulation begins, vehicle 1 detects the vehicles parked on the right side of the street, then
the tracks associated with the parked vehicles are confirmed. At this time, the only object detected
and tracked by vehicle 2 tracker is vehicle 1 immediately in front of it. Once the vehicle 1 track fuser
confirms the tracks, it broadcasts them, and the vehicle 2 track fuser fuses them. As a result, vehicle
2 becomes aware of the parked vehicles before it can detect them on its own.

showsnap(snaps, 1)

8 Featured Examples

8-352

Tracking the Pedestrian at the Side of the Street

As the simulation continues, vehicle 2 is able to detect and track the vehicles parked at the side as
well, and fuses them with the tracks coming from vehicle 1. Vehicle 2 is able to detect and track the
pedestrian about 4 seconds into the simulation, and vehicle 2 fuses the track associated with the
pedestrian around 4.4 seconds into the simulation (see snapshot 2). However, it takes vehicle 2 about
two seconds before it can detect and track the pedestrian by its own sensors (see snapshot 3). These
two seconds could make a huge impact on the safety of the pedestrian if that pedestrian started
crossing the street.

showsnap(snaps, 2)

 Track-to-Track Fusion for Automotive Safety Applications

8-353

showsnap(snaps, 3)

Avoiding Rumor Propagation

Finally, note how as the vehicles pass the objects, and these objects go out of their field of view, the
fused tracks associated with these objects are dropped by both trackers (see snapshot 4). Dropping
the tracks demonstrates that the fused tracks broadcast back and forth between the two vehicles are
not used to propagate rumors.

showsnap(snaps, 4)

8 Featured Examples

8-354

% Restart the driving scenario to return the actors to their initial positions.
restart(scenario);

% Release all the sensor objects so they can be used again.
for sensorIndex = 1:numSensors
 release(sensors{sensorIndex});
end

% Return the random seed to its previous value
rng(s)

Summary

In this example, you saw how track-to-track fusion can enhance the situational awareness and
increase the safety in automotive applications. You saw how to set up a trackFuser to perform
track-to-track fusion and how to define sources as either internal or external by using the
fuserSourceConfiguration object. By doing so, you avoid rumor propagation and keep only the
fused tracks that are really observed by each vehicle to be maintained.

References

[1] Bharanidhar Duraisamy, Tilo Schwartz, and Christian Wohler, "Track level fusion algorithms for
automotive safety applications", 2013 International Conference on Signal Processing, Image
Processing & Pattern Recognition, IEEE, 2013.

[2] Federal Communications Commission, "Dedicated Short Range Communications Service", https://
www.fcc.gov/wireless/bureau-divisions/mobility-division/dedicated-short-range-communications-dsrc-
service.

 Track-to-Track Fusion for Automotive Safety Applications

8-355

https://www.fcc.gov/wireless/bureau-divisions/mobility-division/dedicated-short-range-communications-dsrc-service
https://www.fcc.gov/wireless/bureau-divisions/mobility-division/dedicated-short-range-communications-dsrc-service
https://www.fcc.gov/wireless/bureau-divisions/mobility-division/dedicated-short-range-communications-dsrc-service

Supporting Functions

createDrivingScenario

function [scenario, egoVehicle, secondVehicle] = createDrivingScenario
% createDrivingScenario Returns the drivingScenario defined in the Designer

% Construct a drivingScenario object.
scenario = drivingScenario('SampleTime', 0.05);

% Add all road segments
roadCenters = [50.8 0.5 0; 253.4 1.5 0];
roadWidth = 12;
road(scenario, roadCenters, roadWidth);

roadCenters = [100.7 -100.6 0; 100.7 103.7 0];
road(scenario, roadCenters);

roadCenters = [201.1 -99.2 0; 199.7 99.5 0];
road(scenario, roadCenters);

% Add the ego vehicle
egoVehicle = vehicle(scenario, 'ClassID', 1, 'Position', [65.1 -0.9 0]);
waypoints = [71 -0.5 0; 148.7 -0.5 0];
speed = 12;
trajectory(egoVehicle, waypoints, speed);

% Add the second vehicle
secondVehicle = vehicle(scenario, 'ClassID', 1, 'Position', [55.1 -0.9 0]);
waypoints = [61 -0.5 0; 138.7 -0.5 0];
speed = 12;
trajectory(secondVehicle, waypoints, speed);

% Add the parked cars
vehicle(scenario, 'ClassID', 1, 'Position', [111.0 -3.6 0]);
vehicle(scenario, 'ClassID', 1, 'Position', [140.6 -3.6 0]);
vehicle(scenario, 'ClassID', 1, 'Position', [182.6 -3.6 0]);
vehicle(scenario, 'ClassID', 1, 'Position', [211.3 -4.1 0]);

% Add pedestrian
actor(scenario, 'ClassID', 4, 'Length', 0.5, 'Width', 0.5, ...
 'Height', 1.7, 'Position', [130.3 -2.7 0], 'RCSPattern', [-8 -8;-8 -8]);

% Add parked truck
vehicle(scenario, 'ClassID', 2, 'Length', 8.2, 'Width', 2.5, ...
 'Height', 3.5, 'Position', [117.5 -3.5 0]);
end

createSensors

function [sensors, numSensors, attachedVehicle] = createSensors(scenario)
% createSensors Returns all sensor objects to generate detections
% Units used in createSensors and createDrivingScenario
% Distance/Position - meters
% Speed - meters/second
% Angles - degrees
% RCS Pattern - dBsm

8 Featured Examples

8-356

% Assign into each sensor the physical and radar profiles for all actors
profiles = actorProfiles(scenario);
sensors{1} = radarDetectionGenerator('SensorIndex', 1, ...
 'SensorLocation', [3.7 0], 'MaxRange', 50, 'FieldOfView', [60 5], ...
 'ActorProfiles', profiles, 'HasOcclusion', true, 'HasFalseAlarms', false);
sensors{2} = visionDetectionGenerator('SensorIndex', 2, ...
 'MaxRange', 100, 'SensorLocation', [1.9 0], 'DetectorOutput', 'Objects only', ...
 'ActorProfiles', profiles);
sensors{3} = radarDetectionGenerator('SensorIndex', 3, ...
 'SensorLocation', [3.7 0], 'MaxRange', 120, 'FieldOfView', [30 5], ...
 'ActorProfiles', profiles, 'HasOcclusion', true, 'HasFalseAlarms', false);
attachedVehicle = [1;1;2];
numSensors = numel(sensors);
end

scenarioToEgo
function trackInEgo = scenarioToEgo(trackInScenario)
% Performs coordinate transformation from scenario to ego coordinates
% trackInScenario has StateParameters defined to transform it from scenario
% coordinates to ego coordinates
% We assume a constant velocity model with state [x;vx;y;vy;z;vz]
egoPosInScenario = trackInScenario.StateParameters.Position;
egoVelInScenario = trackInScenario.StateParameters.Velocity;
stateInScenario = trackInScenario.State;
stateShift = [egoPosInScenario(1);egoVelInScenario(1);egoPosInScenario(2);egoVelInScenario(2);egoPosInScenario(3);egoVelInScenario(3)];
stateInEgo = stateInScenario - stateShift;
trackInEgo = objectTrack('UpdateTime',trackInScenario.UpdateTime,'State',stateInEgo,'StateCovariance',trackInScenario.StateCovariance,'StateParameters',trackInScenario.StateParameters);
end

egoToScenario
function trackInScenario = egoToScenario(trackInEgo)
% Performs coordinate transformation from ego to scenario coordinates
% trackInEgo has StateParameters defined to transform it from ego
% coordinates to scenario coordinates
% We assume a constant velocity model with state [x;vx;y;vy;z;vz]
egoPosInScenario = trackInEgo.StateParameters.Position;
egoVelInScenario = trackInEgo.StateParameters.Velocity;
stateInScenario = trackInEgo.State;
stateShift = [egoPosInScenario(1);egoVelInScenario(1);egoPosInScenario(2);egoVelInScenario(2);egoPosInScenario(3);egoVelInScenario(3)];
stateInEgo = stateInScenario + stateShift;
trackInScenario = objectTrack('UpdateTime',trackInEgo.UpdateTime,'State',stateInEgo,'StateCovariance',trackInEgo.StateCovariance,'StateParameters',trackInEgo.StateParameters);
end

detectAndTrack
function [tracks,wasTrackerUpdated] = detectAndTrack(agent,time,posSelector)
% Create detections from the vehicle
poses = targetPoses(agent.Actor);
[detections,isValid] = vehicleDetections(agent.Actor.Position,agent.Sensors,poses,time,agent.DetPlotter);

% Update tracks for the vehicle
if isValid
 agent.Tracker.StateParameters = struct(...
 'Frame','Rectangular', ...
 'Position', agent.Actor.Position, ...
 'Velocity', agent.Actor.Velocity);
 tracks = agent.Tracker(detections,time);

 Track-to-Track Fusion for Automotive Safety Applications

8-357

 tracksInScenario = tracks;
 for i = 1:numel(tracks)
 tracksInScenario(i) = egoToScenario(tracks(i));
 end
 pos = getTrackPositions(tracksInScenario,posSelector);
 plotTrack(agent.TrkPlotter,pos)
 wasTrackerUpdated = true;
else
 tracks = objectTrack.empty(0,1);
 wasTrackerUpdated = false;
end
end

function [objectDetections,isValid] = vehicleDetections(position, sensors, poses, time, plotter)
% Provides the detections for each vehicle.

numSensors = numel(sensors);
objectDetections = {};
isValidTime = false(1, numSensors);

% Generate detections for each sensor
for sensorIndex = 1:numSensors
 sensor = sensors{sensorIndex};
 [objectDets, ~, isValidTime(sensorIndex)] = sensor(poses, time);
 objectDets = cellfun(@(d) setAtt(d), objectDets, 'UniformOutput', false);

 if isa(sensors{sensorIndex},'radarDetectionGenerator')
 objectDets = helperClusterDetections(objectDets, 5);
 end
 numObjects = numel(objectDets);
 objectDetections = [objectDetections; objectDets(1:numObjects)]; %#ok<AGROW>
end
isValid = any(isValidTime);

% Plot detections
if numel(objectDetections)>0
 detPos = cellfun(@(d)d.Measurement(1:2), objectDetections, 'UniformOutput', false);
 detPos = cell2mat(detPos')' + position(1:2);
 plotDetection(plotter, detPos);
end
end

function d = setAtt(d)
% Set the attributes to be struct
d.ObjectAttributes = struct;
end

function detectionClusters = helperClusterDetections(detections, vehicleSize)
% helperClusterDetections Helper to cluster detections in the example
N = numel(detections);
distances = zeros(N);
for i = 1:N
 for j = i+1:N
 if detections{i}.SensorIndex == detections{j}.SensorIndex
 distances(i,j) = norm(detections{i}.Measurement(1:2) - detections{j}.Measurement(1:2));
 else
 distances(i,j) = inf;
 end

8 Featured Examples

8-358

 end
end
leftToCheck = 1:N;
i = 0;
detectionClusters = cell(N,1);
while ~isempty(leftToCheck)
 % Remove the detections that are in the same cluster as the one under
 % consideration
 underConsideration = leftToCheck(1);
 clusterInds = (distances(underConsideration, leftToCheck) < vehicleSize);
 detInds = leftToCheck(clusterInds);
 clusterDets = [detections{detInds}];
 clusterMeas = [clusterDets.Measurement];
 meas = mean(clusterMeas, 2);
 i = i + 1;
 detectionClusters{i} = detections{detInds(1)};
 detectionClusters{i}.Measurement = meas;
 leftToCheck(clusterInds) = [];
end
detectionClusters(i+1:end) = [];

% Since the detections are now for clusters, modify the noise to represent
% that they are of the whole car
for i = 1:numel(detectionClusters)
 measNoise = eye(6);
 measNoise(1:2,1:2) = vehicleSize^2 * eye(2);
 measNoise(4:5,4:5) = eye(2) * vehicleSize^2;
 detectionClusters{i}.MeasurementNoise = measNoise;
end
end

See Also
Apps
Driving Scenario Designer

Objects
trackFuser | objectTrack | fuserSourceConfiguration

More About
• “Introduction to Track-To-Track Fusion” (Sensor Fusion and Tracking Toolbox)

 Track-to-Track Fusion for Automotive Safety Applications

8-359

Track-to-Track Fusion for Automotive Safety Applications in
Simulink

This example shows how to perform track-to-track fusion in Simulink® with Sensor Fusion and
Tracking Toolbox™. In the context of autonomous driving, the example illustrates how to build a
decentralized tracking architecture using a Track-To-Track Fuser block. In the example, each vehicle
performs tracking independently as well as fuses tracking information received from other vehicles.
This example closely follows the “Track-to-Track Fusion for Automotive Safety Applications” (Sensor
Fusion and Tracking Toolbox) MATLAB® example.

Introduction

Automotive safety applications largely rely on the situational awareness of the vehicle. A better
situational awareness provides the basis to a successful decision-making for different situations. To
achieve this, vehicles can benefit from intervehicle data fusion. This example illustrates the workflow
in Simulink for fusing data from two vehicles to enhance situational awareness of the vehicle.

Setup and Overview of the Model

Prior to running this example, the drivingScenario object was used to create the same scenario
defined in “Track-to-Track Fusion for Automotive Safety Applications” (Sensor Fusion and Tracking
Toolbox). The roads and actors from this scenario were then saved to the scenario object file
TrackToTrackFusionScenario.mat.

8 Featured Examples

8-360

Tracking and Fusion

In the Tracking and Fusion section of the model there are two subsystems that implement the target
tracking and fusion capabilities of Vehicle 1 and Vehicle 2 in this scenario.

Vehicle 1 Subsystem

This subsystem includes the Scenario Reader block that reads the actor pose data from the saved file.
The block converts the actor poses from the world coordinates of the scenario into ego vehicle
coordinates. The actor poses are streamed on a bus generated by the block. The actor poses are used
by the Sensor Simulation subsystem, which generates radar and vision detections. These detections
are then passed to the JPDA Tracker V1 block, which processes the detections to generate a list of
tracks. The tracks are then passed into a Track Concatenation1 block, which concatenates these
input tracks. The first input to the Track Concatenation1 block is the local tracks from the JPDA
tracker and the second input is the tracks received from the track fuser of the other vehicle. To
transform local tracks to central tracks, the track fuser needs the parameter information about the
local tracks. However, this information is not available from the direct outputs of the JPDA tracker.
Therefore, a helper Update Pose block is used to supply this information by reading the data from the
v1Pose.mat file. The updated tracks are then broadcasted to T2TF Tracker V1 block as an input.
Finally, the Track-To-Track Fuser (Sensor Fusion and Tracking Toolbox) T2TF Tracker V1 block fuse
the local vehicle tracks with the tracks received from the track fuser of the other vehicle. After each
update, the track fuser on each vehicle broadcasts its fused tracks to be fed into the update of the
track fuser of the other vehicle in the next time stamp.

Vehicle 2 Subsystem

Vehicle 2 subsystem follows a similar setup as the Vehicle 1 subsystem.

Visualization

The Visualization block is implemented using the MATLAB System block and is defined using the
HelperTrackDisplay block. The block uses RunTimeObject parameters Out, Confirmed Tracks, Tracks
and Confirmed Tracks of Detection Clustering, JPDA Tracker V1, Update Pose V1, T2TF Tracker V1
blocks respectively for vehicle 1 and RunTimeObject parameters Out, Confirmed Tracks, Tracks and
Confirmed Tracks of Detection Clustering, JPDA Tracker V2, Update Pose V2, T2TF Tracker V2 blocks
respectively for vehicle 2 to display their outputs. See “Access Block Data During Simulation”
(Simulink) for further information on how to access block outputs during simulation.

Results

After running the model, you can visualize the results. This animation shows the results for this
simulation.

 Track-to-Track Fusion for Automotive Safety Applications in Simulink

8-361

The visualization includes two panels. The left panel shows the detections, local tracks, and fused
tracks that vehicle 1 generated during the simulation and represents the situational awareness of
vehicle 1. The right panel shows the situational awareness of vehicle 2.

The recorded detections are represented by black circles. The local and fused tracks from vehicle 1
are represented by a square and a diamond, respectively. The local and fused tracks from vehicle 2
represented by a solid black square and a diamond. At the start of simulation, vehicle 1 detects
vehicles parked on the right side of the street, and tracks associated with the parked vehicles are
confirmed. Currently, vehicle 2 only detects vehicle 1 which is immediately in front of it. As the
simulation continues, the confirmed tracks from vehicle 1 are broadcast to the fuser on vehicle 2.
After fusing the tracks, vehicle 2 becomes aware of the objects prior to detecting these objects on its
own. Similarly, vehicle 2 tracks are broadcast to vehicle 1. Vehicle 1 fuses these tracks and becomes
aware of the objects prior to detecting them on its own.

In particular, you observe that the pedestrian standing between the blue and purple cars on the right
side of the street is detected and tracked by vehicle 1. Vehicle 2 first becomes aware of the
pedestrian by fusing the track from Vehicle 1 at around 0.8 seconds. It takes vehicle 2 roughly 3
seconds before it starts detecting the pedestrian using its own sensor. The ability to track a
pedestrian based on inputs from vehicle 1 allows vehicle 2 to extend its situational awareness and to
mitigate the risk of accident.

Summary

This example showed how to perform track-to-track fusion in Simulink. You learned how to perform
tracking using a decentralized tracking architecture, where each vehicle is responsible for

8 Featured Examples

8-362

maintaining its own local tracks, fuse tracks from other vehicles, and communicate the tracks to the
other vehicle. You also use a JPDA tracker block to generate the local tracks.

See Also
Blocks
Joint Probabilistic Data Association Multi Object Tracker

Objects
trackFuser

More About
• “Introduction to Track-To-Track Fusion” (Sensor Fusion and Tracking Toolbox)
• “Track-to-Track Fusion for Automotive Safety Applications” on page 8-347

 Track-to-Track Fusion for Automotive Safety Applications in Simulink

8-363

Visual-Inertial Odometry Using Synthetic Data
This example shows how to estimate the pose (position and orientation) of a ground vehicle using an
inertial measurement unit (IMU) and a monocular camera. In this example, you:

1 Create a driving scenario containing the ground truth trajectory of the vehicle.
2 Use an IMU and visual odometry model to generate measurements.
3 Fuse these measurements to estimate the pose of the vehicle and then display the results.

Visual-inertial odometry estimates pose by fusing the visual odometry pose estimate from the
monocular camera and the pose estimate from the IMU. The IMU returns an accurate pose estimate
for small time intervals, but suffers from large drift due to integrating the inertial sensor
measurements. The monocular camera returns an accurate pose estimate over a larger time interval,
but suffers from a scale ambiguity. Given these complementary strengths and weaknesses, the fusion
of these sensors using visual-inertial odometry is a suitable choice. This method can be used in
scenarios where GPS readings are unavailable, such as in an urban canyon.

Create a Driving Scenario with Trajectory

Create a drivingScenario object that contains:

• The road the vehicle travels on
• The buildings surrounding either side of the road
• The ground truth pose of the vehicle
• The estimated pose of the vehicle

The ground truth pose of the vehicle is shown as a solid blue cuboid. The estimated pose is shown as
a transparent blue cuboid. Note that the estimated pose does not appear in the initial visualization
because the ground truth and estimated poses overlap.

Generate the baseline trajectory for the ground vehicle using the waypointTrajectory (Sensor
Fusion and Tracking Toolbox) System object™. Note that the waypointTrajectory is used in place
of drivingScenario/trajectory since the acceleration of the vehicle is needed. The trajectory is
generated at a specified sampling rate using a set of waypoints, times of arrival, and velocities.

% Create the driving scenario with both the ground truth and estimated
% vehicle poses.
scene = drivingScenario;
groundTruthVehicle = vehicle(scene, 'PlotColor', [0 0.4470 0.7410]);
estVehicle = vehicle(scene, 'PlotColor', [0 0.4470 0.7410]);

% Generate the baseline trajectory.
sampleRate = 100;
wayPoints = [0 0 0;
 200 0 0;
 200 50 0;
 200 230 0;
 215 245 0;
 260 245 0;
 290 240 0;
 310 258 0;
 290 275 0;
 260 260 0;
 -20 260 0];

8 Featured Examples

8-364

t = [0 20 25 44 46 50 54 56 59 63 90].';
speed = 10;
velocities = [speed 0 0;
 speed 0 0;
 0 speed 0;
 0 speed 0;
 speed 0 0;
 speed 0 0;
 speed 0 0;
 0 speed 0;
 -speed 0 0;
 -speed 0 0;
 -speed 0 0];

traj = waypointTrajectory(wayPoints, 'TimeOfArrival', t, ...
 'Velocities', velocities, 'SampleRate', sampleRate);

% Add a road and buildings to scene and visualize.
helperPopulateScene(scene, groundTruthVehicle);

Create a Fusion Filter

Create the filter to fuse IMU and visual odometry measurements. This example uses a loosely coupled
method to fuse the measurements. While the results are not as accurate as a tightly coupled method,
the amount of processing required is significantly less and the results are adequate. The fusion filter
uses an error-state Kalman filter to track orientation (as a quaternion), position, velocity, and sensor
biases.

 Visual-Inertial Odometry Using Synthetic Data

8-365

The insfilterErrorState object has the following functions to process sensor data: predict and
fusemvo.

The predict function takes the accelerometer and gyroscope measurements from the IMU as inputs.
Call the predict function each time the accelerometer and gyroscope are sampled. This function
predicts the state forward by one time step based on the accelerometer and gyroscope
measurements, and updates the error state covariance of the filter.

The fusemvo function takes the visual odometry pose estimates as input. This function updates the
error states based on the visual odometry pose estimates by computing a Kalman gain that weighs
the various inputs according to their uncertainty. As with the predict function, this function also
updates the error state covariance, this time taking the Kalman gain into account. The state is then
updated using the new error state and the error state is reset.

filt = insfilterErrorState('IMUSampleRate', sampleRate, ...
 'ReferenceFrame', 'ENU')
% Set the initial state and error state covariance.
helperInitialize(filt, traj);

filt =

 insfilterErrorState with properties:

 IMUSampleRate: 100 Hz
 ReferenceLocation: [0 0 0] [deg deg m]
 State: [17x1 double]
 StateCovariance: [16x16 double]

 Process Noise Variances
 GyroscopeNoise: [1e-06 1e-06 1e-06] (rad/s)²
 AccelerometerNoise: [0.0001 0.0001 0.0001] (m/s²)²
 GyroscopeBiasNoise: [1e-09 1e-09 1e-09] (rad/s)²
 AccelerometerBiasNoise: [0.0001 0.0001 0.0001] (m/s²)²

Specify the Visual Odometry Model

Define the visual odometry model parameters. These parameters model a feature matching and
tracking-based visual odometry system using a monocular camera. The scale parameter accounts
for the unknown scale of subsequent vision frames of the monocular camera. The other parameters
model the drift in the visual odometry reading as a combination of white noise and a first-order
Gauss-Markov process.

% The flag useVO determines if visual odometry is used:
% useVO = false; % Only IMU is used.
useVO = true; % Both IMU and visual odometry are used.

paramsVO.scale = 2;
paramsVO.sigmaN = 0.139;
paramsVO.tau = 232;
paramsVO.sigmaB = sqrt(1.34);
paramsVO.driftBias = [0 0 0];

8 Featured Examples

8-366

Specify the IMU Sensor

Define an IMU sensor model containing an accelerometer and gyroscope using the imuSensor
System object. The sensor model contains properties to model both deterministic and stochastic noise
sources. The property values set here are typical for low-cost MEMS sensors.

% Set the RNG seed to default to obtain the same results for subsequent
% runs.
rng('default')

imu = imuSensor('SampleRate', sampleRate, 'ReferenceFrame', 'ENU');

% Accelerometer
imu.Accelerometer.MeasurementRange = 19.6; % m/s^2
imu.Accelerometer.Resolution = 0.0024; % m/s^2/LSB
imu.Accelerometer.NoiseDensity = 0.01; % (m/s^2)/sqrt(Hz)

% Gyroscope
imu.Gyroscope.MeasurementRange = deg2rad(250); % rad/s
imu.Gyroscope.Resolution = deg2rad(0.0625); % rad/s/LSB
imu.Gyroscope.NoiseDensity = deg2rad(0.0573); % (rad/s)/sqrt(Hz)
imu.Gyroscope.ConstantBias = deg2rad(2); % rad/s

Set Up the Simulation

Specify the amount of time to run the simulation and initialize variables that are logged during the
simulation loop.

% Run the simulation for 60 seconds.
numSecondsToSimulate = 60;
numIMUSamples = numSecondsToSimulate * sampleRate;

% Define the visual odometry sampling rate.
imuSamplesPerCamera = 4;
numCameraSamples = ceil(numIMUSamples / imuSamplesPerCamera);

% Preallocate data arrays for plotting results.
[pos, orient, vel, acc, angvel, ...
 posVO, orientVO, ...
 posEst, orientEst, velEst] ...
 = helperPreallocateData(numIMUSamples, numCameraSamples);

% Set measurement noise parameters for the visual odometry fusion.
RposVO = 0.1;
RorientVO = 0.1;

Run the Simulation Loop

Run the simulation at the IMU sampling rate. Each IMU sample is used to predict the filter's state
forward by one time step. Once a new visual odometry reading is available, it is used to correct the
current filter state.

There is some drift in the filter estimates that can be further corrected with an additional sensor such
as a GPS or an additional constraint such as a road boundary map.

cameraIdx = 1;
for i = 1:numIMUSamples
 % Generate ground truth trajectory values.

 Visual-Inertial Odometry Using Synthetic Data

8-367

 [pos(i,:), orient(i,:), vel(i,:), acc(i,:), angvel(i,:)] = traj();

 % Generate accelerometer and gyroscope measurements from the ground truth
 % trajectory values.
 [accelMeas, gyroMeas] = imu(acc(i,:), angvel(i,:), orient(i));

 % Predict the filter state forward one time step based on the
 % accelerometer and gyroscope measurements.
 predict(filt, accelMeas, gyroMeas);

 if (1 == mod(i, imuSamplesPerCamera)) && useVO
 % Generate a visual odometry pose estimate from the ground truth
 % values and the visual odometry model.
 [posVO(cameraIdx,:), orientVO(cameraIdx,:), paramsVO] = ...
 helperVisualOdometryModel(pos(i,:), orient(i,:), paramsVO);

 % Correct filter state based on visual odometry data.
 fusemvo(filt, posVO(cameraIdx,:), RposVO, ...
 orientVO(cameraIdx), RorientVO);

 cameraIdx = cameraIdx + 1;
 end

 [posEst(i,:), orientEst(i,:), velEst(i,:)] = pose(filt);

 % Update estimated vehicle pose.
 helperUpdatePose(estVehicle, posEst(i,:), velEst(i,:), orientEst(i));

 % Update ground truth vehicle pose.
 helperUpdatePose(groundTruthVehicle, pos(i,:), vel(i,:), orient(i));

 % Update driving scenario visualization.
 updatePlots(scene);
 drawnow limitrate;
end

8 Featured Examples

8-368

Plot the Results

Plot the ground truth vehicle trajectory, the visual odometry estimate, and the fusion filter estimate.

figure
if useVO
 plot3(pos(:,1), pos(:,2), pos(:,3), '-.', ...
 posVO(:,1), posVO(:,2), posVO(:,3), ...
 posEst(:,1), posEst(:,2), posEst(:,3), ...
 'LineWidth', 3)
 legend('Ground Truth', 'Visual Odometry (VO)', ...
 'Visual-Inertial Odometry (VIO)', 'Location', 'northeast')
else
 plot3(pos(:,1), pos(:,2), pos(:,3), '-.', ...
 posEst(:,1), posEst(:,2), posEst(:,3), ...
 'LineWidth', 3)
 legend('Ground Truth', 'IMU Pose Estimate')
end
view(-90, 90)
title('Vehicle Position')
xlabel('X (m)')
ylabel('Y (m)')
grid on

 Visual-Inertial Odometry Using Synthetic Data

8-369

The plot shows that the visual odometry estimate is relatively accurate in estimating the shape of the
trajectory. The fusion of the IMU and visual odometry measurements removes the scale factor
uncertainty from the visual odometry measurements and the drift from the IMU measurements.

Supporting Functions

helperVisualOdometryModel

Compute visual odometry measurement from ground truth input and parameters struct. To model the
uncertainty in the scaling between subsequent frames of the monocular camera, a constant scaling
factor combined with a random drift is applied to the ground truth position.

function [posVO, orientVO, paramsVO] ...
 = helperVisualOdometryModel(pos, orient, paramsVO)

% Extract model parameters.
scaleVO = paramsVO.scale;
sigmaN = paramsVO.sigmaN;
tau = paramsVO.tau;
sigmaB = paramsVO.sigmaB;
sigmaA = sqrt((2/tau) + 1/(tau*tau))*sigmaB;
b = paramsVO.driftBias;

% Calculate drift.
b = (1 - 1/tau).*b + randn(1,3)*sigmaA;
drift = randn(1,3)*sigmaN + b;
paramsVO.driftBias = b;

8 Featured Examples

8-370

% Calculate visual odometry measurements.
posVO = scaleVO*pos + drift;
orientVO = orient;
end

helperInitialize

Set the initial state and covariance values for the fusion filter.

function helperInitialize(filt, traj)

% Retrieve the initial position, orientation, and velocity from the
% trajectory object and reset the internal states.
[pos, orient, vel] = traj();
reset(traj);

% Set the initial state values.
filt.State(1:4) = compact(orient(1)).';
filt.State(5:7) = pos(1,:).';
filt.State(8:10) = vel(1,:).';

% Set the gyroscope bias and visual odometry scale factor covariance to
% large values corresponding to low confidence.
filt.StateCovariance(10:12,10:12) = 1e6;
filt.StateCovariance(end) = 2e2;
end

helperPreallocateData

Preallocate data to log simulation results.

function [pos, orient, vel, acc, angvel, ...
 posVO, orientVO, ...
 posEst, orientEst, velEst] ...
 = helperPreallocateData(numIMUSamples, numCameraSamples)

% Specify ground truth.
pos = zeros(numIMUSamples, 3);
orient = quaternion.zeros(numIMUSamples, 1);
vel = zeros(numIMUSamples, 3);
acc = zeros(numIMUSamples, 3);
angvel = zeros(numIMUSamples, 3);

% Visual odometry output.
posVO = zeros(numCameraSamples, 3);
orientVO = quaternion.zeros(numCameraSamples, 1);

% Filter output.
posEst = zeros(numIMUSamples, 3);
orientEst = quaternion.zeros(numIMUSamples, 1);
velEst = zeros(numIMUSamples, 3);
end

helperUpdatePose

Update the pose of the vehicle.

 Visual-Inertial Odometry Using Synthetic Data

8-371

function helperUpdatePose(veh, pos, vel, orient)

veh.Position = pos;
veh.Velocity = vel;
rpy = eulerd(orient, 'ZYX', 'frame');
veh.Yaw = rpy(1);
veh.Pitch = rpy(2);
veh.Roll = rpy(3);
end

References

• Sola, J. "Quaternion Kinematics for the Error-State Kalman Filter." ArXiv e-prints,
arXiv:1711.02508v1 [cs.RO] 3 Nov 2017.

• R. Jiang, R., R. Klette, and S. Wang. "Modeling of Unbounded Long-Range Drift in Visual
Odometry." 2010 Fourth Pacific-Rim Symposium on Image and Video Technology. Nov. 2010, pp.
121-126.

See Also
waypointTrajectory | imuSensor | drivingScenario

8 Featured Examples

8-372

Lane Following Control with Sensor Fusion and Lane Detection
This example shows how to simulate and generate code for an automotive lane-following controller.

In this example, you:

1 Review a control algorithm that combines sensor fusion, lane detection, and a lane following
controller from the Model Predictive Control Toolbox™ software.

2 Test the control system in a closed-loop Simulink® model using synthetic data generated by
Automated Driving Toolbox™ software.

3 Configure the code generation settings for software-in-the-loop simulation and automatically
generate code for the control algorithm.

Introduction

A lane following system is a control system that keeps the vehicle traveling within a marked lane of a
highway, while maintaining a user-set velocity or safe distance from the preceding vehicle. A lane
following system includes combined longitudinal and lateral control of the ego vehicle:

• Longitudinal control - Maintain a driver-set velocity and keep a safe distance from the preceding
car in the lane by adjusting the acceleration of the ego vehicle.

• Lateral control - Keep the ego vehicle traveling along the centerline of its lane by adjusting the
steering of the ego vehicle

The combined lane following control system achieves the individual goals for longitudinal and lateral
control. Further, the lane following control system can adjust the priority of the two goals when they
cannot be met simultaneously.

For an example of longitudinal control using adaptive cruise control (ACC) with sensor fusion, see
“Adaptive Cruise Control with Sensor Fusion” (Model Predictive Control Toolbox). For an example of
lateral control using a lane keeping assist (LKA) system with lane detection, see “Lane Keeping Assist
with Lane Detection” (Model Predictive Control Toolbox). The ACC example assumes ideal lane
detection, and the LKA example does not consider surrounding vehicles.

In this example, both lane detection and surrounding cars are considered. The lane following system
synthesizes data from vision and radar detections, estimates the lane center and lead car distance,
and calculates the longitudinal acceleration and steering angle of the ego vehicle.

Define Scenario

Before opening the model, you can optionally change the scenario that the model simulates. This
scenario selection is controlled by a callback function, helperLFSetUp, which runs when the model
opens.

By default, the model simulates a cut-in scenario on a curved road. To change the default scenario
used, either edit the setup script by clicking the Edit Setup Script button in the model or by calling
helperLFSetup with a new input scenario. For example, the following syntax is equivalent to
specifying the default scenario.

helperLFSetup('LFACC_04_Curve_CutInOut');

You can choose from the following scenarios.

 'ACC_01_ISO_TargetDiscriminationTest'
 'ACC_02_ISO_AutoRetargetTest'

 Lane Following Control with Sensor Fusion and Lane Detection

8-373

 'ACC_03_ISO_CurveTest'
 'ACC_04_StopnGo'
 'LFACC_01_DoubleCurve_DecelTarget'
 'LFACC_02_DoubleCurve_AutoRetarget'
 'LFACC_03_DoubleCurve_StopnGo'
 'LFACC_04_Curve_CutInOut'
 'LFACC_05_Curve_CutInOut_TooClose'

Open Test Bench Model

Open the Simulink test bench model.

open_system('LaneFollowingTestBenchExample')

The model contains four main components:

8 Featured Examples

8-374

1 Lane Following Controller - Controls both the longitudinal acceleration and front steering angle
of the ego vehicle

2 Vehicle and Environment - Models the motion of the ego vehicle and models the environment
3 Collision Detection - Stops the simulation when a collision of the ego vehicle and lead vehicle is

detected
4 MIO Track - Enables MIO track for display in the Bird's-Eye Scope.

Opening this model also runs the helperLFSetUp script, which initializes the data used by the model
by running the scenario function and loading constants needed by the Simulink model, such as the
vehicle model parameters, controller design parameters, road scenario, and surrounding cars.

Plot the road and the path that the ego vehicle will follow.

plot(scenario)

To plot the results of the simulation and depict the ego vehicle surroundings and tracked objects, use
the Bird's-Eye Scope. The Bird's-Eye Scope is a model-level visualization tool that you can open from
the Simulink toolstrip. On the Simulation tab, under Review Results, click Bird's-Eye Scope. After
opening the scope, set up the signals by clicking Find Signals.

To get a mid-simulation view, simulate the model for 10 seconds.

sim('LaneFollowingTestBenchExample','StopTime','10')

 Lane Following Control with Sensor Fusion and Lane Detection

8-375

After simulating the model for 10 seconds, open the Bird's-Eye Scope. In the scope toolstrip, to
display the World Coordinates View of the scenario, click World Coordinates. In this view, the ego
vehicle is circled. To display the legend for the Vehicle Coordinates View, click Legend.

The Bird's-Eye Scope shows the results of the sensor fusion. It shows how the radar and vision
sensors detect the vehicles within their coverage areas. It also shows the tracks maintained by the
Multi-Object Tracker block. The yellow track shows the most important object (MIO), which is the
closest track in front of the ego vehicle in its lane. The ideal lane markings are also shown along with
the synthetically detected left and right lane boundaries (shown in red).

Simulate the model to the end of the scenario.

sim('LaneFollowingTestBenchExample')

 Assuming no disturbance added to measured output channel #3.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #4 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

8 Featured Examples

8-376

Plot the controller performance.

plotLFResults(logsout,time_gap,default_spacing)

 Lane Following Control with Sensor Fusion and Lane Detection

8-377

8 Featured Examples

8-378

The first figure shows the following spacing control performance results.

• The Velocity plot shows that the ego vehicle maintains velocity control from 0 to 11 seconds,
switches to spacing control from 11 to 16 seconds, then switches back to velocity control.

• The Distance between two cars plot shows that the actual distance between lead vehicle and
ego vehicle is always greater than the safe distance.

• The Acceleration plot shows that the acceleration for ego vehicle is smooth.
• The Collision status plot shows that no collision between lead vehicle and ego vehicle is

detected, thus the ego vehicle runs in a safe mode.

The second figure shows the following lateral control performance results.

• The Lateral deviation plot shows that the distance to the lane centerline is within 0.2 m.
• The Relative yaw angle plot shows that the yaw angle error with respect to lane centerline is

within 0.03 rad (less than 2 degrees).

 Lane Following Control with Sensor Fusion and Lane Detection

8-379

• The Steering angle plot shows that the steering angle for ego vehicle is smooth.

Explore Lane Following Controller

The Lane Following Controller subsystem contains three main parts: 1) Estimate Lane Center 2)
Tracking and Sensor Fusion 3) MPC Controller

open_system('LaneFollowingTestBenchExample/Lane Following Controller')

The Estimate Lane Center subsystem outputs the lane sensor data to the MPC controller. The
previewed curvature provides the centerline of lane curvature ahead of the ego vehicle. In this
example, the ego vehicle can look ahead for 3 seconds, which is the product of the prediction horizon
and the controller sample time. The controller uses previewed information for calculating the ego
vehicle steering angle, which improves the MPC controller performance. The lateral deviation
measures the distance between the ego vehicle and the centerline of the lane. The relative yaw angle
measures the yaw angle difference between the ego vehicle and the road. The ISO 8855 to SAE J670E
block inside the subsystem converts the coordinates from Lane Detections, which use ISO 8855, to
the MPC Controller which uses SAE J670E.

The Tracking and Sensor Fusion subsystem processes vision and radar detections coming from the
Vehicle and Environment subsystem and generates a comprehensive situation picture of the
environment around the ego vehicle. Also, it provides the lane following controller with an estimate of
the closest vehicle in the lane in front of the ego vehicle.

8 Featured Examples

8-380

The goals for the MPC Controller (Model Predictive Control Toolbox) block are to:

• Maintain the driver-set velocity and keep a safe distance from lead vehicle. This goal is achieved
by controlling the longitudinal acceleration.

• Keep the ego vehicle in the middle of the lane; that is reduce the lateral deviation and the
relative yaw angle , by controlling the steering angle.

• Slow down the ego vehicle when road is curvy. To achieve this goal, the MPC controller has larger
penalty weights on lateral deviation than on longitudinal speed.

The MPC controller is designed within the Path Following Control (PFC) System block based on the
entered mask parameters, and the designed MPC Controller is an adaptive MPC which updates the
vehicle model at run time. The lane following controller calculates the longitudinal acceleration and
steering angle for the ego vehicle based on the following inputs:

• Driver-set velocity
• Ego vehicle longitudinal velocity
• Previewed curvature (derived from Lane Detections)
• Lateral deviation (derived from Lane Detections)
• Relative yaw angle (derived from Lane Detections)
• Relative distance between lead vehicle and ego vehicle (from the Tracking and Sensor Fusion

system)
• Relative velocity between lead vehicle and ego vehicle (from the Tracking and Sensor Fusion

system)

Considering the physical limitations of the ego vehicle, the steering angle is constrained to be within
[-0.26,0.26] rad, and the longitudinal acceleration is constrained to be within [-3,2] m/s^2.

Explore Vehicle and Environment

The Vehicle and Environment subsystem enables closed-loop simulation of the lane following
controller.

 Lane Following Control with Sensor Fusion and Lane Detection

8-381

open_system('LaneFollowingTestBenchExample/Vehicle and Environment')

The System Latency blocks model the latency in the system between model inputs and outputs. The
latency can be caused by sensor delay or communication delay. In this example, the latency is
approximated by one sample time seconds.

The Vehicle Dynamics subsystem models the vehicle dynamics using a Bicycle Model - Force Input
block from the Vehicle Dynamics Blockset™. The lower-level dynamics are modeled by a first-order
linear system with a time constant of seconds.

The SAE J670E to ISO 8855 subsystem converts the coordinates from Vehicle Dynamics, which uses
SAE J670E, to Scenario Reader, which uses ISO 8855.

The Scenario Reader block reads the actor poses data from the base workspace scenario variable.
The block converts the actor poses from the world coordinates of the scenario into ego vehicle
coordinates. The actor poses are streamed on a bus generated by the block. The Scenario Reader
block also generates the ideal left and right lane boundaries based on the position of the vehicle with
respect to the scenario used in helperLFSetUp.

The Vision Detection Generator block takes the ideal lane boundaries from the Scenario Reader
block. The detection generator models the field of view of a monocular camera and determines the
heading angle, curvature, curvature derivative, and valid length of each road boundary, accounting
for any other obstacles. The Driving Radar Data Generator block generates clustered detections from
the ground-truth data present in the field-of-view of the radar based on the radar cross-section
defined in the scenario.

Run Controller for Multiple Test Scenarios

This example uses multiple test scenarios based on ISO standards and real-world scenarios. To verify
the controller performance, you can test the controller for multiple scenarios and tune the controller
parameters if the performance is not satisfactory. To do so:

1 Select the scenario by changing the scenario name input to helperLFSetUp.
2 Configure the simulation parameters by running helperLFSetUp.
3 Simulate the model with the selected scenario.
4 Evaluate the controller performance using plotLFResults
5 Tune the controller parameters if the performance is not satisfactory.

8 Featured Examples

8-382

You can automate the verification and validation of the controller using Simulink Test™.

Generate Code for the Control Algorithm

The LFRefMdl model supports generating C code using Embedded Coder® software. To check if you
have access to Embedded Coder, run:

hasEmbeddedCoderLicense = license('checkout','RTW_Embedded_Coder')

You can generate a C function for the model and explore the code generation report by running:

if hasEmbeddedCoderLicense
 rtwbuild('LFRefMdl')
end

You can verify that the compiled C code behaves as expected using software-in-the-loop (SIL)
simulation. To simulate the LFRefMdl referenced model in SIL mode, use:

if hasEmbeddedCoderLicense
 set_param('LaneFollowingTestBenchExample/Lane Following Controller',...
 'SimulationMode','Software-in-the-loop (SIL)')
end

When you run the LaneFollowingTestBenchExample model, code is generated, compiled, and
executed for the LFRefMdl model, which enables you to test the behavior of the compiled code
through simulation.

Conclusions

This example shows how to implement an integrated lane following controller on a curved road with
sensor fusion and lane detection, test it in Simulink using synthetic data generated using Automated
Driving Toolbox software, componentize it, and automatically generate code for it.

close all
bdclose all

See Also
Apps
Bird's-Eye Scope

Blocks
Lane Keeping Assist System

More About
• “Adaptive Cruise Control with Sensor Fusion” on page 8-231
• “Lane Keeping Assist with Lane Detection” on page 8-563

 Lane Following Control with Sensor Fusion and Lane Detection

8-383

Track-Level Fusion of Radar and Lidar Data
This example shows you how to generate an object-level track list from measurements of a radar and
a lidar sensor and further fuse them using a track-level fusion scheme. You process the radar
measurements using an extended object tracker and the lidar measurements using a joint
probabilistic data association (JPDA) tracker. You further fuse these tracks using a track-level fusion
scheme. The schematic of the workflow is shown below.

See “Fusion of Radar and Lidar Data Using ROS” (ROS Toolbox) for an example of this algorithm
using recorded data on a rosbag.

Setup Scenario for Synthetic Data Generation

The scenario used in this example is created using drivingScenario. The data from radar and lidar
sensors is simulated using drivingRadarDataGenerator and lidarPointCloudGenerator,
respectively. The creation of the scenario and the sensor models is wrapped in the helper function
helperCreateRadarLidarScenario. For more information on scenario and synthetic data
generation, refer to “Create Driving Scenario Programmatically” on page 8-644.

% For reproducible results
rng(2021);

% Create scenario, ego vehicle and get radars and lidar sensor
[scenario, egoVehicle, radars, lidar] = helperCreateRadarLidarScenario;

The ego vehicle is mounted with four 2-D radar sensors. The front and rear radar sensors have a field
of view of 45 degrees. The left and right radar sensors have a field of view of 150 degrees. Each radar
has a resolution of 6 degrees in azimuth and 2.5 meters in range. The ego is also mounted with one 3-
D lidar sensor with a field of view of 360 degrees in azimuth and 40 degrees in elevation. The lidar
has a resolution of 0.2 degrees in azimuth and 1.25 degrees in elevation (32 elevation channels).
Visualize the configuration of the sensors and the simulated sensor data in the animation below.
Notice that the radars have higher resolution than objects and therefore return multiple
measurements per object. Also notice that the lidar interacts with the low-poly mesh of the actor as
well as the road surface to return multiple points from these objects.

8 Featured Examples

8-384

Radar Tracking Algorithm

As mentioned, the radars have higher resolution than the objects and return multiple detections per
object. Conventional trackers such as Global Nearest Neighbor (GNN) and Joint Probabilistic Data
Association (JPDA) assume that the sensors return at most one detection per object per scan.
Therefore, the detections from high-resolution sensors must be either clustered before processing it
with conventional trackers or must be processed using extended object trackers. Extended object
trackers do not require pre-clustering of detections and usually estimate both kinematic states (for
example, position and velocity) and the extent of the objects. For a more detailed comparison
between conventional trackers and extended object trackers, refer to the “Extended Object Tracking
of Highway Vehicles with Radar and Camera” (Sensor Fusion and Tracking Toolbox) example.

In general, extended object trackers offer better estimation of objects as they handle clustering and
data association simultaneously using temporal history of tracks. In this example, the radar
detections are processed using a Gaussian mixture probability hypothesis density (GM-PHD) tracker
(trackerPHD (Sensor Fusion and Tracking Toolbox) and gmphd (Sensor Fusion and Tracking
Toolbox)) with a rectangular target model. For more details on configuring the tracker, refer to the
"GM-PHD Rectangular Object Tracker" section of the “Extended Object Tracking of Highway Vehicles
with Radar and Camera” (Sensor Fusion and Tracking Toolbox) example.

The algorithm for tracking objects using radar measurements is wrapped inside the helper class,
helperRadarTrackingAlgorithm, implemented as a System object™. This class outputs an array
of objectTrack (Sensor Fusion and Tracking Toolbox) objects and define their state according to
the following convention:

 Track-Level Fusion of Radar and Lidar Data

8-385

radarTrackingAlgorithm = helperRadarTrackingAlgorithm(radars);

Lidar Tracking Algorithm

Similar to radars, the lidar sensor also returns multiple measurements per object. Further, the sensor
returns a large number of points from the road, which must be removed before used as inputs for an
object-tracking algorithm. While lidar data from obstacles can be directly processed via extended
object tracking algorithm, conventional tracking algorithms are still more prevalent for tracking
using lidar data. The first reason for this trend is mainly observed due to higher computational
complexity of extended object trackers for large data sets. The second reason is the investments into
advanced Deep learning-based detectors such as PointPillars [1], VoxelNet [2] and PIXOR [3], which
can segment a point cloud and return bounding box detections for the vehicles. These detectors can
help in overcoming the performance degradation of conventional trackers due to improper clustering.

In this example, the lidar data is processed using a conventional joint probabilistic data association
(JPDA) tracker, configured with an interacting multiple model (IMM) filter. The pre-processing of lidar
data to remove point cloud is performed by using a RANSAC-based plane-fitting algorithm and
bounding boxes are formed by performing a Euclidian-based distance clustering algorithm. For more
information about the algorithm, refer to the “Track Vehicles Using Lidar: From Point Cloud to Track
List” (Sensor Fusion and Tracking Toolbox) example. Compared the linked example, the tracking is
performed in the scenario frame and the tracker is tuned differently to track objects of different sizes.
Further the states of the variables are defined differently to constrain the motion of the tracks in the
direction of its estimated heading angle.

The algorithm for tracking objects using lidar data is wrapped inside the helper class,
helperLidarTrackingAlgorithm implemented as System object. This class outputs an array of

8 Featured Examples

8-386

objectTrack (Sensor Fusion and Tracking Toolbox) objects and defines their state according to the
following convention:

The states common to the radar algorithm are defined similarly. Also, as a 3-D sensor, the lidar
tracker outputs three additional states, , and , which refer to z-coordinate (m), z-velocity (m/s),
and height (m) of the tracked object respectively.

lidarTrackingAlgorithm = helperLidarTrackingAlgorithm(lidar);

Set Up Fuser, Metrics, and Visualization

Fuser

Next, you will set up a fusion algorithm for fusing the list of tracks from radar and lidar trackers.
Similar to other tracking algorithms, the first step towards setting up a track-level fusion algorithm is
defining the choice of state vector (or state-space) for the fused or central tracks. In this case, the
state-space for fused tracks is chosen to be same as the lidar. After choosing a central track state-
space, you define the transformation of the central track state to the local track state. In this case,
the local track state-space refers to states of radar and lidar tracks. To do this, you use a
fuserSourceConfiguration (Sensor Fusion and Tracking Toolbox) object.

Define the configuration of the radar source. The helperRadarTrackingAlgorithm outputs tracks
with SourceIndex set to 1. The SourceIndex is provided as a property on each tracker to uniquely
identify it and allows a fusion algorithm to distinguish tracks from different sources. Therefore, you
set the SourceIndex property of the radar configuration as same as those of the radar tracks. You
set IsInitializingCentralTracks to true to let that unassigned radar tracks initiate new
central tracks. Next, you define the transformation of a track in central state-space to the radar state-
space and vice-versa. The helper functions central2radar and radar2central perform the two
transformations and are included at the end of this example.

radarConfig = fuserSourceConfiguration('SourceIndex',1,...
 'IsInitializingCentralTracks',true,...
 'CentralToLocalTransformFcn',@central2radar,...
 'LocalToCentralTransformFcn',@radar2central);

Define the configuration of the lidar source. Since the state-space of a lidar track is same as central
track, you do not define any transformations.

lidarConfig = fuserSourceConfiguration('SourceIndex',2,...
 'IsInitializingCentralTracks',true);

The next step is to define the state-fusion algorithm. The state-fusion algorithm takes multiple states
and state covariances in the central state-space as input and returns a fused estimate of the state and
the covariances. In this example, you use a covariance intersection algorithm provided by the helper
function, helperRadarLidarFusionFcn. A generic covariance intersection algorithm for two
Gaussian estimates with mean and covariance can be defined according to the following
equations:

 Track-Level Fusion of Radar and Lidar Data

8-387

where and are the fused state and covariance and and are mixing coefficients from each
estimate. Typically, these mixing coefficients are estimated by minimizing the determinant or the
trace of the fused covariance. In this example, the mixing weights are estimated by minimizing the
determinant of positional covariance of each estimate. Furthermore, as the radar does not estimate 3-
D states, 3-D states are only fused with lidars. For more details, refer to the
helperRadarLidarFusionFcn function shown at the end of this script.

Next, you assemble all the information using a trackFuser object.

% The state-space of central tracks is same as the tracks from the lidar,
% therefore you use the same state transition function. The function is
% defined inside the helperLidarTrackingAlgorithm class.
f = lidarTrackingAlgorithm.StateTransitionFcn;

% Create a trackFuser object
fuser = trackFuser('SourceConfigurations',{radarConfig;lidarConfig},...
 'StateTransitionFcn',f,...
 'ProcessNoise',diag([1 3 1]),...
 'HasAdditiveProcessNoise',false,...
 'AssignmentThreshold',[250 inf],...
 'ConfirmationThreshold',[3 5],...
 'DeletionThreshold',[5 5],...
 'StateFusion','Custom',...
 'CustomStateFusionFcn',@helperRadarLidarFusionFcn);

Metrics

In this example, you assess the performance of each algorithm using the Generalized Optimal
SubPattern Assignment Metric (GOSPA) metric. You set up three separate metrics using
trackGOSPAMetric (Sensor Fusion and Tracking Toolbox) for each of the trackers. The GOSPA
metric aims to evaluate the performance of a tracking system by providing a scalar cost. A lower
value of the metric indicates better performance of the tracking algorithm.

To use the GOSPA metric with custom motion models like the one used in this example, you set the
Distance property to 'custom' and define a distance function between a track and its associated
ground truth. These distance functions, shown at the end of this example are
helperRadarDistance, and helperLidarDistance.

% Radar GOSPA
gospaRadar = trackGOSPAMetric('Distance','custom',...
 'DistanceFcn',@helperRadarDistance,...
 'CutoffDistance',25);

% Lidar GOSPA
gospaLidar = trackGOSPAMetric('Distance','custom',...
 'DistanceFcn',@helperLidarDistance,...
 'CutoffDistance',25);

% Central/Fused GOSPA
gospaCentral = trackGOSPAMetric('Distance','custom',...
 'DistanceFcn',@helperLidarDistance,...% State-space is same as lidar
 'CutoffDistance',25);

Visualization

The visualization for this example is implemented using a helper class
helperLidarRadarTrackFusionDisplay. The display is divided into 4 panels. The display plots

8 Featured Examples

8-388

the measurements and tracks from each sensor as well as the fused track estimates. The legend for
the display is shown below. Furthermore, the tracks are annotated by their unique identity (TrackID)
as well as a prefix. The prefixes "R", "L" and "F" stand for radar, lidar, and fused estimate,
respectively.

% Create a display.
% FollowActorID controls the actor shown in the close-up
% display
display = helperLidarRadarTrackFusionDisplay('FollowActorID',3);

% Show persistent legend
showLegend(display,scenario);

Run Scenario and Trackers

Next, you advance the scenario, generate synthetic data from all sensors and process it to generate
tracks from each of the systems. You also compute the metric for each tracker using the ground truth
available from the scenario.

% Initialzie GOSPA metric and its components for all tracking algorithms.
gospa = zeros(3,0);
missTarget = zeros(3,0);
falseTracks = zeros(3,0);

% Initialize fusedTracks
fusedTracks = objectTrack.empty(0,1);

% A counter for time steps elapsed for storing gospa metrics.
idx = 1;

% Ground truth for metrics. This variable updates every time-step
% automatically being a handle to the actors.

 Track-Level Fusion of Radar and Lidar Data

8-389

groundTruth = scenario.Actors(2:end);

while advance(scenario)
 % Current time
 time = scenario.SimulationTime;

 % Collect radar and lidar measurements and ego pose to track in
 % scenario frame. See helperCollectSensorData below.
 [radarDetections, ptCloud, egoPose] = helperCollectSensorData(egoVehicle, radars, lidar, time);

 % Generate radar tracks
 radarTracks = radarTrackingAlgorithm(egoPose, radarDetections, time);

 % Generate lidar tracks and analysis information like bounding box
 % detections and point cloud segmentation information
 [lidarTracks, lidarDetections, segmentationInfo] = ...
 lidarTrackingAlgorithm(egoPose, ptCloud, time);

 % Concatenate radar and lidar tracks
 localTracks = [radarTracks;lidarTracks];

 % Update the fuser. First call must contain one local track
 if ~(isempty(localTracks) && ~isLocked(fuser))
 fusedTracks = fuser(localTracks,time);
 end

 % Capture GOSPA and its components for all trackers
 [gospa(1,idx),~,~,~,missTarget(1,idx),falseTracks(1,idx)] = gospaRadar(radarTracks, groundTruth);
 [gospa(2,idx),~,~,~,missTarget(2,idx),falseTracks(2,idx)] = gospaLidar(lidarTracks, groundTruth);
 [gospa(3,idx),~,~,~,missTarget(3,idx),falseTracks(3,idx)] = gospaCentral(fusedTracks, groundTruth);

 % Update the display
 display(scenario, radars, radarDetections, radarTracks, ...
 lidar, ptCloud, lidarDetections, segmentationInfo, lidarTracks,...
 fusedTracks);

 % Update the index for storing GOSPA metrics
 idx = idx + 1;
end

% Update example animations
updateExampleAnimations(display);

Evaluate Performance

Evaluate the performance of each tracker using visualization as well as quantitative metrics. Analyze
different events in the scenario and understand how the track-level fusion scheme helps achieve a
better estimation of the vehicle state.

Track Maintenance

The animation below shows the entire run every three time-steps. Note that each of the three
tracking systems - radar, lidar, and the track-level fusion - were able to track all four vehicles in the
scenario and no false tracks were confirmed.

8 Featured Examples

8-390

You can also quantitatively measure this aspect of the performance using "missed target" and "false
track" components of the GOSPA metric. Notice in the figures below that missed target component
starts from a higher value due to establishment delay and goes down to zero in about 5-10 steps for
each tracking system. Also, notice that the false track component is zero for all systems, which
indicates that no false tracks were confirmed.

% Plot missed target component
figure; plot(missTarget','LineWidth',2); legend('Radar','Lidar','Fused');
title("Missed Target Metric"); xlabel('Time step'); ylabel('Metric'); grid on;

% Plot false track component
figure; plot(falseTracks','LineWidth',2); legend('Radar','Lidar','Fused');
title("False Track Metric"); xlabel('Time step'); ylabel('Metric'); grid on;

 Track-Level Fusion of Radar and Lidar Data

8-391

8 Featured Examples

8-392

Track-level Accuracy

The track-level or localization accuracy of each tracker can also be quantitatively assessed by the
GOSPA metric at each time step. A lower value indicates better tracking accuracy. As there were no
missed targets or false tracks, the metric captures the localization errors resulting from state
estimation of each vehicle.

Note that the GOSPA metric for fused estimates is lower than the metric for individual sensor, which
indicates that track accuracy increased after fusion of track estimates from each sensor.

% Plot GOSPA
figure; plot(gospa','LineWidth',2); legend('Radar','Lidar','Fused');
title("GOSPA Metric"); xlabel('Time step'); ylabel('Metric'); grid on;

 Track-Level Fusion of Radar and Lidar Data

8-393

Closely-spaced targets

As mentioned earlier, this example uses a Euclidian-distance based clustering and bounding box
fitting to feed the lidar data to a conventional tracking algorithm. Clustering algorithms typically
suffer when objects are closely-spaced. With the detector configuration used in this example, when
the passing vehicle approaches the vehicle in front of the ego vehicle, the detector clusters the point
cloud from each vehicle into a bigger bounding box. You can notice in the animation below that the
track drifted away from the vehicle center. Because the track was reported with higher certainty in
its estimate for a few steps, the fused estimated was also affected initially. However, as the
uncertainty increases, its association with the fused estimate becomes weaker. This is because the
covariance intersection algorithm chooses a mixing weight for each assigned track based on the
certainty of each estimate.

8 Featured Examples

8-394

This effect is also captured in the GOSPA metric. You can notice in the GOSPA metric plot above that
the lidar metric shows a peak around the 65th time step.

The radar tracks are not affected during this event because of two main reasons. Firstly, the radar
sensor outputs range-rate information in each detection, which is different beyond noise-levels for the
passing car as compared to the slower moving car. This results in an increased statistical distance
between detections from individual cars. Secondly, extended object trackers evaluate multiple
possible clustering hypothesis against predicted tracks, which results in rejection of improper
clusters and acceptance of proper clusters. Note that for extended object trackers to properly choose
the best clusters, the filter for the track must be robust to a degree that can capture the difference
between two clusters. For example, a track with high process noise and highly uncertain dimensions
may not be able to properly claim a cluster because of its premature age and higher flexibility to
account for uncertain events.

Targets at long range

As targets recede away from the radar sensors, the accuracy of the measurements degrade because
of reduced signal-to-noise ratio at the detector and the limited resolution of the sensor. This results in
high uncertainty in the measurements, which in turn reduces the track accuracy. Notice in the close-
up display below that the track estimate from the radar is further away from the ground truth for the
radar sensor and is reported with a higher uncertainty. However, the lidar sensor reports enough
measurements in the point cloud to generate a "shrunk" bounding box. The shrinkage effect modeled
in the measurement model for lidar tracking algorithm allows the tracker to maintain a track with
correct dimensions. In such situations, the lidar mixing weight is higher than the radar and allows the
fused estimate to be more accurate than the radar estimate.

 Track-Level Fusion of Radar and Lidar Data

8-395

Summary

In this example, you learned how to set up a track-level fusion algorithm for fusing tracks from radar
and lidar sensors. You also learned how to evaluate a tracking algorithm using the Generalized
Optimal Subpattern Metric and its associated components.

Utility Functions

collectSensorData

A function to generate radar and lidar measurements at the current time-step.

function [radarDetections, ptCloud, egoPose] = helperCollectSensorData(egoVehicle, radars, lidar, time)

% Current poses of targets with respect to ego vehicle
tgtPoses = targetPoses(egoVehicle);

radarDetections = cell(0,1);
for i = 1:numel(radars)
 thisRadarDetections = step(radars{i},tgtPoses,time);
 radarDetections = [radarDetections;thisRadarDetections]; %#ok<AGROW>
end

% Generate point cloud from lidar
rdMesh = roadMesh(egoVehicle);
ptCloud = step(lidar, tgtPoses, rdMesh, time);

% Compute pose of ego vehicle to track in scenario frame. Typically
% obtained using an INS system. If unavailable, this can be set to
% "origin" to track in ego vehicle's frame.
egoPose = pose(egoVehicle);

8 Featured Examples

8-396

end

radar2cental

A function to transform a track in the radar state-space to a track in the central state-space.

function centralTrack = radar2central(radarTrack)

% Initialize a track of the correct state size
centralTrack = objectTrack('State',zeros(10,1),...
 'StateCovariance',eye(10));

% Sync properties of radarTrack except State and StateCovariance with
% radarTrack See syncTrack defined below.
centralTrack = syncTrack(centralTrack,radarTrack);

xRadar = radarTrack.State;
PRadar = radarTrack.StateCovariance;

H = zeros(10,7); % Radar to central linear transformation matrix
H(1,1) = 1;
H(2,2) = 1;
H(3,3) = 1;
H(4,4) = 1;
H(5,5) = 1;
H(8,6) = 1;
H(9,7) = 1;

xCentral = H*xRadar; % Linear state transformation
PCentral = H*PRadar*H'; % Linear covariance transformation

PCentral([6 7 10],[6 7 10]) = eye(3); % Unobserved states

% Set state and covariance of central track
centralTrack.State = xCentral;
centralTrack.StateCovariance = PCentral;

end

central2radar

A function to transform a track in the central state-space to a track in the radar state-space.

function radarTrack = central2radar(centralTrack)

% Initialize a track of the correct state size
radarTrack = objectTrack('State',zeros(7,1),...
 'StateCovariance',eye(7));

% Sync properties of centralTrack except State and StateCovariance with
% radarTrack See syncTrack defined below.
radarTrack = syncTrack(radarTrack,centralTrack);

xCentral = centralTrack.State;
PCentral = centralTrack.StateCovariance;

H = zeros(7,10); % Central to radar linear transformation matrix

 Track-Level Fusion of Radar and Lidar Data

8-397

H(1,1) = 1;
H(2,2) = 1;
H(3,3) = 1;
H(4,4) = 1;
H(5,5) = 1;
H(6,8) = 1;
H(7,9) = 1;

xRadar = H*xCentral; % Linear state transformation
PRadar = H*PCentral*H'; % Linear covariance transformation

% Set state and covariance of radar track
radarTrack.State = xRadar;
radarTrack.StateCovariance = PRadar;
end

syncTrack

A function to syncs properties of one track with another except the State and StateCovariance
properties.

function tr1 = syncTrack(tr1,tr2)
props = properties(tr1);
notState = ~strcmpi(props,'State');
notCov = ~strcmpi(props,'StateCovariance');

props = props(notState & notCov);
for i = 1:numel(props)
 tr1.(props{i}) = tr2.(props{i});
end
end

pose

A function to return pose of the ego vehicle as a structure.

function egoPose = pose(egoVehicle)
egoPose.Position = egoVehicle.Position;
egoPose.Velocity = egoVehicle.Velocity;
egoPose.Yaw = egoVehicle.Yaw;
egoPose.Pitch = egoVehicle.Pitch;
egoPose.Roll = egoVehicle.Roll;
end

helperLidarDistance

Function to calculate a normalized distance between the estimate of a track in radar state-space and
the assigned ground truth.

function dist = helperLidarDistance(track, truth)

% Calculate the actual values of the states estimated by the tracker

% Center is different than origin and the trackers estimate the center
rOriginToCenter = -truth.OriginOffset(:) + [0;0;truth.Height/2];
rot = quaternion([truth.Yaw truth.Pitch truth.Roll],'eulerd','ZYX','frame');
actPos = truth.Position(:) + rotatepoint(rot,rOriginToCenter')';

8 Featured Examples

8-398

% Actual speed and z-rate
actVel = [norm(truth.Velocity(1:2));truth.Velocity(3)];

% Actual yaw
actYaw = truth.Yaw;

% Actual dimensions.
actDim = [truth.Length;truth.Width;truth.Height];

% Actual yaw rate
actYawRate = truth.AngularVelocity(3);

% Calculate error in each estimate weighted by the "requirements" of the
% system. The distance specified using Mahalanobis distance in each aspect
% of the estimate, where covariance is defined by the "requirements". This
% helps to avoid skewed distances when tracks under/over report their
% uncertainty because of inaccuracies in state/measurement models.

% Positional error.
estPos = track.State([1 2 6]);
reqPosCov = 0.1*eye(3);
e = estPos - actPos;
d1 = sqrt(e'/reqPosCov*e);

% Velocity error
estVel = track.State([3 7]);
reqVelCov = 5*eye(2);
e = estVel - actVel;
d2 = sqrt(e'/reqVelCov*e);

% Yaw error
estYaw = track.State(4);
reqYawCov = 5;
e = estYaw - actYaw;
d3 = sqrt(e'/reqYawCov*e);

% Yaw-rate error
estYawRate = track.State(5);
reqYawRateCov = 1;
e = estYawRate - actYawRate;
d4 = sqrt(e'/reqYawRateCov*e);

% Dimension error
estDim = track.State([8 9 10]);
reqDimCov = eye(3);
e = estDim - actDim;
d5 = sqrt(e'/reqDimCov*e);

% Total distance
dist = d1 + d2 + d3 + d4 + d5;

end

helperRadarDistance

Function to calculate a normalized distance between the estimate of a track in radar state-space and
the assigned ground truth.

 Track-Level Fusion of Radar and Lidar Data

8-399

function dist = helperRadarDistance(track, truth)

% Calculate the actual values of the states estimated by the tracker

% Center is different than origin and the trackers estimate the center
rOriginToCenter = -truth.OriginOffset(:) + [0;0;truth.Height/2];
rot = quaternion([truth.Yaw truth.Pitch truth.Roll],'eulerd','ZYX','frame');
actPos = truth.Position(:) + rotatepoint(rot,rOriginToCenter')';
actPos = actPos(1:2); % Only 2-D

% Actual speed
actVel = norm(truth.Velocity(1:2));

% Actual yaw
actYaw = truth.Yaw;

% Actual dimensions. Only 2-D for radar
actDim = [truth.Length;truth.Width];

% Actual yaw rate
actYawRate = truth.AngularVelocity(3);

% Calculate error in each estimate weighted by the "requirements" of the
% system. The distance specified using Mahalanobis distance in each aspect
% of the estimate, where covariance is defined by the "requirements". This
% helps to avoid skewed distances when tracks under/over report their
% uncertainty because of inaccuracies in state/measurement models.

% Positional error
estPos = track.State([1 2]);
reqPosCov = 0.1*eye(2);
e = estPos - actPos;
d1 = sqrt(e'/reqPosCov*e);

% Speed error
estVel = track.State(3);
reqVelCov = 5;
e = estVel - actVel;
d2 = sqrt(e'/reqVelCov*e);

% Yaw error
estYaw = track.State(4);
reqYawCov = 5;
e = estYaw - actYaw;
d3 = sqrt(e'/reqYawCov*e);

% Yaw-rate error
estYawRate = track.State(5);
reqYawRateCov = 1;
e = estYawRate - actYawRate;
d4 = sqrt(e'/reqYawRateCov*e);

% Dimension error
estDim = track.State([6 7]);
reqDimCov = eye(2);
e = estDim - actDim;
d5 = sqrt(e'/reqDimCov*e);

8 Featured Examples

8-400

% Total distance
dist = d1 + d2 + d3 + d4 + d5;

% A constant penality for not measuring 3-D state
dist = dist + 3;

end

helperRadarLidarFusionFcn

Function to fuse states and state covariances in central track state-space

function [x,P] = helperRadarLidarFusionFcn(xAll,PAll)
n = size(xAll,2);
dets = zeros(n,1);

% Initialize x and P
x = xAll(:,1);
P = PAll(:,:,1);

onlyLidarStates = false(10,1);
onlyLidarStates([6 7 10]) = true;

% Only fuse this information with lidar
xOnlyLidar = xAll(onlyLidarStates,:);
POnlyLidar = PAll(onlyLidarStates,onlyLidarStates,:);

% States and covariances for intersection with radar and lidar both
xToFuse = xAll(~onlyLidarStates,:);
PToFuse = PAll(~onlyLidarStates,~onlyLidarStates,:);

% Sorted order of determinants. This helps to sequentially build the
% covariance with comparable determinations. For example, two large
% covariances may intersect to a smaller covariance, which is comparable to
% the third smallest covariance.
for i = 1:n
 dets(i) = det(PToFuse(1:2,1:2,i));
end
[~,idx] = sort(dets,'descend');
xToFuse = xToFuse(:,idx);
PToFuse = PToFuse(:,:,idx);

% Initialize fused estimate
thisX = xToFuse(:,1);
thisP = PToFuse(:,:,1);

% Sequential fusion
for i = 2:n
 [thisX,thisP] = fusecovintUsingPos(thisX, thisP, xToFuse(:,i), PToFuse(:,:,i));
end

% Assign fused states from all sources
x(~onlyLidarStates) = thisX;
P(~onlyLidarStates,~onlyLidarStates,:) = thisP;

% Fuse some states only with lidar source
valid = any(abs(xOnlyLidar) > 1e-6,1);

 Track-Level Fusion of Radar and Lidar Data

8-401

xMerge = xOnlyLidar(:,valid);
PMerge = POnlyLidar(:,:,valid);

if sum(valid) > 1
 [xL,PL] = fusecovint(xMerge,PMerge);
elseif sum(valid) == 1
 xL = xMerge;
 PL = PMerge;
else
 xL = zeros(3,1);
 PL = eye(3);
end

x(onlyLidarStates) = xL;
P(onlyLidarStates,onlyLidarStates) = PL;

end

function [x,P] = fusecovintUsingPos(x1,P1,x2,P2)
% Covariance intersection in general is employed by the following
% equations:
% P^-1 = w1*P1^-1 + w2*P2^-1
% x = P*(w1*P1^-1*x1 + w2*P2^-1*x2);
% where w1 + w2 = 1
% Usually a scalar representative of the covariance matrix like "det" or
% "trace" of P is minimized to compute w. This is offered by the function
% "fusecovint". However. in this case, the w are chosen by minimizing the
% determinants of "positional" covariances only.
n = size(x1,1);
idx = [1 2];
detP1pos = det(P1(idx,idx));
detP2pos = det(P2(idx,idx));
w1 = detP2pos/(detP1pos + detP2pos);
w2 = detP1pos/(detP1pos + detP2pos);
I = eye(n);

P1inv = I/P1;
P2inv = I/P2;

Pinv = w1*P1inv + w2*P2inv;
P = I/Pinv;

x = P*(w1*P1inv*x1 + w2*P2inv*x2);

end

References

[1] Lang, Alex H., et al. "PointPillars: Fast encoders for object detection from point clouds."
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

[2] Zhou, Yin, and Oncel Tuzel. "Voxelnet: End-to-end learning for point cloud based 3d object
detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

8 Featured Examples

8-402

[3] Yang, Bin, Wenjie Luo, and Raquel Urtasun. "Pixor: Real-time 3d object detection from point
clouds." Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018.

See Also
drivingScenario | drivingRadarDataGenerator | lidarPointCloudGenerator |
trackGOSPAMetric

More About
• “Extended Object Tracking of Highway Vehicles with Radar and Camera” on page 8-327
• “Track Vehicles Using Lidar: From Point Cloud to Track List” on page 8-268
• “Detect, Classify, and Track Vehicles Using Lidar” (Lidar Toolbox)

 Track-Level Fusion of Radar and Lidar Data

8-403

Track-Level Fusion of Radar and Lidar Data in Simulink
Autonomous systems require precise estimation of their surroundings to support decision making,
planning, and control. High-resolution sensors such as radar and lidar are frequently used in
autonomous systems to assist in estimation of the surroundings. These sensors generally output
tracks. Outputting tracks instead of detections and fusing the tracks together in a decentralized
manner provide several benefits, including low false alarm rates, higher target estimation accuracy, a
low bandwidth requirement, and low computational costs. This example shows you how to track
objects from measurements of a radar and a lidar sensor and how to fuse them using a track-level
fusion scheme in Simulink®. You process the radar measurements using a Gaussian Mixture
Probability Hypothesis Density (GM-PHD) tracker and the lidar measurements using a Joint
Probabilistic Data Association (JPDA) tracker. You further fuse these tracks using a track-level fusion
scheme. The example closely follows the “Track-Level Fusion of Radar and Lidar Data” (Sensor
Fusion and Tracking Toolbox) MATLAB® example.

Overview of Model

load_system('TrackLevelFusionOfRadarAndLidarDataInSimulink');
set_param('TrackLevelFusionOfRadarAndLidarDataInSimulink','SimulationCommand','update');
open_system('TrackLevelFusionOfRadarAndLidarDataInSimulink');

The model has six subsystems, each implementing a part of the algorithm.

• Scenario and Sensor Simulation
• Radar Tracking Algorithm
• Lidar Tracking Algorithm
• Track Level Fusion
• Performance Analysis
• Visualization

8 Featured Examples

8-404

Scenario and Sensor Simulation

The scenario recording for this example is captured from the scenario described in “Track-Level
Fusion of Radar and Lidar Data” (Sensor Fusion and Tracking Toolbox) MATLAB example. The
Scenario Reader block reads a prerecorded scenario file and generates actors and ego vehicle
position data as Simulink.Bus (Simulink) objects. In this scenario, the ego vehicle is mounted with
four 2-D radar sensors. The front and rear radar sensors have a field of view of 45 degrees. The left
and right radar sensors have a field of view of 150 degrees. Each radar has a resolution of 6 degrees
in azimuth and 2.5 meters in range. The ego vehicle is also mounted with one 3-D lidar sensor with a
field of view of 360 degrees in azimuth and 40 degrees in elevation. The lidar has a resolution of 0.2
degrees in azimuth and 1.25 degrees in elevation (32 elevation channels). The Radar Detection
Generator block generates radar detections and the Lidar Point Cloud Generator block generates
point clouds. Detections from all four radar sensors are grouped together with the Detection

 Track-Level Fusion of Radar and Lidar Data in Simulink

8-405

Concatenation block and the Digital Clock block is used to simulate time. Sensor configurations and
the simulated sensor data is visualized in the animation that follows. Notice that the radars have
higher resolution than objects and therefore return multiple measurements per object. Also notice
that the lidar interacts with the actors as well as the road surface to return multiple points.

8 Featured Examples

8-406

Radar Tracking Algorithm

Radars generally have higher resolution than the objects and return multiple detections per object.
Conventional trackers such as Global Nearest Neighbor (GNN) and Joint Probabilistic Data
Association (JPDA) assume that the sensors return at most one detection per object per scan.
Therefore, the detections from high-resolution sensors must be either clustered before processing
them with conventional trackers or must be processed using extended object trackers. Extended

 Track-Level Fusion of Radar and Lidar Data in Simulink

8-407

object trackers do not require preclustering of detections. Generally, extended object trackers offer
better estimation of objects since they handle clustering and data association simultaneously.

In this example, you use a Gaussian mixture probability hypothesis density (GM-PHD) extended
object tracker for radar tracking. The tracker block takes detections, prediction time, and sensor
configurations as input and outputs confirmed tracks as a Simulink.Bus (Simulink) object.
Detections from the radar are preprocessed to include ego vehicle INS information in the Radar
Detection Preprocessing MATLAB Function (Simulink) Block. The Sensor Configuration Reader block
provides Sensor Configuration to the tracker block. The block is implemented by using MATLAB
System (Simulink) block. Code for this block is defined in the HelperSourceConfigReader class.

This visualization shows radar tracking at a single time step. Notice that the radar sensors report
multiple detections per object and the GM-PHD tracker forms two-dimensional rectangular tracks
corresponding to each object.

Lidar Tracking Algorithm

8 Featured Examples

8-408

Lidar sensors have high resolution capabilities, and each scan from the sensor contains many points,
commonly known as a point cloud . This raw data must be preprocessed to extract objects. The
preprocessing is performed using a RANSAC-based plane-fitting algorithm and bounding boxes are
fitted using a Euclidian-based distance clustering algorithm. For more information about the
algorithm, refer to the “Track Vehicles Using Lidar: From Point Cloud to Track List” (Sensor Fusion
and Tracking Toolbox) example.

The Bounding Box Detector block is implemented using a MATLAB System (Simulink) block. Code for
this block is defined in a helper class, HelperBoundingBoxDetectorBlk. The block accepts point
cloud locations and a prediction time as input and outputs bounding box detections corresponding to
obstacles and segmentation information. Detections are processed using a conventional JPDA tracker,
configured with an interacting multiple model (IMM) filter. The IMM filter is implemented using the
helper function helperInitIMMUKFFilter, which is specified as the Filter initialization function
parameter of the block. Detections from lidar sensor are preprocessed to include ego vehicle INS
information in the Lidar Detection Preprocessing MATLAB Function (Simulink) block.

The Calculate Detectability block calculates the Detectable TrackIDs input for the tracker and
outputs an two-column array. The first column represents the TrackIDs of the tracks and the second
column specifies their detection probability by the sensor and bounding box detector. The block is
implemented using a MATLAB Function (Simulink) block.

This visualization shows the lidar tracking at a single time step. The Bounding Box Detector block
generates detections from the point cloud, and the JPDA tracker forms three-dimensional cuboid
tracks corresponding to each object.

 Track-Level Fusion of Radar and Lidar Data in Simulink

8-409

Track-Level Fusion

The track fusion algorithm is implemented using the Track-To-Track Fuser block. The block takes a
prediction time, rectangular radar tracks, and cuboid lidar tracks as input and outputs fused tracks.
It uses a traditional track-to-track association-based fusion scheme and GNN assignment to create a
single hypothesis. The Track Concatenation block combines tracks from both sources and generates a
single track bus. The fuser source configuration for radar and lidar is set using the SourceConfig
variable through the PreLoadFcn callback. See “Model Callbacks” (Simulink) for more information
about callback functions. The state fusion algorithm for this example is implemented in the
helperRadarLidarFusionFunction helper function and specified as the 'custom fusion
function' property.

This visualization shows track fusion at a single time step. The fused tracks are closer to the actual
objects than the individual sensor tracks, which indicates that track accuracy increased after fusion
of track estimates from both sensors.

8 Featured Examples

8-410

Performance Analysis

In this example, you assess the performance of each algorithm using the Generalized Optimal
Subpattern Assignment (GOSPA) metric. The GOSPA metric aims to evaluate the performance of a
tracking system with a scalar cost.

The GOSPA metric can be calculated with the following equation

where is the number of ground truths, is the number of estimated tracks, is the
cutoff distance threshold, is the base distance between track and truth calculated by a distance
function specified in the Distance property, is order of the metric and is the alpha parameter of
the metric, defined from the block mask.

A lower value of the metric indicates better performance of the tracking algorithm. To use the GOSPA
metric with custom motion models like the one used in this example, you set the Distance property
to custom and define a distance function between a track and its associated ground truth. These
distance functions are defined in helperRadarDistance and helperLidarDistance helper files.
The Ground Truth Reader block provides truth data at each time step. The block is implemented
using a MATLAB System (Simulink) block and code for this block is defined in the
HelperGroundTruthReader class. Finally, the GOSPA score for radar tracking, lidar tracking, and
track fusion algorithms are grouped together.

 Track-Level Fusion of Radar and Lidar Data in Simulink

8-411

Visualization

The Visualization block is implemented using a MATLAB System (Simulink) block. Code for this block
is defined in the helper class helperLidarRadarTrackFusionDisplayBlock. The block uses the
RunTimeObject parameter of the blocks to display their outputs. See “Access Block Data During
Simulation” (Simulink) for further information on how to access block outputs during simulation.

This animation shows the entire run every three time steps. Each three tracking system (radar, lidar,
and track-level fusion) was able to track all four vehicles in the scenario without confirming any false
tracks.

The GOSPA metric is visualized using the scope block. The x-axis in the figure that follows represents
time and y-axis represents the GOSPA score. Each unit on the x-axis represents 10 time steps in the
scenario. The track-level localization accuracy of each tracker can be quantitatively assessed with the
GOSPA metric at each time step. A lower value indicates better tracking accuracy. As there were no
missed targets or false tracks, the metric captures the localization errors resulting from the state
estimation of each vehicle. Each component of the GOSPA metric can also be selected as a block
output and visualized separately.

8 Featured Examples

8-412

Note that the GOSPA metric for fused estimates is lower than the metric for individual sensor, which
indicates that track accuracy increased after fusion of track estimates from both sensors.

close_system('TrackLevelFusionOfRadarAndLidarDataInSimulink');

Summary

In this example, you learned how to track radar measurements using an extended object tracker with
a two-dimensional rectangular model, how to track lidar measurements using a conventional JPDA
tracker with a three-dimensional cuboid model, and how to set up a track-level fusion algorithm for
fusing tracks from radar and lidar sensors in Simulink. You also learned how to evaluate performance
of a tracking algorithm using the Generalized Optimal Subpattern Assignment metric. The simulation
results show that tracking by fusing tracks from radar and lidar is more accurate than tracking by
each individual sensor.

See Also

Related Examples
• “Track-Level Fusion of Radar and Lidar Data” on page 8-384
• “Track Vehicles Using Lidar Data in Simulink” on page 8-414

 Track-Level Fusion of Radar and Lidar Data in Simulink

8-413

Track Vehicles Using Lidar Data in Simulink
This example shows you how to track vehicles using measurements from a lidar sensor mounted on
top of an ego vehicle. Due to high resolution capabilities of the lidar sensor, each scan from the
sensor contains a large number of points, commonly known as a point cloud. The example illustrates
the workflow in Simulink for processing the point cloud and tracking the objects. The lidar data used
in this example is recorded from a highway driving scenario. You use the recorded data to track
vehicles with a joint probabilistic data association (JPDA) tracker and an interacting multiple model
(IMM) approach. The example closely follows the “Track Vehicles Using Lidar: From Point Cloud to
Track List” (Sensor Fusion and Tracking Toolbox) MATLAB® example.

Setup

The lidar data used in this example is available at the following link: https://ssd.mathworks.com/
supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip

Download the data files into the current working folder. If you want to place the files in a different
folder, change the directory name in the subsequent instructions.

% Load the data if unavailable.
if ~exist('lidarData_1.mat','file')
 dataUrl = 'https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip';
 datasetFolder = fullfile(pwd);
 unzip(dataUrl,datasetFolder);
end

Overview of the Model

load_system('TrackVehiclesSimulinkExample');
set_param('TrackVehiclesSimulinkExample','SimulationCommand','update');
open_system('TrackVehiclesSimulinkExample');

Lidar and Image Data Reader

The Lidar Data Reader and Image Data Reader blocks are implemented using a MATLAB System
(Simulink) block. The code for the blocks is defined by helper classes, HelperLidarDataReader and
HelperImageDataReader respectively. The image and lidar data readers read the recorded data
from the MAT files and output the reference image and the locations of points in the point cloud
respectively.

Bounding Box Detector

8 Featured Examples

8-414

https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip
https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampleData.zip

As described earlier, the raw data from sensor contains a large number of points. This raw data must
be preprocessed to extract objects of interest, such as cars, cyclists, and pedestrian. The
preprocessing is done using the Bounding Box Detector block. The Bounding Box Detector is also
implemented as a MATLAB System™ block defined by a helper class,
HelperBoundingBoxDetectorBlock. It accepts the point cloud locations as an input and outputs
bounding box detections corresponding to obstacles. The diagram shows the processes involved in
the bounding box detector model and the Computer Vision Toolbox™ functions used to implement
each process. It also shows the parameters of the block that control each process.

The block outputs the detections and segmentation information as Simulink.Bus (Simulink) objects
named detectionBus and segmentationBus. These buses are created in the base workspace
using helper function helperCreateDetectorBus specified in the PreLoadFcn callback. See
“Model Callbacks” (Simulink) for more information about callback functions.

Tracking algorithm

The tracking algorithm is implemented using the joint probabilistic data association (JPDA) tracker,
which uses an interacting multiple model (IMM) approach to track targets. The IMM filter is
implemented by the helperInitIMMFilter, which is specified as the "Filter initialization function"
parameter of the block. In this example, the IMM filter is configured to use two models, a constant
velocity cuboid model and a constant turn-rate cuboid model. The models define the dimensions of
the cuboid as constants during state-transition and their estimates evolve in time during correction
stages of the filter. The animation below shows the effect of mixing the constant velocity and constant
turn-rate models with different probabilities during prediction stages of the filter.

 Track Vehicles Using Lidar Data in Simulink

8-415

The IMM filter automatically computes the probability of each model when the filter is corrected with
detections. The animation below shows the estimated trajectory and the probability of models during
a lane change event.

8 Featured Examples

8-416

For a detailed description of the state transition and measurement models, refer to the "Target State
and Sensor Measurement Model" section of the MATLAB example.

The tracker block selects the check box "Enable all tracks output" and "Enable detectable track IDs
input" to output all tracks from the tracker and calculate their detection probability as a function of
their state.

Calculate Detectability

The Calculate Detectability block is implemented using a MATLAB Function (Simulink) block. The
block calculates the Detectable TrackIDs input for the tracker and outputs it as an array with 2
columns. The first column represents the TrackIDs of the tracks and the second column specifies
their probability of detection by the sensor and bounding box detector.

Visualization

 Track Vehicles Using Lidar Data in Simulink

8-417

The Visualization block is also implemented using the MATLAB System block and is defined using
HelperLidarExampleDisplayBlock. The block uses RunTimeObject parameter of the blocks to
display their outputs. See “Access Block Data During Simulation” (Simulink) for further information
on how to access block outputs during simulation.

Detections and Tracks Bus Objects

As described earlier, the inputs and outputs of different blocks are defined by bus objects. You can
visualize the structure of each bus using the Bus Editor (Simulink). The following images show the
structure of the bus for detections and tracks.

Detections

The detectionBus outputs a nested bus object with 2 elements, NumDetections and Detections.

The first element, NumDetections, represents the number of detections. The second element
Detections is a bus object of a fixed size representing all detections. The first NumDetections
elements of the bus object represent the current set of detections. Notice that the structure of the
bus is similar to the objectDetection (Sensor Fusion and Tracking Toolbox) class.

8 Featured Examples

8-418

Tracks

The track bus is similar to the detections bus. It is a nested bus, where NumTracks defines the
number of tracks in the bus and Tracks define a fixed size of tracks. The size of the tracks is
governed by the block parameter "Maximum number of tracks".

The second element Tracks is a bus object defined by trackBusTracks. This bus is automatically
created by the tracker block by using the bus name specified as the prefix. Notice that the structure
of the bus is similar to the objectTrack (Sensor Fusion and Tracking Toolbox) class.

 Track Vehicles Using Lidar Data in Simulink

8-419

Results

The detector and tracker algorithm is configured exactly as the “Track Vehicles Using Lidar: From
Point Cloud to Track List” (Sensor Fusion and Tracking Toolbox) MATLAB example. After running the
model, you can visualize the results on the figure. The animation below shows the results from time 0
to 4 seconds. The tracks are represented by green bounding boxes. The bounding box detections are
represented by orange bounding boxes. The detections also have orange points inside them,
representing the point cloud segmented as obstacles. The segmented ground is shown in purple. The
cropped or discarded point cloud is shown in blue. Notice that the tracked objects are able to
maintain their shape and kinematic center by positioning the detections onto visible portions of the
vehicles. This illustrates the offset and shrinkage effect modeled in the measurement functions.

8 Featured Examples

8-420

close_system('TrackVehiclesSimulinkExample');

Summary

This example showed how to use a JPDA tracker with an IMM filter to track objects using a lidar
sensor. You learned how a raw point cloud can be preprocessed to generate detections for
conventional trackers, which assume one detection per object per sensor scan. You also learned how
to use a cuboid model to describe the extended objects being tracked by the JPDA tracker.

See Also
Joint Probabilistic Data Association Multi Object Tracker

More About
• “Track Vehicles Using Lidar: From Point Cloud to Track List” on page 8-268
• “Detect, Classify, and Track Vehicles Using Lidar” (Lidar Toolbox)
• “Track-Level Fusion of Radar and Lidar Data in Simulink” on page 8-404

 Track Vehicles Using Lidar Data in Simulink

8-421

Grid-Based Tracking in Urban Environments Using Multiple
Lidars

This example shows how to track moving objects with multiple lidars using a grid-based tracker. A
grid-based tracker enables early fusion of data from high-resolution sensors such as radars and lidars
to create a global object list.

Introduction

Most multi-object tracking approaches represent the environment as a set of discrete and unknown
number of objects. The job of the tracker is to estimate the number of objects and their
corresponding states, such as position, velocity, and dimensions, using the sensor measurements.
With high-resolution sensors such as radar or lidar, the tracking algorithm can be configured using
point-object trackers or extended object trackers.

Point-Object Trackers

Point-object trackers assume that each object may give rise to at most one detection per sensor.
Therefore, when using point-target trackers for tracking extended objects, features like bounding box
detections are first extracted from the sensor measurements at the object-level. These object-level
features then get fused with object-level hypothesis from the tracker. A poor object-level extraction
algorithm at the sensor level (such as imperfect clustering) thus greatly impacts the performance of
the tracker. For an example of this workflow, refer to “Track Vehicles Using Lidar: From Point Cloud
to Track List” on page 8-268.

Extended Object Trackers

On the other hand, extended object trackers process the detections without extracting object-level
hypothesis at the sensor level. Extended object trackers associate sensor measurements directly with
the object-level hypothesis maintained by tracker. To do this, a class of algorithms typically requires
complex measurement models of the object extents specific to each sensor modality. For example,
refer to “Extended Object Tracking with Lidar for Airport Ground Surveillance” (Sensor Fusion and
Tracking Toolbox) and “Extended Object Tracking of Highway Vehicles with Radar and Camera” on
page 8-327 to learn how to configure a multi-object PHD tracker for lidar and radar respectively.

A grid-based tracker can be considered as a type of extended object tracking algorithm which uses a
dynamic occupancy grid map as an intermediate representation of the environment. In a dynamic
occupancy grid map, the environment is discretized using a set of 2-D grid cells. The dynamic map
represents the occupancy as well as kinematics of the space represented by a grid cell. Using the
dynamic map estimate and further classification of cells as static and dynamic serves as a
preprocessing step to filter out measurements from static objects and to reduce the computational
complexity.

In this example, you use the trackerGridRFS (Sensor Fusion and Tracking Toolbox) System object™
to configure the grid-based tracker. This tracker uses the Random Finite Set (RFS) formulation with
Dempster-Shafer approximation [1] to estimate the dynamic map. Further, it uses a nearest neighbor
cell-to-track association [2] scheme to track dynamic objects in the scene. To initialize new tracks, the
tracker uses the DBSCAN algorithm to cluster unassigned dynamic grid cells.

Set Up Scenario and Lidar Sensor Models

The scenario used in this example was created using the Driving Scenario Designer app and was
exported to a MATLAB® function. This MATLAB function was wrapped as a helper function

8 Featured Examples

8-422

helperCreateMultiLidarDrivingScenario. The scenario represents an urban intersection
scene and contains a variety of objects that include pedestrians, bicyclists, cars, and trucks.

The ego vehicle is equipped with 6 homogeneous lidars, each with a horizontal field of view of 90
degrees and a vertical field of view of 40 degrees. The lidars are simulated using the
lidarPointCloudGenerator System object. Each lidar has 32 elevation channels and has a
resolution of 0.16 degrees in azimuth. Under this configuration, each lidar sensor outputs
approximately 18,000 points per scan. The configuration of each sensor is shown here.

% For reproducible results
rng(2020);

% Create scenario
[scenario, egoVehicle, lidars] = helperCreateMultiLidarDrivingScenario;

The scenario and the data from the different lidars can be visualized in the animation below. For
brevity and to make the example easier to visualize, the lidar is configured to not return point cloud

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

8-423

from the ground by specifying the HasRoadsInputPort property as false. When using real data or
if using simulated data from roads, the returns from ground and other environment must be removed
using point cloud preprocessing. For more information, refer to the “Ground Plane and Obstacle
Detection Using Lidar” on page 8-172 example.

Set Up Grid-Based Tracker

You define a grid-based tracker using trackerGridRFS to track dynamic objects in the scene. The
first step of defining the tracker is setting up sensor configurations as
trackingSensorConfiguration objects. The sensor configurations allow you to specify the
mounting of each sensor with respect to the tracking coordinate frame. The sensor configurations
also allow you to specify the detection limits - field of view and maximum range - of each sensor. In
this example, you use the properties of the simulated lidar sensors to define these properties.

The utility function helperGetLidarConfig on page 8-0 uses the simulated lidar sensor model and
returns its respective configuration. In this example, the targets are tracked in the global or world
coordinate system by using the simulated pose of the vehicle. This information is typically obtained
via an inertial navigation system. As the sensors move in the scenario system, their configuration
must be updated each time by specifying the configurations as an input to the tracker.

% Store configurations of all sensor
sensorConfigs = cell(numel(lidars),1);

% Fill in sensor configurations
for i = 1:numel(sensorConfigs)
 sensorConfigs{i} = helperGetLidarConfig(lidars{i},egoVehicle);

8 Featured Examples

8-424

end

% Create tracker. You can define the properties before using the tracker.
tracker = trackerGridRFS('SensorConfigurations',sensorConfigs,...
 'HasSensorConfigurationsInput',true);

The tracker uses a two-dimensional grid for the intermediate representation of the environment. The
grid is defined by 3 attributes: its length, its width, and the resolution. The length and width describe
the span of the grid in local X and local Y direction of the ego vehicle respectively. The resolution
defines the number of cells per meter of the grid. In this example, you use a 120 m by 120 m grid
with 2 cells per meter.

tracker.GridLength = 120; % meters
tracker.GridWidth = 120; % meters
tracker.GridResolution = 2; % 1/meters

In addition to defining the grid, you also define the relative position of the ego vehicle by specifying
the origin of the grid (left corner) with respect to the origin of the ego vehicle. In this example, the
ego vehicle is located at the center of the grid.

tracker.GridOriginInLocal = [-tracker.GridLength/2 -tracker.GridWidth/2];

The tracker uses particle-based methods to estimate the state of each grid cell and further classify
them as dynamic or static. It uses a fixed number of persistent particles on the grid which defines the
distribution of existing targets. It also uses a fixed number of particles to sample the distribution for
newborn targets. These birth particles get sampled in different grid cells based on the probability of
birth. Further, the velocity and other unknown states like turn-rate and acceleration (applicable when
MotionModel of the tracker is not constant-velocity) of the particles is sampled uniformly using
prior information supplied using prior limits. A resampling step assures that the number of particles
on the grid remain constant.

tracker.NumParticles = 1e5; % Number of persistent particles
tracker.NumBirthParticles = 2e4; % Number of birth particles
tracker.VelocityLimits = [-15 15;-15 15]; % To sample velocity of birth particles (m/s)
tracker.BirthProbability = 0.025; % Probability of birth in each grid cell
tracker.ProcessNoise = 5*eye(2); % Process noise of particles for prediction as variance of [ax;ay] (m/s^2)

The tracker uses the Dempster-Shafer approach to define the occupancy of each cell. The dynamic
grid estimates the belief mass for occupancy and free state of the grid. During prediction, the
occupancy belief mass of the grid cell updates due to prediction of the particle distribution. The
DeathRate controls the probability of survival (Ps) of particles and results in a decay of occupancy
belief mass during prediction. As the free belief mass is not linked to the particles, the free belief
mass decays using a pre-specified, constant discount factor. This discount factor specifies the
probability that free regions remain free during prediction.

tracker.DeathRate = 1e-3; % Per unit time. Translates to Ps = 0.9999 for 10 Hz
tracker.FreeSpaceDiscountFactor = 1e-2; % Per unit time. Translates to a discount factor of 0.63 (1e-2^dT) for 10 Hz

After estimation of state of each grid cell, the tracker classifies each grid cell as static or dynamic by
using its estimated velocity and associated uncertainty. Further, the tracker uses dynamic cells to
extract object-level hypothesis using the following technique:

Each dynamic grid cell is considered for assignment with existing tracks. A dynamic grid cell is
assigned to its nearest track if the negative log-likelihood between a grid cell and a track falls below
an assignment threshold. A dynamic grid cell outside the assignment threshold is considered
unassigned. The tracker uses unassigned grid cells at each step to initiate new tracks. Because

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

8-425

multiple unassigned grid cells can belong to the same object track, a DBSCAN clustering algorithm is
used to assist in this step. Because there are false positives while classifying the cells as static or
dynamic, the tracker filters those false alarms in two ways. First, only unassigned cells which form
clusters with more than a specified number of points (MinNumPointsPerCluster) can create new
tracks. Second, each track is initialized as a tentative track first and is only confirmed if it is detected
M out of N times.

tracker.AssignmentThreshold = 8; % Maximum distance or negative log-likelihood between cell and track
tracker.MinNumCellsPerCluster = 6; % Minimum number of grid cells per cluster for creating new tracks
tracker.ClusteringThreshold = 1; % Minimum Euclidean distance between two cells for clustering
tracker.ConfirmationThreshold = [3 4]; % Threshold to confirm tracks
tracker.DeletionThreshold = [4 4]; % Threshold to delete confirmed tracks

You can also accelerate simulation by performing the dynamic map estimation on GPU by specifying
the UseGPU property of the tracker.

tracker.UseGPU = false;

Visualization

The visualization used for this example is defined using a helper class,
helperGridTrackingDisplay, attached with this example. The visualization contains three parts.

• Ground truth - Front View: This panel shows the front-view of the ground truth using a chase plot
from the ego vehicle. To emphasize dynamic actors in the scene, the static objects are shown in
gray.

• Lidar Views: These panels show the point cloud returns from each sensor.
• Grid-based tracker: This panel shows the grid-based tracker outputs. The tracks are shown as

boxes, each annotated by their identity. The tracks are overlaid on the dynamic grid map. The
colors of the dynamic grid cells are defined according to the color wheel, which represents the
direction of motion in the scenario frame. The static grid cells are represented using a grayscale
according to their occupancy. The degree of grayness denotes the probability of the space
occupied by the grid cell as free. The positions of the tracks are shown in the ego vehicle
coordinate system, while the velocity vector corresponds to the velocity of the track in the
scenario frame.

display = helperGridTrackingDisplay;

Run Scenario and Track Dynamic Objects

Next, run the scenario, simulate lidar sensor data from each lidar sensor, and process the data using
the grid-based tracker.

% Initialize pointCloud ouputs from each sensor
ptClouds = cell(numel(lidars),1);
sensorConfigs = cell(numel(lidars),1);

while advance(scenario)
 % Current simulation time
 time = scenario.SimulationTime;

 % Poses of objects with respect to ego vehicle
 tgtPoses = targetPoses(egoVehicle);

 % Simulate point cloud from each sensor
 for i = 1:numel(lidars)

8 Featured Examples

8-426

 [ptClouds{i}, isValidTime] = step(lidars{i},tgtPoses,time);
 sensorConfigs{i} = helperGetLidarConfig(lidars{i},egoVehicle);
 end

 % Pack point clouds as sensor data format required by the tracker
 sensorData = packAsSensorData(ptClouds,sensorConfigs,time);

 % Call the tracker
 tracks = tracker(sensorData,sensorConfigs,time);

 % Update the display
 display(scenario, egoVehicle, lidars, ptClouds, tracker, tracks);
 drawnow;
end

Results

Next, analyze the performance of the tracker using the visualization used in this example.

The grid-based tracker uses the dynamic cells from the estimated grid map to extract object tracks.
The animation below shows the results of the tracker in this scenario. The "Grid-based tracker" panel
shows the estimated dynamic map as well as the estimated tracks of the objects. It also shows the
configuration of the sensors mounted on the ego vehicle as blue circular sectors. Notice that the area
encapsulated by these sensors is estimated as "gray" in the dynamic map, representing that this area
is not observed by any of the sensors. This patch also serves as an indication of ego-vehicle's position
on the dynamic grid.

Notice that the tracks are extracted only from the dynamic grid cells and hence the tracker is able to
filter out static objects. Also notice that after a vehicle enters the grid region, its track establishment
takes few time steps. This is due to two main reasons. First, there is an establishment delay in
classification of the cell as dynamic. Second, the confirmation threshold for the object takes some
steps to establish a track as a confirmed object.

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

8-427

Next, you look at the history of a few tracks to understand how the state of a track gets affected by
the estimation of the dynamic grid.

Longitudinally Moving Tracks

The following snapshots show the history for the track denoted by T1. The T1 track represents the
yellow car that passes the ego vehicle on the left during the first few seconds of the simulation.
Notice that the grid cells occupied by this track are colored in red, indicating their motion in the
positive X direction. The track obtains the track's velocity and heading information using the velocity
distribution of the assigned grid cells. It also obtains its length, width, and orientation using the
spatial distribution of the assigned grid cells. The default TrackUpdateFcn of the trackerGridRFS
extracts new length, width, and orientation information from the spatial distribution of associated
grid cells at every step. This effect can be seen in the snapshots below, where the length and width of
the track adjusts according to the bounding box of the associated grid cells. An additional filtering
scheme can be added using the predicted length, width, and orientation of the track by using a
custom TrackUpdateFcn.

% Show snapshots for TrackID = 1. Also shows close tracks like T3 and T4
% representing car and truck moving in the opposite direction.
showSnapshots(display.GridView,1);

8 Featured Examples

8-428

showSnapshots(display.GridView,4);

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

8-429

Next, take a closer look at the history of T4. The T4 track represents the truck moving in the opposite
direction of the ego vehicle. Notice that the grid cells representing this track are colored in blue,
representing the estimated motion direction of the grid cell. Also, notice that there are grid cells in
the track that are misclassified by the tracker as static (white color). These misclassified grid cells
often occur when sensors report previously occluded regions of an object, because the tracker has an
establishment delay to classify these cells property.

Notice that at time = 4, when the truck and the vehicle came close to each other, the grid cells
maintained their respective color, representing a stark difference between their estimated velocity
directions. This also results in the correct data association between grid cells and predicted tracks of
T1 and T4, which helps the tracker to resolve them as separate objects.

Laterally Moving Tracks

The following snapshots represent the track denoted by T7. This track represents the vehicle moving
in the lateral direction, when the ego vehicle stops at the intersection. Notice that the grid cells of
this track are colored in purple, representing the direction of motion in negative Y direction. Similar

8 Featured Examples

8-430

to other tracks, the track maintains its length and width using the spatial distribution of the assigned
grid cells.

showSnapshots(display.GridView,7);

Tracks Changing Direction

In this example, you used a "constant-velocity" model with the tracker. This motion model assumes
that the targets move at a constant velocity, meaning constant speed and direction. However, in urban
scenes, this assumption is usually not accurate. To compensate for the unknown acceleration of the
objects, a process noise is specified on the tracker. The following snapshots show the history of track
T2. This track represents the vehicle directly in front of the ego vehicle. Notice in the ground truth
that this vehicle turns right at the intersection.

showSnapshots(display.GridView, 2);

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

8-431

Notice that the color of the grid cells associated with this track changes from red to purple. Also, the
transition of colors results in a few misclassified cells, which can result in a poor estimate of length
and width of the vehicle. The ability of the tracker to maintain the track on this vehicle is due to a
coupled effect of three main reasons. First, the tracker allows to specify an assignment threshold.
Even if the predicted track does not align with the dynamic grid cells, it can associate with them up
to a certain threshold. Second, to create a new track from grid cells that remain outside the threshold
requires meeting the minimum number of cells criteria. Third, the tracker has a deletion threshold,
which allows a track to be coasted for a few steps before deleting it. If the classification of grid cells
is very poor during the turn, the track can survive a few steps and can get re-associated with the grid
cells. Note that misclassified grid cells are far more observable with Track T8, as shown below in its
history. The T8 track represents the light blue car traveling in the positive Y direction before taking at
right turn at the intersection. This vehicle was partially occluded before the turn and had another
closely traveling vehicle while making the turn.

showSnapshots(display.GridView,8);

8 Featured Examples

8-432

Summary

In this example, you learned the basics of a grid-based tracker and how it can be used to track
dynamic objects in a complex urban driving environment. You also learned how to configure the
tracker to track an object using point clouds from multiple lidar sensors.

Supporting Functions

function sensorData = packAsSensorData(ptCloud, configs, time)
%The lidar simulation returns output as pointCloud object. The Location
%property of the point cloud is used to extract x,y and z locations of
%returns and pack them as structure with information required by a tracker.

sensorData = struct('SensorIndex',{},...
 'Time', {},...
 'Measurement', {},...
 'MeasurementParameters', {});

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

8-433

for i = 1:numel(ptCloud)
 % This sensor's cloud
 thisPtCloud = ptCloud{i};

 % Allows mapping between data and configurations without forcing an
 % ordered input and requiring configuration input for static sensors.
 sensorData(i).SensorIndex = configs{i}.SensorIndex;

 % Current time
 sensorData(i).Time = time;

 % Measurement as 3-by-N defininng locations of points
 sensorData(i).Measurement = reshape(thisPtCloud.Location,[],3)';

 % Data is reported in sensor coordinate frame and hence measurement
 % parameters are same as sensor transform parameters.
 sensorData(i).MeasurementParameters = configs{i}.SensorTransformParameters;
end

end

function config = helperGetLidarConfig(lidar, ego)
% Define transformation from sensor to ego
senToEgo = struct('Frame',fusionCoordinateFrameType(1),...
 'OriginPosition',[lidar.SensorLocation(:);lidar.Height],...
 'Orientation',rotmat(quaternion([lidar.Yaw lidar.Pitch lidar.Roll],'eulerd','ZYX','frame'),'frame'),...
 'IsParentToChild',true);

% Define transformation from ego to tracking coordinates
egoToScenario = struct('Frame',fusionCoordinateFrameType(1),...
 'OriginPosition',ego.Position(:),...
 'Orientation',rotmat(quaternion([ego.Yaw ego.Pitch ego.Roll],'eulerd','ZYX','frame'),'frame'),...
 'IsParentToChild',true);

% Assemble using trackingSensorConfiguration.
config = trackingSensorConfiguration(...
 'SensorIndex',lidar.SensorIndex,...
 'IsValidTime', true,...
 'SensorLimits',[lidar.AzimuthLimits;0 lidar.MaxRange],...
 'SensorTransformParameters',[senToEgo;egoToScenario],...
 'DetectionProbability',0.95);
end

References

[1] Nuss, Dominik, et al. "A random finite set approach for dynamic occupancy grid maps with real-
time application." The International Journal of Robotics Research 37.8 (2018): 841-866.

[2] Steyer, Sascha, Georg Tanzmeister, and Dirk Wollherr. "Object tracking based on evidential
dynamic occupancy grids in urban environments." 2017 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2017.

See Also
lidarPointCloudGenerator | trackerGridRFS

8 Featured Examples

8-434

More About
• “Track Vehicles Using Lidar: From Point Cloud to Track List” on page 8-268
• “Ground Plane and Obstacle Detection Using Lidar” on page 8-172
• “Extended Object Tracking of Highway Vehicles with Radar and Camera” on page 8-327
• “Extended Object Tracking With Radar For Marine Surveillance” (Sensor Fusion and Tracking

Toolbox)
• “Extended Object Tracking with Lidar for Airport Ground Surveillance” (Sensor Fusion and

Tracking Toolbox)

 Grid-Based Tracking in Urban Environments Using Multiple Lidars

8-435

Track Multiple Lane Boundaries with a Global Nearest Neighbor
Tracker

This example shows how to design and test a multiple lane tracking algorithm. The algorithm is
tested in a driving scenario with probabilistic lane detections.

Introduction

An automated lane change maneuver (LCM) system enables the ego vehicle to automatically move
from one lane to another lane. To successfully change lanes, the system requires localization of the
ego vehicle with respect to stationary features, such as lane markings. A lane detection algorithm
typically provides offset and curvature information about the current and adjacent lane boundaries.
During the lane change, a discontinuity in the lateral offset is introduced into the lane detections,
because the lateral offset is always with respect to the current lane in which the vehicle is traveling.
The discontinuity and the jump in offset values may cause the LCM system to become unstable. One
technique to compensate for this discontinuity issue is to use a multi-lane tracker.

Detect Lanes in a Lane Change Scenario

You load a drivingScenario object, scenario, that contains an ego vehicle and its sensors from
the LaneTrackingScenario.mat file. You use a visionDetectionGenerator object to detect
lanes in the scenario.

load('LaneTrackingScenario.mat','scenario','egoVehicle','sensors');
laneDetector = sensors{1};

To visualize the scenario in a Driving Scenario Designer, use:

drivingScenarioDesigner(scenario)

In this scenario, the ego vehicle is driving along a curved road with multiple lanes. The ego vehicle is
equipped with a lane detector that detects lane boundaries and reports two lane boundaries on each
side of the ego vehicle. To pass a slower moving vehicle traveling in the ego lane, the ego vehicle
changes lanes from its original lane to the one on its left. The measurement reported by the lane
detector contains the offset, the heading, and the curvature of the lane.

The following block of code runs the scenario and display the results of the lane detections.

% Setup plotting area
egoCarBEP = createDisplay(scenario,egoVehicle);

% Setup data logs
timeHistory = 0:scenario.SampleTime:(scenario.StopTime-scenario.SampleTime);
laneDetectionOffsetHistory = NaN(5,length(timeHistory));
timeStep = 1;
restart(scenario)
running = true;
while running
 % Simulation time
 simTime = scenario.SimulationTime;

 % Get the ground truth lane boundaries in the ego vehicle frame
 groundTruthLanes = laneBoundaries(egoVehicle,'XDistance',0:5:70,'AllBoundaries',true);
 [egoBoundaries,egoBoundaryExist] = findEgoBoundaries(groundTruthLanes); %% ego lane and adjacent lanes ground truth
 laneBoundaryDetections = laneDetector(egoBoundaries(egoBoundaryExist),simTime); %% ego lane and adjacent lanes detections

8 Featured Examples

8-436

 laneObjectDetections = packLanesAsObjectDetections(laneBoundaryDetections); %% convert lane boundary to object detections

 % Log lane detections
 for laneIDX = 1:length(laneObjectDetections)
 laneDetectionOffsetHistory(laneIDX,timeStep) = laneObjectDetections{laneIDX}.Measurement(1);
 end

 % Visualization road and lane ground truth in ego frame
 updateDisplay(egoCarBEP,egoVehicle,egoBoundaries,laneDetector);

 % Advance to the next step
 timeStep = timeStep + 1;
 running = advance(scenario);
end

Since the lane detector always reports the two lane markings on each side of the ego vehicle, the lane
change causes it to report discontinuous lane markings. You can observe it in the graph below.

f=figure;
plot(timeHistory,laneDetectionOffsetHistory(1:4,:),'LineWidth',2)
xlabel('Time (s)')
ylabel('Lane detections lateral offset (m)')
legend('Adjacent left', 'Left', 'Right', 'Adjacent Right','Orientation','horizontal','Location','northoutside')
grid

 Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker

8-437

p = snapnow;

close(f)

Define a Multi-Lane Tracker and Track Lanes

Define a multi-lane tracker using the trackerGNN (Sensor Fusion and Tracking Toolbox) object. To
delete undetected lane boundaries quickly, set the tracker to delete tracked lanes after three misses
in three updates. Also set the maximum number of tracks to 10.

Use the singer (Sensor Fusion and Tracking Toolbox) acceleration model to model the way lane
boundaries change over time. The Singer acceleration model enables you to model accelerations that
decay with time, and you can set the decay rate using the decay constant tau. You use the
initSingerLane on page 8-0 function modified from the initsingerekf (Sensor Fusion and
Tracking Toolbox) function by setting the decay constant tau to 1, because the lane change
maneuver time is relatively short. The function is attached at the end of the script. Note that the
three dimensions defined for the Singer acceleration state are the offset, the heading, and the
curvature of the lane boundary, which are the same as those reported in the lane detection.

laneTracker = trackerGNN('FilterInitializationFcn', @initSingerLane, 'DeletionThreshold', [3 3], 'MaxNumTracks',10);

Rerun the scenario to track the lane boundaries.

laneTrackOffsetHistory = NaN(5,length(timeHistory));
timeStep = 1;
restart(scenario)
restart(egoVehicle);

8 Featured Examples

8-438

reset(laneDetector);
running = true;
while running
 % Simulation time
 simTime = scenario.SimulationTime;

 % Get the ground truth lane boundaries in the ego vehicle frame
 groundTruthLanes = laneBoundaries(egoVehicle,'XDistance',0:5:70,'AllBoundaries',true);
 [egoBoundaries,egoBoundaryExist] = findEgoBoundaries(groundTruthLanes); %% ego lane and adjacent lanes ground truth
 laneBoundaryDetections = laneDetector(egoBoundaries(egoBoundaryExist),simTime); %% ego lane and adjacent lanes detections
 laneObjectDetections = packLanesAsObjectDetections(laneBoundaryDetections); %% convert lane boundary to object detections

 % Track the lanes
 laneTracks = laneTracker(laneObjectDetections,simTime);

 % Log data
 timeHistory(timeStep) = simTime;
 for laneIDX = 1:length(laneTracks)
 laneTrackOffsetHistory(laneTracks(laneIDX).TrackID,timeStep) = laneTracks(laneIDX).State(1);
 end

 % Visualization road and lane ground truth in ego frame
 updateDisplay(egoCarBEP,egoVehicle,egoBoundaries,laneDetector);

 % Advance to the next step
 timeStep = timeStep + 1;
 running = advance(scenario);
end

 Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker

8-439

Plot the lateral offset of the tracked lane boundaries. Observe that the tracked lane boundaries are
continuous and do not break when the ego vehicle performs the lane change maneuver.

figure
plot(timeHistory,laneTrackOffsetHistory(:,:),'LineWidth',2)
xlabel('Time (s)')
ylabel('Lane tracks lateral offset (m)')
legend('Lane1', 'Lane2', 'Lane3', 'Lane4', 'Lane5', 'Orientation','horizontal','Location','northoutside')
grid

8 Featured Examples

8-440

Summary

In this example, you learned how to track multiple lanes. Without tracking the lanes, the lane
detector reports discontinuous lane offsets relative to the ego vehicle when the ego vehicle changes
lanes. The discontinuity in lane offsets can cause significant performance degradation of a closed-loop
automated lane change system. You used a tracker to track the lanes and observed that the lane
boundary offsets are continuous and can provide a stable input to the lane change system.

Supporting functions

createDisplay Create the display for this example

function egoCarBEP = createDisplay(scenario,egoVehicle)
hFigure = figure;
hPanel1 = uipanel(hFigure,'Units','Normalized','Position',[0 1/4 1/2 3/4],'Title','Scenario Plot');
hPanel2 = uipanel(hFigure,'Units','Normalized','Position',[0 0 1/2 1/4],'Title','Chase Plot');
hPanel3 = uipanel(hFigure,'Units','Normalized','Position',[1/2 0 1/2 1],'Title','Bird''s-Eye Plot');
hAxes1 = axes('Parent',hPanel1);
hAxes2 = axes('Parent',hPanel2);
hAxes3 = axes('Parent',hPanel3);
legend(hAxes3,'AutoUpdate','off')
scenario.plot('Parent',hAxes1) % plot is a method of drivingScenario Class
chasePlot(egoVehicle,'Parent',hAxes2); % chase plot following the egoVehicle
egoCarBEP = birdsEyePlot('Parent',hAxes3,'XLimits',[-10 70],'YLimits',[-40 40]);
% Set up plotting type
outlinePlotter(egoCarBEP,'Tag','Platforms');
laneBoundaryPlotter(egoCarBEP,'Tag','Roads');

 Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker

8-441

laneBoundaryPlotter(egoCarBEP,'Color','r','LineStyle','-','Tag','Left1');
laneBoundaryPlotter(egoCarBEP,'Color','g','LineStyle','-','Tag','Right1');
laneBoundaryPlotter(egoCarBEP,'Color','r','LineStyle','-','Tag','Left2');
laneBoundaryPlotter(egoCarBEP,'Color','g','LineStyle','-','Tag','Right2');
laneMarkingPlotter(egoCarBEP,'DisplayName','Lane markings','Tag','LaneMarkings');
coverageAreaPlotter(egoCarBEP,'DisplayName','Vision coverage','FaceAlpha',0.1,'FaceColor','b','EdgeColor','b','Tag','Vision');
end

updateDisplay Update the display for this example

function updateDisplay(egoCarBEP,egoVehicle,LaneBdryIn,laneDetector)
[position,yaw,leng,width,originOffset,color] = targetOutlines(egoVehicle);
outlineplotter = findPlotter(egoCarBEP,'Tag','Platforms');
plotOutline(outlineplotter, position, yaw, leng, width, ...
 'OriginOffset',originOffset,'Color',color)
rbdry = egoVehicle.roadBoundaries;
roadPlotter = findPlotter(egoCarBEP,'Tag','Roads');
plotLaneBoundary(roadPlotter,rbdry);
lbllPlotter = findPlotter(egoCarBEP,'Tag','Left2');
plotLaneBoundary(lbllPlotter,{LaneBdryIn(1).Coordinates});
lblPlotter = findPlotter(egoCarBEP,'Tag','Left1');
plotLaneBoundary(lblPlotter,{LaneBdryIn(2).Coordinates});
lbrPlotter = findPlotter(egoCarBEP,'Tag','Right1');
plotLaneBoundary(lbrPlotter,{LaneBdryIn(3).Coordinates});
lbrrPlotter = findPlotter(egoCarBEP,'Tag','Right2');
plotLaneBoundary(lbrrPlotter,{LaneBdryIn(4).Coordinates});
caPlotter = findPlotter(egoCarBEP,'Tag','Vision');
plotCoverageArea(caPlotter, laneDetector.SensorLocation, laneDetector.MaxRange, laneDetector.Yaw, laneDetector.FieldOfView(1,1));
end

findEgoBoundaries Return the two nearest lane boundaries on each side of the ego vehicle

function [egoBoundaries,egoBoundaryExist] = findEgoBoundaries(groundTruthLanes)
%findEgoBoundaries Find the two adjacent lane boundaries on each side of the ego
% [egoBoundaries,egoBoundaryExist] = findEgoBoundaries(groundTruthLanes)
% egoBoundaries - A 4x1 struct of lane boundaries ordered as: adjacent
% left, left, right, and adjacent right
egoBoundaries = groundTruthLanes(1:4);
lateralOffsets = [groundTruthLanes.LateralOffset];
[sortedOffsets, inds] = sort(lateralOffsets);
egoBoundaryExist = [true;true;true;true];

% Left lane and left adjacent lane
idxLeft = find(sortedOffsets>0,2,'first');
numLeft = length(idxLeft);
egoBoundaries(2) = groundTruthLanes(inds(idxLeft(1)));
if numLeft>1
 egoBoundaries(1) = groundTruthLanes(inds(idxLeft(2)));
else % if left adjacent lane does not exist
 egoBoundaries(1) = egoBoundaries(2);
 egoBoundaryExist(1) = false;
end

% Right lane and right adjacent lane
idxRight = find(sortedOffsets<0,2,'last');
numRight = length(idxRight);
egoBoundaries(3) = groundTruthLanes(inds(idxRight(end)));
if numRight>1

8 Featured Examples

8-442

 egoBoundaries(4) = groundTruthLanes(inds(idxRight(1)));
else % if right adjacent lane does not exist
 egoBoundaries(4) = egoBoundaries(3);
 egoBoundaryExist(4) = false;
end
end

packLanesAsObjectDetections Return lane boundary detections as a cell array of
objectDetection objects

function laneObjectDetections = packLanesAsObjectDetections(laneBoundaryDetections)
%packLanesAsObjectDetections Packs lane detections as a cell array of objectDetection
laneStrengths = [laneBoundaryDetections.LaneBoundaries.Strength];
IdxValid = find(laneStrengths>0);
numLaneDetections = length(IdxValid);
meas = zeros(3,1);
measurementParameters = struct(...
 'Frame', 'rectangular', ...
 'OriginPosition', [0 0 0]', ...
 'Orientation', eye(3,3), ...
 'HasVelocity', false, ...
 'HasElevation', false);

detection = objectDetection(laneBoundaryDetections.Time,meas, ...
 'MeasurementNoise', eye(3,3)/10, ...
 'SensorIndex', laneBoundaryDetections.SensorIndex, ...
 'MeasurementParameters' ,measurementParameters);
laneObjectDetections = repmat({detection},numLaneDetections,1);
for i = 1:numLaneDetections
 meas = [laneBoundaryDetections.LaneBoundaries(IdxValid(i)).LateralOffset ...
 laneBoundaryDetections.LaneBoundaries(IdxValid(i)).HeadingAngle/180*pi ...
 laneBoundaryDetections.LaneBoundaries(IdxValid(i)).Curvature/180*pi];
 laneObjectDetections{i}.Measurement = meas;
end
end

initSingerLane Define the Singer motion model for the lane boundary filter

function filter = initSingerLane(detection)
filter = initsingerekf(detection);
tau = 1;
filter.StateTransitionFcn = @(state,dt)singer(state,dt,tau);
filter.StateTransitionJacobianFcn = @(state,dt)singerjac(state,dt,tau);
filter.ProcessNoise = singerProcessNoise(zeros(9,1),1,tau,1);
end

See Also
visionDetectionGenerator | drivingScenario | trackerGNN | singer

More About
• “Multiple Object Tracking Tutorial” on page 8-255

 Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker

8-443

Generate Code for a Track Fuser with Heterogeneous Source
Tracks

This example shows how to generate code for a track-level fusion algorithm in a scenario where the
tracks originate from heterogeneous sources with different state definitions. This example is based on
the “Track-Level Fusion of Radar and Lidar Data” (Sensor Fusion and Tracking Toolbox) example, in
which the state spaces of the tracks generated from lidar and radar sources are different.

Define a Track Fuser for Code Generation

You can generate code for a trackFuser (Sensor Fusion and Tracking Toolbox) using MATLAB®
Coder™. To do so, you must modify your code to comply with the following limitations:

Code Generation Entry Function

Follow the instructions on how to use “System Objects in MATLAB Code Generation” (MATLAB
Coder). For code generation, you must first define an entry-level function, in which the object is
defined. Also, the function cannot use arrays of objects as inputs or outputs. In this example, you
define the entry-level function as the heterogeneousInputsFuser function. The function must be on
the path when you generate code for it. Therefore, it cannot be part of this live script and is attached
in this example. The function accepts local tracks and current time as input and outputs central
tracks.

To preserve the state of the fuser between calls to the function, you define the fuser as a
persistent variable. On the first call, you must define the fuser variable because it is empty. The
rest of the following code steps the trackFuser and returns the fused tracks.

function tracks = heterogeneousInputsFuser(localTracks,time)
%#codegen

persistent fuser
if isempty(fuser)
 % Define the radar source configuration
 radarConfig = fuserSourceConfiguration('SourceIndex',1,...
 'IsInitializingCentralTracks',true,...
 'CentralToLocalTransformFcn',@central2local,...
 'LocalToCentralTransformFcn',@local2central);

 % Define the lidar source configuration
 lidarConfig = fuserSourceConfiguration('SourceIndex',2,...
 'IsInitializingCentralTracks',true,...
 'CentralToLocalTransformFcn',@central2local,...
 'LocalToCentralTransformFcn',@local2central);

 % Create a trackFuser object
 fuser = trackFuser(...
 'MaxNumSources', 2, ...
 'SourceConfigurations',{radarConfig;lidarConfig},...
 'StateTransitionFcn',@helperctcuboid,...
 'StateTransitionJacobianFcn',@helperctcuboidjac,...
 'ProcessNoise',diag([1 3 1]),...
 'HasAdditiveProcessNoise',false,...
 'AssignmentThreshold',[250 inf],...
 'ConfirmationThreshold',[3 5],...
 'DeletionThreshold',[5 5],...

8 Featured Examples

8-444

 'StateFusion','Custom',...
 'CustomStateFusionFcn',@helperRadarLidarFusionFcn);
end

tracks = fuser(localTracks, time);
end

Homogeneous Source Configurations

In this example, you define the radar and lidar source configurations differently than in the original
“Track-Level Fusion of Radar and Lidar Data” (Sensor Fusion and Tracking Toolbox) example. In the
original example, the CentralToLocalTransformFcn and LocalToCentralTransformFcn
properties of the two source configurations are different because they use different function handles.
This makes the source configurations a heterogeneous cell array. Such a definition is correct and
valid when executing in MATLAB. However, in code generation, all source configurations must use
the same function handles. To avoid the different function handles, you define one function to
transform tracks from central (fuser) definition to local (source) definition and one function to
transform from local to central. Each of these functions switches between the transform functions
defined for the individual sources in the original example. Both functions are part of the
heterogeneousInputsFuser function.

Here is the code for the local2central function, which uses the SourceIndex property to
determine the correct function to use. Since the two types of local tracks transform to the same
definition of central track, there is no need to predefine the central track.

function centralTrack = local2central(localTrack)
switch localTrack.SourceIndex
 case 1 % radar
 centralTrack = radar2central(localTrack);
 otherwise % lidar
 centralTrack = lidar2central(localTrack);
end
end

The function central2local transforms the central track into a radar track if SourceIndex is 1 or
into a lidar track if SourceIndex is 2. Since the two tracks have a different definition of State,
StateCovariance, and TrackLogicState, you must first predefine the output. Here is the code
snippet for the function:

function localTrack = central2local(centralTrack)
state = 0;
stateCov = 1;
coder.varsize('state', [10, 1], [1 0]);
coder.varsize('stateCov', [10 10], [1 1]);
localTrack = objectTrack('State', state, 'StateCovariance', stateCov);

switch centralTrack.SourceIndex
 case 1
 localTrack = central2radar(centralTrack);
 case 2
 localTrack = central2lidar(centralTrack);
 otherwise
 % This branch is never reached but is necessary to force code
 % generation to use the predefined localTrack.
end
end

 Generate Code for a Track Fuser with Heterogeneous Source Tracks

8-445

The functions radar2central and central2radar are the same as in the original example but
moved from the live script to the heterogeneousInputsFuser function. You also add the
lidar2central and central2lidar functions to the heterogeneousInputsFuser function. These
two functions convert from the track definition that the fuser uses to the lidar track definition.

Run the Example in MATLAB

Before generating code, make sure that the example still runs after all the changes made to the fuser.
The file lidarRadarData.mat contains the same scenario as in the original example. It also
contains a set of radar and lidar tracks recorded at each step of that example. You also use a similar
display to visualize the example and define the same trackGOSPAMetric objects to evaluate the
tracking performance.

% Load the scenario and recorded local tracks
load('lidarRadarData.mat','scenario','localTracksCollection')
display = helperTrackFusionCodegenDisplay('FollowActorID',3);
showLegend(display,scenario);

% Radar GOSPA
gospaRadar = trackGOSPAMetric('Distance','custom',...
 'DistanceFcn',@helperRadarDistance,...
 'CutoffDistance',25);

% Lidar GOSPA
gospaLidar = trackGOSPAMetric('Distance','custom',...
 'DistanceFcn',@helperLidarDistance,...
 'CutoffDistance',25);

% Central/Fused GOSPA
gospaCentral = trackGOSPAMetric('Distance','custom',...
 'DistanceFcn',@helperLidarDistance,... % State space is same as lidar
 'CutoffDistance',25);

gospa = zeros(3,0);
missedTargets = zeros(3,0);
falseTracks = zeros(3,0);
% Ground truth for metrics. This variable updates every time step
% automatically, because it is a handle to the actors.
groundTruth = scenario.Actors(2:end);

fuserStepped = false;
fusedTracks = objectTrack.empty;
idx = 1;
clear heterogeneousInputsFuser
while advance(scenario)
 time = scenario.SimulationTime;
 localTracks = localTracksCollection{idx};

 if ~isempty(localTracks) || fuserStepped
 fusedTracks = heterogeneousInputsFuser(localTracks,time);
 fuserStepped = true;
 end

 radarTracks = localTracks([localTracks.SourceIndex]==1);
 lidarTracks = localTracks([localTracks.SourceIndex]==2);

8 Featured Examples

8-446

 % Capture GOSPA and its components for all trackers
 [gospa(1,idx),~,~,~,missedTargets(1,idx),falseTracks(1,idx)] = gospaRadar(radarTracks, groundTruth);
 [gospa(2,idx),~,~,~,missedTargets(2,idx),falseTracks(2,idx)] = gospaLidar(lidarTracks, groundTruth);
 [gospa(3,idx),~,~,~,missedTargets(3,idx),falseTracks(3,idx)] = gospaCentral(fusedTracks, groundTruth);

 % Update the display
 display(scenario,[],[], radarTracks,...
 [],[],[],[], lidarTracks, fusedTracks);

 idx = idx + 1;
end

Generate Code for the Track Fuser

To generate code, you must define the input types for both the radar and lidar tracks and the
timestamp. In both the original script and in the previous section, the radar and lidar tracks are
defined as arrays of objectTrack (Sensor Fusion and Tracking Toolbox) objects. In code generation,
the entry-level function cannot use an array of objects. Instead, you define an array of structures.

 Generate Code for a Track Fuser with Heterogeneous Source Tracks

8-447

You use the struct oneLocalTrack to define the inputs coming from radar and lidar tracks. In code
generation, the specific data types of each field in the struct must be defined exactly the same as the
types defined for the corresponding properties in the recorded tracks. Furthermore, the size of each
field must be defined correctly. You use the coder.typeof (MATLAB Coder) function to specify fields
that have variable size: State, StateCovariance, and TrackLogicState. You define the
localTracks input using the oneLocalTrack struct and the coder.typeof function, because the
number of input tracks varies from zero to eight in each step. You use the function codegen
(MATLAB Coder) to generate the code.

Notes:

1 If the input tracks use different types for the State and StateCovariance properties, you must
decide which type to use, double or single. In this example, all tracks use double precision and
there is no need for this step.

2 If the input tracks use different definitions of StateParameters, you must first create a
superset of all StateParameters and use that superset in the StateParameters field. A
similar process must be done for the ObjectAttributes field. In this example, all tracks use
the same definition of StateParameters and ObjectAttributes.

% Define the inputs to fuserHeterogeneousInputs for code generation
oneLocalTrack = struct(...
 'TrackID', uint32(0), ...
 'BranchID', uint32(0), ...
 'SourceIndex', uint32(0), ...
 'UpdateTime', double(0), ...
 'Age', uint32(0), ...
 'State', coder.typeof(1, [10 1], [1 0]), ...
 'StateCovariance', coder.typeof(1, [10 10], [1 1]), ...
 'StateParameters', struct, ...
 'ObjectClassID', double(0), ...
 'TrackLogic', 'History', ...
 'TrackLogicState', coder.typeof(false, [1 10], [0 1]), ...
 'IsConfirmed', false, ...
 'IsCoasted', false, ...
 'IsSelfReported', false, ...
 'ObjectAttributes', struct);

localTracks = coder.typeof(oneLocalTrack, [8 1], [1 0]);
fuserInputArguments = {localTracks, time};

codegen heterogeneousInputsFuser -args fuserInputArguments;

Code generation successful.

Run the Example with the Generated Code

You run the generated code like you ran the MATLAB code, but first you must reinitialize the
scenario, the GOSPA objects, and the display.

You use the toStruct (Sensor Fusion and Tracking Toolbox) object function to convert the input
tracks to arrays of structures.

Notes:

1 If the input tracks use different data types for the State and StateCovariance properties,
make sure to cast the State and StateCovariance of all the tracks to the data type you chose
when you defined the oneLocalTrack structure above.

8 Featured Examples

8-448

2 If the input tracks required a superset structure for the fields StateParameters or
ObjectAttributes, make sure to populate these structures correctly before calling the mex
file.

You use the gospaCG variable to keep the GOSPA metrics for this run so that you can compare them
to the GOSPA values from the MATLAB run.

% Rerun the scenario with the generated code
fuserStepped = false;
fusedTracks = objectTrack.empty;
gospaCG = zeros(3,0);
missedTargetsCG = zeros(3,0);
falseTracksCG = zeros(3,0);

idx = 1;
clear heterogeneousInputsFuser_mex
reset(display);
reset(gospaRadar);
reset(gospaLidar);
reset(gospaCentral);
restart(scenario);
while advance(scenario)
 time = scenario.SimulationTime;
 localTracks = localTracksCollection{idx};

 if ~isempty(localTracks) || fuserStepped
 fusedTracks = heterogeneousInputsFuser_mex(toStruct(localTracks),time);
 fuserStepped = true;
 end

 radarTracks = localTracks([localTracks.SourceIndex]==1);
 lidarTracks = localTracks([localTracks.SourceIndex]==2);

 % Capture GOSPA and its components for all trackers
 [gospaCG(1,idx),~,~,~,missedTargetsCG(1,idx),falseTracksCG(1,idx)] = gospaRadar(radarTracks, groundTruth);
 [gospaCG(2,idx),~,~,~,missedTargetsCG(2,idx),falseTracksCG(2,idx)] = gospaLidar(lidarTracks, groundTruth);
 [gospaCG(3,idx),~,~,~,missedTargetsCG(3,idx),falseTracksCG(3,idx)] = gospaCentral(fusedTracks, groundTruth);

 % Update the display
 display(scenario,[],[], radarTracks,...
 [],[],[],[], lidarTracks, fusedTracks);

 idx = idx + 1;
end

 Generate Code for a Track Fuser with Heterogeneous Source Tracks

8-449

At the end of the run, you want to verify that the generated code provided the same results as the
MATLAB code. Using the GOSPA metrics you collected in both runs, you can compare the results at
the high level. Due to numerical roundoffs, there may be small differences in the results of the
generated code relative to the MATLAB code. To compare the results, you use the absolute
differences between GOSPA values and check if they are all smaller than 1e-10. The results show that
the differences are very small.

% Compare the GOSPA values from MATLAB run and generated code
areGOSPAValuesEqual = all(abs(gospa-gospaCG)<1e-10,'all');
disp("Are GOSPA values equal up to the 10th decimal (true/false)? " + string(areGOSPAValuesEqual))

Are GOSPA values equal up to the 10th decimal (true/false)? true

Summary

In this example, you learned how to generate code for a track-level fusion algorithm when the input
tracks are heterogeneous. You learned how to define the trackFuser and its

8 Featured Examples

8-450

SourceConfigurations property to support heterogeneous sources. You also learned how to define
the input in compilation time and how to pass it to the mex file in runtime.

Supporting Functions

The following functions are used by the GOSPA metric.

helperLidarDistance

Function to calculate a normalized distance between the estimate of a track in radar state-space and
the assigned ground truth.

function dist = helperLidarDistance(track, truth)

% Calculate the actual values of the states estimated by the tracker

% Center is different than origin and the trackers estimate the center
rOriginToCenter = -truth.OriginOffset(:) + [0;0;truth.Height/2];
rot = quaternion([truth.Yaw truth.Pitch truth.Roll],'eulerd','ZYX','frame');
actPos = truth.Position(:) + rotatepoint(rot,rOriginToCenter')';

% Actual speed and z-rate
actVel = [norm(truth.Velocity(1:2));truth.Velocity(3)];

% Actual yaw
actYaw = truth.Yaw;

% Actual dimensions.
actDim = [truth.Length;truth.Width;truth.Height];

% Actual yaw rate
actYawRate = truth.AngularVelocity(3);

% Calculate error in each estimate weighted by the "requirements" of the
% system. The distance specified using Mahalanobis distance in each aspect
% of the estimate, where covariance is defined by the "requirements". This
% helps to avoid skewed distances when tracks under/over report their
% uncertainty because of inaccuracies in state/measurement models.

% Positional error.
estPos = track.State([1 2 6]);
reqPosCov = 0.1*eye(3);
e = estPos - actPos;
d1 = sqrt(e'/reqPosCov*e);

% Velocity error
estVel = track.State([3 7]);
reqVelCov = 5*eye(2);
e = estVel - actVel;
d2 = sqrt(e'/reqVelCov*e);

% Yaw error
estYaw = track.State(4);
reqYawCov = 5;
e = estYaw - actYaw;
d3 = sqrt(e'/reqYawCov*e);

% Yaw-rate error

 Generate Code for a Track Fuser with Heterogeneous Source Tracks

8-451

estYawRate = track.State(5);
reqYawRateCov = 1;
e = estYawRate - actYawRate;
d4 = sqrt(e'/reqYawRateCov*e);

% Dimension error
estDim = track.State([8 9 10]);
reqDimCov = eye(3);
e = estDim - actDim;
d5 = sqrt(e'/reqDimCov*e);

% Total distance
dist = d1 + d2 + d3 + d4 + d5;
end

helperRadarDistance

Function to calculate a normalized distance between the estimate of a track in radar state-space and
the assigned ground truth.

function dist = helperRadarDistance(track, truth)
% Calculate the actual values of the states estimated by the tracker

% Center is different than origin and the trackers estimate the center
rOriginToCenter = -truth.OriginOffset(:) + [0;0;truth.Height/2];
rot = quaternion([truth.Yaw truth.Pitch truth.Roll],'eulerd','ZYX','frame');
actPos = truth.Position(:) + rotatepoint(rot,rOriginToCenter')';
actPos = actPos(1:2); % Only 2-D

% Actual speed
actVel = norm(truth.Velocity(1:2));

% Actual yaw
actYaw = truth.Yaw;

% Actual dimensions. Only 2-D for radar
actDim = [truth.Length;truth.Width];

% Actual yaw rate
actYawRate = truth.AngularVelocity(3);

% Calculate error in each estimate weighted by the "requirements" of the
% system. The distance specified using Mahalanobis distance in each aspect
% of the estimate, where covariance is defined by the "requirements". This
% helps to avoid skewed distances when tracks under/over report their
% uncertainty because of inaccuracies in state/measurement models.

% Positional error
estPos = track.State([1 2]);
reqPosCov = 0.1*eye(2);
e = estPos - actPos;
d1 = sqrt(e'/reqPosCov*e);

% Speed error
estVel = track.State(3);
reqVelCov = 5;
e = estVel - actVel;

8 Featured Examples

8-452

d2 = sqrt(e'/reqVelCov*e);

% Yaw error
estYaw = track.State(4);
reqYawCov = 5;
e = estYaw - actYaw;
d3 = sqrt(e'/reqYawCov*e);

% Yaw-rate error
estYawRate = track.State(5);
reqYawRateCov = 1;
e = estYawRate - actYawRate;
d4 = sqrt(e'/reqYawRateCov*e);

% Dimension error
estDim = track.State([6 7]);
reqDimCov = eye(2);
e = estDim - actDim;
d5 = sqrt(e'/reqDimCov*e);

% Total distance
dist = d1 + d2 + d3 + d4 + d5;

% A constant penalty for not measuring 3-D state
dist = dist + 3;
end

See Also
trackFuser

More About
• “Track-to-Track Fusion for Automotive Safety Applications” on page 8-347
• “Code Generation for Tracking and Sensor Fusion” on page 8-211

 Generate Code for a Track Fuser with Heterogeneous Source Tracks

8-453

Highway Vehicle Tracking with Multipath Radar Reflections
This example shows the challenges associated with tracking vehicles on a highway in the presence of
multipath radar reflections. It also shows a ghost filtering approach used with an extended object
tracker to simultaneously filter ghost detections and track objects.

Introduction

Automotive radar sensors are robust against adverse environment conditions encountered during
driving, such as fog, snow, rain, and strong sunlight. Automotive radar sensors have this advantage
because they operate at substantially large wavelengths compared to visible-wavelength sensors,
such as lidar and camera. As a side effect of using large wavelengths, surfaces around the radar
sensor act like mirrors and produce undesired detections due to multipath propagation. These
detections are often referred to as ghost detections because they seem to originate from regions
where no target exists. This example shows you the impact of these multipath reflections on
designing and configuring an object tracking strategy using radar detections. For more details
regarding multipath phenomenon and simulation of ghost detections, see the “Simulate Radar Ghosts
Due to Multipath Return” (Radar Toolbox) example.

In this example, you simulate the multipath detections from radar sensors in an urban highway
driving scenario. The highway is simulated with a barrier on both sides of the road. The scenario
consists of an ego vehicle and four other vehicles driving on the highway. The ego vehicle is equipped
with four radar sensors providing 360-degree coverage. This image shows the configuration of the
radar sensors and detections from one scan of the sensors. The red regions represent the field of view
of the radar sensors and the black dots represent the detections.

8 Featured Examples

8-454

The radar sensors report detections from the vehicles and from the barriers that are on both sides of
the highway. The radars also report detections that do not seem to originate from any real object in
the scenario. These are ghost detections due to multipath propagation of radar signals. Object
trackers assume all detections originate from real objects or uniformly distributed random clutter in
the field of view. Contrary to this assumption, the ghost detections are typically more persistent than
clutter and behave like detections from real targets. Due to this reason, an object tracking algorithm
is very likely to generate false tracks from these detections. It is important to filter out these
detections before processing the radar scan with a tracker.

 Highway Vehicle Tracking with Multipath Radar Reflections

8-455

Generate Sensor Data

The scenario used in this example is created using the drivingScenario class. You use the
radarDataGenerator (Radar Toolbox) System object™ to simulate radar returns from a direct path
and from reflections in the scenario. The HasGhosts property of the sensor is specified as true to
simulate multipath reflections. The creation of the scenario and the sensor models is wrapped in the
helper function helperCreateMultipathDrivingScenario, which is attached with this example.
The data set obtained by sensor simulation is recorded in a MAT file that contains returns from the
radar and the corresponding sensor configurations. To record the data for a different scenario or
sensor configuration, you can use the following command:

 helperRecordData(scenario, egoVehicle, sensors, fName);

% Create the scenario
[scenario, egoVehicle, sensors] = helperCreateMultipathDrivingScenario;

% Load the recorded data
load('MultiPathRadarScenarioRecording.mat','detectionLog','configurationLog');

Radar Processing Chain: Radar Detections to Track List

In this section, you set up an integrated algorithm to simultaneously filter radar detections and track
extended objects. The block diagram illustrates the radar processing chain used in this example.

Next, you learn about each of these steps and the corresponding helper functions.

Doppler analysis

The radar sensors report the measured relative radial velocity of the reflected signals. In this step,
you utilize the measured radial velocity of the detections to determine if the target is static or
dynamic [1]. In the previous radar scan, a large percentage of the radar detections originate from the
static environment around the ego vehicle. Therefore, classifying each detection as static or dynamic
greatly helps to improve the understanding of the scene. You use the helper function
helperClassifyStaticDynamic to classify each detection as static or dynamic.

Static reflectors

The static environment is also typically responsible for a large percentage of the ghost reflections
reported by the radar sensors. After segmenting the data set and finding static detections, you
process them to find 2-D line segments in the coordinate frame of the ego vehicle. First, you use the

8 Featured Examples

8-456

DBSCAN algorithm to cluster the static detections into different clusters around the ego vehicle.
Second, you fit a 2-D line segment on each cluster. These fitted line segments define possible
reflection surfaces for signals propagating back to the radar. You use the helper function
helperFindStaticReflectors to find these 2-D line segments from static detections.

Occlusion analysis

Reflection from surfaces produce detections from the radar sensor that seem to originate behind the
reflector. After segmenting the dynamic detections from the radar, you use simple occlusion analysis
to determine if the radar detection is occluded behind a possible reflector. Because signals can be
reflected by static or dynamic objects, you perform occlusion analysis in two steps. First, dynamic
detections are checked against occlusion with the 2-D line segments representing the static
reflectors. You use the helper function helperClassifyGhostsUsingReflectors to classify if the
detection is occluded by a static reflector. Second, the algorithm uses information about predicted
tracks from an extended tracking algorithm to check for occlusion against dynamic objects in the
scene. The algorithm uses only confirmed tracks from the tracker to prevent overfiltering of the radar
detections in the presence of tentative or false tracks. You use the helper function
helperClassifyGhostsUsingTracks to classify if the detection is occluded by a dynamic object.

This entire algorithm for processing radar detections and classifying them is then wrapped into a
larger helper function, helperClassifyRadarDetections, which classifies and segments the
detection list into four main categories:

1 Target detections – These detections are classified to originate from real dynamic targets in the
scene.

2 Environment detections – These detections are classified to originate from the static
environment.

3 Ghost (Static) – These detections are classified to originate from dynamic targets but reflected
via the static environment.

4 Ghost (Dynamic) – These detections are classified to originate from dynamic targets but reflected
via other dynamic objects.

Setup GGIW-PHD Extended Object Tracker

The target detections are processed with an extended object tracker. In this example, you use a
gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) extended object tracker.
The GGIW-PHD tracker models the target with an elliptical shape and the measurement model
assumes that the detections are uniformly distributed inside the extent of the target. This model
allows a target to accept two-bounce ghost detections, which have a higher probability of being
misclassified as a real target. These two-bounce ghost detections also report a Doppler measurement
that is inconsistent with the actual motion of the target. When these ghost detections and real target
detections from the same object are estimated to belong to the same partition of detections, the
incorrect Doppler information can potentially cause the track estimate to diverge.

To reduce this problem, the tracker processes the range-rate measurements with higher
measurement noise variance to account for this imperfection in the target measurement model. The
tracker also uses a combination of a high assignment threshold and low merging threshold. A high
assignment threshold allows the tracker to reduce the generation of new components from ghost
targets detections, which are misclassified as target detections. A low merging threshold enables the
tracker to discard corrected components (hypothesis) of a track, which might have diverged due to
correction with ghost detections.

 Highway Vehicle Tracking with Multipath Radar Reflections

8-457

You set up the tracker using the trackerPHD System object™. For more details about extended
object trackers, refer to the “Extended Object Tracking of Highway Vehicles with Radar and Camera”
on page 8-327 example.

% Configuration of the sensors from the recording to set up the tracker
[~, sensorConfigurations] = helperAssembleData(detectionLog{1},configurationLog{1});

% Configure the tracker to use the GGIW-PHD filter with constant turn-rate motion model
for i = 1:numel(sensorConfigurations)
 sensorConfigurations{i}.FilterInitializationFcn = @helperInitGGIWFilter;
 sensorConfigurations{i}.SensorTransformFcn = @ctmeas;
end

% Create the tracker using trackerPHD with Name-value pairs
tracker = trackerPHD('SensorConfigurations', sensorConfigurations,...
 'PartitioningFcn',@(x)helperMultipathExamplePartitionFcn(x,2,5),...
 'AssignmentThreshold',450,...
 'ExtractionThreshold',0.8,...
 'ConfirmationThreshold',0.85,...
 'MergingThreshold',25,...
 'DeletionThreshold',1e-3,...
 'BirthRate',1e-4,...
 'HasSensorConfigurationsInput',true...
);

Run Scenario and Track Objects

Next, you advance the scenario, use the recorded measurements from the sensors, and process them
using the previously described algorithm. You analyze the performance of the tracking algorithm by
using the generalized optimal subpattern assignment (GOSPA) metric. You also analyze the
performance of the classification filtering algorithm by estimating a confusion matrix between true
and estimated classification of radar detections. You obtain the true classification information about
the detections using the helperTrueClassificationInfo helper function.

% Create trackGOSPAMetric object to calculate GOSPA metric
gospaMetric = trackGOSPAMetric('Distance','custom', ...
 'DistanceFcn',@helperGOSPADistance, ...
 'CutoffDistance',35);

% Create display for visualization of results
display = helperMultiPathTrackingDisplay;

% Predicted track list for ghost filtering
predictedTracks = objectTrack.empty(0,1);

% Confusion matrix
confMat = zeros(5,5,numel(detectionLog));

% GOSPA metric
gospa = zeros(4,numel(detectionLog));

% Ground truth
groundTruth = scenario.Actors(2:end);

for i = 1:numel(detectionLog)
 % Advance scene for visualization of ground truth
 advance(scenario);

8 Featured Examples

8-458

 % Current time
 time = scenario.SimulationTime;

 % Detections and sensor configurations
 [detections, configurations] = helperAssembleData(detectionLog{i},configurationLog{i});

 % Predict confirmed tracks to current time for classifying ghosts
 if isLocked(tracker)
 predictedTracks = predictTracksToTime(tracker,'confirmed',time);
 end

 % Classify radar detections as targets, ghosts, or static environment
 [targets, ghostStatic, ghostDynamic, static, reflectors, classificationInfo] = helperClassifyRadarDetections(detections, egoVehicle, predictedTracks);

 % Pass detections from target and sensor configurations to the tracker
 confirmedTracks = tracker(targets, configurations, time);

 % Visualize the results
 display(egoVehicle, sensors, targets, confirmedTracks, ghostStatic, ghostDynamic, static, reflectors);

 % Calculate GOSPA metric
 [gospa(1, i),~,~,gospa(2,i),gospa(3,i),gospa(4,i)] = gospaMetric(confirmedTracks, groundTruth);

 % Get true classification information and generate confusion matrix
 trueClassificationInfo = helperTrueClassificationInfo(detections);
 confMat(:,:,i) = helperConfusionMatrix(trueClassificationInfo, classificationInfo);
end

Results

Animation and snapshot analysis

The animation that follows shows the result of the radar data processing chain. The black ellipses
around vehicles represent estimated tracks. The radar detections are visualized with four different
colors depending on their predicted classification from the algorithm. The black dots in the
visualization represent static radar target detections. Notice that these detections are overlapped by
black lines, which represent the static reflectors found using the DBSCAN algorithm. The maroon
markers represent the detections processed by the extended object tracker, while the green and blue
markers represent radar detections classified as reflections via static and dynamic objects,
respectively. Notice that the tracker is able to maintain a track on all four vehicles during the
scenario.

 Highway Vehicle Tracking with Multipath Radar Reflections

8-459

Next, you analyze the performance of the algorithm using different snapshots captured during the
simulation. The snapshot below is captured at 3 seconds and shows the situation in front of the ego
vehicle. At this time, the ego vehicle is approaching the slow-moving truck, and the left radar sensor
observes reflections of these objects via the left barrier. These detections appear as mirrored
detections of these objects in the barrier. Notice that the black line estimated as a 2-D reflector is in
the line of sight of these detections. Therefore, the algorithm is able to correctly classify these
detections as ghost targets reflected off static objects.

f = showSnaps(display,1:2,1);
if ~isempty(f)
 ax = findall(f,'Type','Axes','Tag','birdsEyePlotAxes');
 ax.XLim = [-10 30];
 ax.YLim = [-10 20];
end

8 Featured Examples

8-460

Next, analyze the performance of the algorithm using the snapshot captured at 4.3 seconds. At this
time, the ego vehicle is even closer to the truck and the truck is approximately halfway between the
green vehicle and the ego vehicle. During these situations, the left side of the truck acts as a strong
reflector and generates ghost detections. The detections on the right half of the green vehicle are
from two-bounce detections off of the green vehicle as the signal travels back to the sensor after
reflecting off the truck. The algorithm is able to classify these detections as ghost detections
generated from dynamic object reflections because the estimated extent of the truck is in the direct
line of sight of these detections.

f = showSnaps(display,1:2,2);
if ~isempty(f)
 ax = findall(f,'Type','Axes','Tag','birdsEyePlotAxes');
 ax.XLim = [-10 30];
 ax.YLim = [-10 20];
end

 Highway Vehicle Tracking with Multipath Radar Reflections

8-461

Also notice the passing vehicle denoted by the yellow car on the left of the ego vehicle. The
detections, which seem to originate from the nonvisible surface of the yellow vehicle, are two-bounce
detections of the barriers, reflected via the front face of the passing vehicle. These ghost detections
are misclassified as target detections because they seem to originate from inside the estimated extent
of the vehicle. At the same location, the detections that lie beyond the barrier are also two-bounce
detections of the front face when the signal is reflected from the barrier and returns to the sensor.
Since these detections lie beyond the extent of the track and the track is in the direct line of sight,
they are classified as ghost detections from reflections off dynamic objects.

Performance analysis

Quantitatively assess the performance of the tracking algorithm by using the GOSPA metric and its
associated components. A lower value of the metric denotes better tracking performance. In the
figure below, the Missed-target component of the metric remains zero after a few steps in the
beginning, representing establishment delay of the tracker as well as an occluded target. The zero
value of the component shows that no targets were missed by the tracker. The False-tracks
component of the metric increased around for 1 second around 85th time step. This denotes a false

8 Featured Examples

8-462

track confirmed by the tracker for a short duration from ghost detections incorrectly classified as a
real target.

figure;
plot(gospa','LineWidth',2);
legend('GOSPA','Localization GOSPA','Missed-target GOSPA','False-tracks GOSPA');

Similar to the tracking algorithm, you also quantitatively analyze the performance of the radar
detection classification algorithm by using a confusion matrix [2]. The rows shown in the table denote
the true classification information of the radar detections and the columns represent the predicted
classification information. For example, the second element of the first row defines the percentage of
target detections predicted as ghosts from static object reflections.

More than 90% of the target detections are classified correctly. However, a small percentage of the
target detections are misclassified as ghosts from dynamic reflections. Also, approximately 3% of
ghosts from static object reflections and 20% of ghosts from dynamic object reflections are
misclassified as targets and sent to the tracker for processing. A common situation when this occurs
in this example is when the detections from two-bounce reflections lie inside the estimated extent of
the vehicle. Further, the classification algorithm used in this example is not designed to find false
alarms or clutter in the scene. Therefore, the fifth column of the confusion matrix is zero. Due to
spatial distribution of the false alarms inside the field of view, the majority of false alarm detections
are either classified as reflections from static objects or dynamic objects.

% Accumulate confusion matrix over all steps
confusionMatrix = sum(confMat,3);
numElements = sum(confusionMatrix,2);

 Highway Vehicle Tracking with Multipath Radar Reflections

8-463

numElemsTable = array2table(numElements,'VariableNames',{'Number of Detections'},'RowNames',{'Targets','Ghost (S)','Ghost (D)','Environment','Clutter'});
disp('True Information');disp(numElemsTable);

True Information
 Number of Detections

 Targets 1970
 Ghost (S) 3170
 Ghost (D) 837
 Environment 27049
 Clutter 150

% Calculate percentages
percentMatrix = confusionMatrix./numElements*100;

percentMatrixTable = array2table(round(percentMatrix,2),'RowNames',{'Targets','Ghost (S)','Ghost (D)','Environment','Clutter'},...
 "VariableNames",{'Targets','Ghost (S)','Ghost (D)', 'Environment','Clutter'});

disp('True vs Predicted Confusion Matrix (%)');disp(percentMatrixTable);

True vs Predicted Confusion Matrix (%)
 Targets Ghost (S) Ghost (D) Environment Clutter
 _______ _________ _________ ___________ _______

 Targets 90.76 0.66 8.07 0.51 0
 Ghost (S) 3.09 85.68 10.76 0.47 0
 Ghost (D) 16.25 0.6 83.15 0 0
 Environment 1.11 2.75 4.1 92.04 0
 Clutter 18.67 61.33 19.33 0.67 0

Summary

In this example, you simulated radar detections due to multipath propagation in an urban highway
driving scenario. You configured a data processing algorithm to simultaneously filter ghost detections
and track vehicles on the highway. You also analyzed the performance of the tracking algorithm and
the classification algorithm using the GOSPA metric and confusion matrix.

References

[1] Prophet, Robert, et al. "Instantaneous Ghost Detection Identification in Automotive Scenarios."
2019 IEEE Radar Conference (RadarConf). IEEE, 2019.

[2] Kraus, Florian, et al. "Using machine learning to detect ghost images in automotive radar." 2020
IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020.

See Also

Related Examples
• “Simulate Radar Ghosts Due to Multipath Return” on page 8-627

8 Featured Examples

8-464

Extended Object Tracking of Highway Vehicles with Radar and
Camera in Simulink

This example shows you how to track highway vehicles around an ego vehicle in Simulink. In this
example, you use multiple extended object tracking techniques to track highway vehicles and
evaluate their tracking performance. This example closely follows the “Extended Object Tracking of
Highway Vehicles with Radar and Camera” (Sensor Fusion and Tracking Toolbox) MATLAB®
example.

Extended Objects and Extended Object Tracking

In the sense of object tracking, extended objects are objects, whose dimensions span multiple sensor
resolution cells. As a result, the sensors report multiple detections per objects in a single scan. The
key benefit of using a high-resolution sensor is getting more information about the object, such as its
dimensions and orientation. This additional information can improve the probability of detection and
reduce the false alarm rate. For example, the image below depicts multiple detections for a single
vehicle that spans multiple radar resolution cells.

In conventional tracking approaches such as global nearest neighbor, joint probabilistic data
association and multi-hypothesis tracking, tracked objects are assumed to return one detection per
sensor scan. High resolution sensors that report multiple returns per object in a scan present new
challenges to conventional tracker. In some cases, you can cluster the sensor data to provide the
conventional trackers with a single detection per object. However, by doing so, the benefit of using a
high-resolution sensor may be lost.

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

8-465

Extended object trackers can handle multiple detections per object. In addition, these trackers can
estimate not only the kinematic states, such as position and velocity of the object, but also the
dimensions and orientation of the object. In this example, you track vehicles around the ego vehicle
using the following trackers:

• A conventional multi-object tracker using a point-target model, Multi-Object Tracker.
• A GGIW-PHD tracker, Probability Hypothesis Density (PHD) Tracker (Sensor Fusion and Tracking

Toolbox) with Gamma Gaussian Inverse Wishart (ggiwphd) filter.
• A GM-PHD tracker, Probability Hypothesis Density (PHD) Tracker (Sensor Fusion and Tracking

Toolbox) with Gaussian Mixture (gmphd) filter using a rectangular target model.

You will evaluate the results using the Optimal Subpattern Assignment Metric (Sensor Fusion and
Tracking Toolbox), which provides a single combined score accounting for errors in both assignment
and distance. A lower score means better tracking.

Overview of the Model

load_system('ExtendedObjectTrackingInSimulink');
set_param('ExtendedObjectTrackingInSimulink','SimulationCommand','update');
open_system('ExtendedObjectTrackingInSimulink');

The model has three sub-systems, each implementing a part of the workflow:

• Scenario and Sensor Simulation
• Tracking Algorithms
• Tracking Performance and Visualization

8 Featured Examples

8-466

Scenario and Sensor Simulation

The Scenario Reader block reads a drivingScenario object from workspace and generates Actors
and Ego vehicle position data as “Explore Simulink Bus Capabilities” (Simulink) Objects. The Vehicle
To World block converts the actor position from vehicle coordinates to world coordinates. The Driving
Radar Data Generator block simulates radar detections and Vision Detection Generator simulates
camera detections. Detections from all the sensors are grouped together using the Detection
Concatenation block.

In the scenario there is an ego vehicle and four other vehicles: a vehicle ahead of the ego vehicle in
the center lane, a vehicle behind the ego vehicle in the center lane, a truck ahead of the ego vehicle
in the right lane, and an overtaking vehicle in the left lane.

In this example, you simulate an ego vehicle that has six radar sensors and two vision sensors
covering the 360-degree field of view. The sensors have some coverage overlaps and gaps. The ego
vehicle is equipped with a long-range radar sensor and a vision sensor on the front and back of the
vehicle. On each side of the vehicle two short-range radar sensors cover 90 degrees respectively. One
of the two sensors cover from the middle of the vehicle to the back, and the other sensor covers from
the middle of the vehicle to the front.

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

8-467

Tracking Algorithms

You implement three different extended object tracking algorithms using a variant sub-system. See
“Variant Subsystems” (Simulink) for more information. The variant sub-system has one Subsystem
(Simulink) for each tracking algorithm. You can select the tracking algorithm by changing the value
of the workspace variable TRACKER. The default value of TRACKER is 1.

8 Featured Examples

8-468

Point Object Tracker

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

8-469

In this section you use the Multi-Object Tracker block to implement the tracking algorithm based on a
point target model. Detections from the radar are preprocessed to include ego vehicle INS
information using the Helper Preprocess Detection block. The block is implemented using the
MATLAB System (Simulink) block. Code for this block is defined in the helper class
helperPreProcessDetections. The Multi-Object Tracker assumes one detection per object per
sensor and uses a global nearest neighbor approach to associate detections to tracks. It assumes that
every object can be detected at most once by a sensor in a scan. However, the simulated radar
sensors have a high enough resolution and generate multiple detections per object. If these
detections are not clustered, the tracker generates multiple tracks per object. Clustering returns one
detection per cluster, at the cost of having a larger uncertainty covariance and losing information
about the true object dimensions. Clustering also makes it hard to distinguish between two objects
when they are close to each other, for example, when one vehicle passes another vehicle.

To cluster the radar detections, you configure the Driving Radar Data Generator block to output
Clustered Detections instead of detections. To do this you set the TargetReportFormat parameter
on the block as Clustered detections. In the model, this is achieved by specifying the block
parameters in the InitFcn callback of the Point Object Tracker subsystem. See “Model Callbacks”
(Simulink) for more information about callback functions.

The animation below shows that, with clustering, the tracker can keep track of the objects in the
scene. The track associated with the overtaking vehicle (yellow) moves from the front of the vehicle
at the beginning of the scenario to the back of the vehicle at the end. At the beginning of the
scenario, the overtaking vehicle is behind the ego vehicle (blue), so radar and vision detections are
made from its front. As the overtaking vehicle passes the ego vehicle, radar detections are made from
the side of the overtaking vehicle and then from its back. You can also observe that the clustering is
not perfect. When the passing vehicle passes the vehicle that is behind the ego vehicle (purple), both
tracks are slightly shifted to the left due to the imperfect clustering.

8 Featured Examples

8-470

GGIW-PHD Extended Object Tracker

In this section you use a Probability Hypothesis Density (PHD) Tracker (Sensor Fusion and Tracking
Toolbox) tracker block to implement the extended object tracking algorithm with ggiwphd (Sensor
Fusion and Tracking Toolbox) filter to track objects. Detections from the radar are preprocessed to
include ego vehicle INS information using the Helper Preprocess Detection block. The block is
implemented using the MATLAB System (Simulink) block. Code for this block is defined in the helper
class helperPreProcessDetections. It also outputs the sensor configurations required by the
tracker for calculating the detectability of each component in the density.

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

8-471

You specify the Sensor configurations parameter of the PHD tracker block as a structure with
fields same as trackingSensorConfiguration (Sensor Fusion and Tracking Toolbox) and set the
FilterInitializationFcn field as helperInitGGIWFilter and SensorTransformFcn field as
ctmeas. In the model this is achieved by specifying the InitFcn callback of the GGIW PHD Tracker
subsystem. See “Model Callbacks” (Simulink) for more information about callback functions.

Unlike Multi-Object Tracker, which maintains one hypothesis per track, the GGIW-PHD is a multi-
target filter which describes the probability hypothesis density (PHD) of the scenario. GGIW-PHD
filter uses these distributions to model the extended targets:

Gamma: Represents the expected number of detections on a sensor from the extended object.

Gaussian: Represents the kinematic state of the extended object.

Inverse-Wishart: Represents the spatial extent of the target. In 2-D space, the extent is represented
by a 2-by-2 random positive definite matrix, which corresponds to a 2-D ellipse description. In 3-D
space, the extent is represented by a 3-by-3 random matrix, which corresponds to a 3-D ellipsoid
description. The probability density of these random matrices is given as an Inverse-Wishart
distribution.

The model assumes that each distribution is independent of each other. Thus, the probability
hypothesis density (PHD) in GGIW-PHD filter is described by a weighted sum of the probability
density functions of several GGIW components. In contrast to a point object tracker, which assumes
one partition of detections, the PHD tracker creates multiple possible partitions of a set of detections
and evaluates it against the current components in the PHD filter. You specify a PartitioningFcn
to create detection partitions, which provides multiple hypotheses about the clustering.

The animation below shows that the GGIW-PHD can handle multiple detections per object per sensor,
without the need to cluster these detections first. Moreover, by using the multiple detections, the
tracker estimates the position, velocity, dimension, and orientation of each object. The dashed
elliptical shape in the figure demonstrates the expected extent of the target.

The GGIW-PHD filter assumes that detections are distributed around the target's elliptical center.
Therefore, the tracks tend to follow observable portions of the vehicle. Such observable portions
include rear face of the vehicle that is directly ahead of the ego vehicle or the front face of the vehicle
directly behind the ego vehicle. The tracker can better approximate the length and width of vehicles
that are nearby using the ellipse. In the simulation, for example, the tracker produces a better ellipse
overlap with the actual size of the passing vehicle.

8 Featured Examples

8-472

GM-PHD Rectangular Object Tracker

In this section you use a Probability Hypothesis Density (PHD) Tracker (Sensor Fusion and Tracking
Toolbox) tracker block with a gmphd filter to track objects using a rectangular target model. Unlike
ggiwphd, which uses an elliptical shape to estimate the object extent, gmphd allows you to use a
Gaussian distribution to define the shape of your choice. You define a rectangular target model by
using motion models, ctrect (Sensor Fusion and Tracking Toolbox) and ctrectjac (Sensor Fusion

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

8-473

and Tracking Toolbox) and measurement models, ctrectmeas (Sensor Fusion and Tracking Toolbox)
and ctrectmeasjac (Sensor Fusion and Tracking Toolbox).

The sensor configurations defined for PHD Tracker remain the same except for definition of the
SensorTransformFcn and FilterInitializationFcn fields. You set the
FilterInitializationFcn field as helperInitRectangularFilter and the
SensorTransformFcn field as ctrectcorners. In the model this is achieved by specifying the
InitFcn callback of the GM PHD Tracker subsystem. See “Model Callbacks” (Simulink) for more
information about callback functions.

The animation below shows that the GM-PHD can also handle multiple detections per object per
sensor. Similar to GGIW-PHD, it also estimates the size and orientation of the object. The filter
initialization function uses similar approach as GGIW-PHD tracker and initializes multiple
components of different sizes.

You can see that the estimated tracks, modeled as rectangles, have a good fit with the simulated
ground truth object, depicted by the solid color patches. In particular, the tracks are able to correctly
track the shape of the vehicles along with their kinematic centers.

8 Featured Examples

8-474

Tracking Performance and Visualization

You assess the performance of each algorithm using the Optimal Subpattern Assignment (OSPA)
metric. The OSPA metric aims to evaluate the performance of a tracking system with a scalar cost by
combining different error components.

where , , and are localization, cardinality and labeling error components and p is the
order of the OSPA metric. See trackOSPAMetric (Sensor Fusion and Tracking Toolbox) for more
information.

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

8-475

8 Featured Examples

8-476

You set the Distance type parameter to custom and define the distance function between a track
and its associated ground truth as the helperExtendedTargetDistance helper function. This
distance helper function captures position, velocity, dimension and yaw error between a track and an
associated truth. The OSPA metric is shown in the scope block. Each unit on the x-axis represents 10
time steps in the scenario. Notice that the OSPA metric decreases and thus shows performance
improvement when you switch from point object tracker to GGIW-PHD tracker and from GGIW-PHD
tracker to GM-PHD tracker. The scenario is visualized using the Helper Scenario Visualization block,
implemented using the MATLAB System (Simulink) block. Code for this block is defined in the helper
class helperExtendedTargetTrackingDisplayBlk.

bdclose('ExtendedObjectTrackingInSimulink');

Summary

In this example you learned how to track objects that return multiple detections in a single sensor
scan using different tracking approaches in Simulink environment. You also learned how to evaluate
the performance of a tracking algorithm using the OSPA metric.

See Also
Scenario Reader | Driving Radar Data Generator | Vision Detection Generator | Multi-Object Tracker |
Probability Hypothesis Density (PHD) Tracker | Optimal Subpattern Assignment Metric

More About
• “Sensor Fusion Using Synthetic Radar and Vision Data” on page 8-286

 Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink

8-477

• “Track-Level Fusion of Radar and Lidar Data” on page 8-384
• “Extended Object Tracking of Highway Vehicles with Radar and Camera” on page 8-327

8 Featured Examples

8-478

Grid-based Tracking in Urban Environments Using Multiple
Lidars in Simulink

This example shows how to track moving objects with multiple lidars using a grid-based tracker in
Simulink. You use the Grid-Based Multi Object Tracker (Sensor Fusion and Tracking Toolbox)
Simulink block to define the grid-based tracker. This Grid-based tracker uses dynamic occupancy grid
map as an intermediate representation of the environment. This example closely follows the “Grid-
Based Tracking in Urban Environments Using Multiple Lidars” (Sensor Fusion and Tracking Toolbox)
MATLAB® example.

Overview of the model

The model is composed of three parts:

• Scenario and Sensor Simulation
• Grid-Based Multi Object Tracker (Sensor Fusion and Tracking Toolbox)
• Visualization

 Grid-based Tracking in Urban Environments Using Multiple Lidars in Simulink

8-479

Scenario and Sensor Simulation

The Scenario Reader block reads a drivingScenario object from workspace and generates
Actors and Ego vehicle position data as Simulink.Bus (Simulink) Objects. The Lidar Point Cloud
Generator block is used to simulate point cloud location data. The
HelperLidarSensorConfigurations block generates real time lidar sensor configurations with
the help of Runtime objects obtained from the Scenario Reader and Lidar Point Cloud
Generator blocks. These sensor configurations allow you to specify the mounting of each sensor
with respect to the tracking coordinate frame. The sensor configurations also allow you to specify the
detection limits - field of view and maximum range - of each sensor. As the sensors move in the
scenario system, their configuration must be updated each time by specifying the configurations as
an input to the tracker block. The HelperConcatenateSensorData block is implemented using a
MATLAB Function (Simulink) block. Code for this block is defined in the HelperSensorData file.

8 Featured Examples

8-480

This block groups and formats the data coming from lidar sensors and the
HelperLidarSensorConfigurations block into high resolution sensor data, which is used as an
input to the tracker block.

The scenario used in this example was created using the Driving Scenario Designer app and then
exported to a MATLAB® function. The scenario represents an urban intersection scene and contains
a variety of objects including pedestrians, bicyclists, cars, and trucks. The ego vehicle is equipped
with six homogeneous lidars, each with a horizontal field of view of 90 degrees and a vertical field of
view of 40 degrees. Each lidar has 32 elevation channels and has a resolution of 0.16 degrees in
azimuth. Under this configuration, each lidar sensor outputs approximately 18,000 points per scan.
The configuration of each sensor is shown here.

Grid-Based Multi Object Tracker

You use the Grid-Based Multi Object Tracker (Sensor Fusion and Tracking Toolbox) block to
implement the tracking algorithm to track dynamic objects in the scene. You define all the parameters
in the block mask based on the scenario requirement. To visualize the dynamic grid map, make sure
you select the Enable dynamic grid map visualization parameter on the visualization
tab of the tracker block.

Visualization

The visualization used for this example is defined using a helper class, HelperVisualization a
MATLAB System (Simulink) block, attached with this example. In the step call of visualization block

 Grid-based Tracking in Urban Environments Using Multiple Lidars in Simulink

8-481

make sure you set the "Parent" property to the current axes. This allows you to visualize the dynamic
grid map on the current figure axes. The color disc classifies the motion of the grid cells object. You
can see that the grid cells motion in the positive x-direction are classified with red color, objects
moving in the negative x-direction are classified with the blue color, objects moving in the negative y-
direction are classified with purple and objects moving in the positive y-direction are classified with
light-green color. The Visualization contains three parts:

• Ground truth - Front View: This panel shows the front-view of the ground truth using a
chase plot from the ego vehicle. To emphasize dynamic actors in the scene, the static objects are
shown in gray.

• Lidar Views: These panels show the point cloud returns from each sensor.

• Grid-based tracker: This panel shows the grid-based tracker outputs. The tracks are shown as
boxes, each annotated by their identity. The tracks are overlaid on the dynamic grid map. The
colors of the dynamic grid cells are defined according to the color wheel, which represents the
direction of motion of in the scenario frame. The static grid cells are represented in grayscale
according to their occupancy. The degree of grayness denotes the probability that the space
occupied by the grid cell is free. The positions of the tracks are shown in the ego vehicle
coordinate system, while the velocity vector corresponds to the velocity of the track in the
scenario frame.

Results and Analysis

You can analyze the performance of the tracker based on the visualization results. The Grid-based
tracker panel shows the estimated dynamic map as well as the estimated tracks of the objects. It
also shows the configurations of sensors, which are mounted on the ego vehicle and shown as blue
circular sectors. Notice that the grey area shown in the dynamic grid map is not observable from any
of the ego vehicle sensors since the view direction is blocked. You can also find that the tracks are
only extracted from the dynamic cells and hence the tracker is able to filter out static objects.

8 Featured Examples

8-482

Summary

In this example you learned how to construct a grid-based multi object tracking system and how to
track and visualize dynamic objects in a complex urban driving environment in Simulink.

See Also
Scenario Reader | Lidar Point Cloud Generator | Grid-Based Multi Object Tracker

More About
• “Track Vehicles Using Lidar: From Point Cloud to Track List” on page 8-268
• “Ground Plane and Obstacle Detection Using Lidar” on page 8-172
• “Grid-Based Tracking in Urban Environments Using Multiple Lidars” on page 8-422
• “Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink” on page 8-

465
• “Extended Object Tracking With Radar For Marine Surveillance” (Sensor Fusion and Tracking

Toolbox)
• “Extended Object Tracking with Lidar for Airport Ground Surveillance” (Sensor Fusion and

Tracking Toolbox)

 Grid-based Tracking in Urban Environments Using Multiple Lidars in Simulink

8-483

Object Tracking and Motion Planning Using Frenet Reference
Path

This example shows you how to dynamically replan the motion of an autonomous vehicle based on the
estimate of the surrounding environment. You use a Frenet reference path and a joint probabilistic
data association (JPDA) tracker to estimate and predict the motion of other vehicles on the highway.
Compared to the “Highway Trajectory Planning Using Frenet Reference Path” (Navigation Toolbox)
example, you use these estimated trajectories from the multi-object tracker in this example instead of
ground truth for motion planning.

Introduction

Dynamic replanning for autonomous vehicles is typically done with a local motion planner. The local
motion planner is responsible for generating optimal trajectory based on a global plan and real-time
information about the surrounding environment. The global plan for highway trajectory planning can
be described as a pre-generated coordinate list of the highway centerline. The surrounding
environment can be described mainly in two ways:

1 Discrete set of objects in the surrounding environment with defined geometries.
2 Discretized grid with estimates about free and occupied regions in the surrounding environment.

In the presence of dynamic obstacles, a local motion planner also requires predictions about the
surroundings to assess the validity of planned trajectories. In this example, you represent the
surrounding environment using the discrete set of objects approach. For an example using discretized
grid, refer to the “Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map”
(Sensor Fusion and Tracking Toolbox) example.

Object State Transition and Measurement Modeling

The object list and their future predictions for motion planning are typically estimated by a multi-
object tracker. The multi-object tracker accepts data from sensors and estimates the list of objects. In
the tracking community, this list of objects is often termed as track list.

In this example, you use radar and camera sensors and estimate the track list using a JPDA multi-
object tracker. The first step towards using any multi-object tracker is defining the object state, how
the state evolves with time (state transition model) and how the sensor perceives it (measurement
model). Common state transition models include constant-velocity model, constant-acceleration
model etc. However, in the presence of map information, road network can be integrated into the
motion model. In this example, you use a Frenet coordinate system to describe the object state at any
given time step, k.

xk = sk sk̇ dk dk̇

where sk and dk represents the distance of the object along and perpendicular to highway centerline,
respectively. You use a constant-speed state transition model to describe the object motion along the
highway and a decaying-speed model to describe the motion perpendicular to the highway centerline.
This decaying speed model allows you to represent lane change maneuvers by other vehicles on the
highway.

8 Featured Examples

8-484

sk + 1

sk + 1˙
dk + 1

dk + 1˙

=

1 ΔT 0 0
0 1 0 0

0 0 1 τ 1− e −
ΔT
τ

0 0 0 e −
ΔT
τ

sk

sk̇
dk

dk̇

+

ΔT2

2 0

ΔT 0

0 ΔT2

2
0 ΔT

ws
wd

where ΔT is the time difference between steps k and k + 1, ws and wd are zero-mean Gaussian noise
representing unknown acceleration in Frenet coordinates, and τ is a decaying constant.

This choice of coordinate in modeling the object motion allows you to integrate the highway reference
path into the multi-object tracking framework. The integration of reference path acts as additional
information for the tracker and allows the tracker to improve current state estimates as well as
predicted trajectories of the estimated objects. You can obtain measurement model by first
transforming the object state into Cartesian position and velocity and then converting them to
respective measured quantities such as azimuth and range.

Setup

Scenario and Sensors

The scenario used in this example is created using the Driving Scenario Designer and then exported
to a MATLAB® function. The ego vehicle is mounted with 1 forward-looking radar and 5 cameras
providing 360-degree coverage. The radar and cameras are simulated using the
drivingRadarDataGenerator and visionDetectionGenerator System objects, respectively.

The entire scenario and sensor setup is defined in the helper function,
helperTrackingAndPlanningScenario, attached with this example. You define the global plan

 Object Tracking and Motion Planning Using Frenet Reference Path

8-485

describing the highway centerline using a referencePathFrenet (Navigation Toolbox) object. As
multiple algorithms in this example need access to the reference path, you define the
helperGetReferencePath function, which uses a persistent object that can be accessed by any
function.

rng(2022); % For reproducible results

% Setup scenario and sensors
[scenario, egoVehicle, sensors] = helperTrackingAndPlanningScenario();

Joint Probabilistic Data Association Tracker

You set up a joint probabilistic data association tracker using the trackerJPDA (Sensor Fusion and
Tracking Toolbox) System object. You set the FilterInitializationFcn property of the tracker to
helperInitRefPathFilter function. This helper function defines an extended Kalman filter,
trackerJPDA (Sensor Fusion and Tracking Toolbox), used to estimate the state of a single object.
Local functions inside the helperInitRefPathFilter file define the state transition as well as
measurement model for the filter. Further, to predict the tracks at a future time for the motion
planner, you use the predictTracksToTime (Sensor Fusion and Tracking Toolbox) function of the
tracker.

tracker = trackerJPDA('FilterInitializationFcn',@helperInitRefPathFilter,...
 'AssignmentThreshold',[200 inf],...
 'ConfirmationThreshold',[8 10],...
 'DeletionThreshold',[5 5]);

Motion Planner

You use a similar highway trajectory motion planner as outlined in the “Highway Trajectory Planning
Using Frenet Reference Path” (Navigation Toolbox) example. The motion planner uses a planning
horizon of 5 seconds and considers three modes for sampling trajectories for the ego vehicle — cruise
control, lead vehicle follow, and basic lane change. The entire process for generating an optimal
trajectory is wrapped in the helper function, helperPlanHighwayTrajectory.

The helper function accepts an dynamicCapsuleList (Navigation Toolbox) object as an input to find
non-colliding trajectories. The collision checking is performed in the entire planning horizon at an
interval of 0.5 seconds. As the track states vary with time, you update the dynamicCapsuleList
object in the simulation loop using the helperUpdateCapsuleList function, attached with this
example.

% Collision check time stamps
tHorizon = 5; % seconds
deltaT = 0.5; % seconds
tSteps = deltaT:deltaT:tHorizon;

% Create the dynamicCapsuleList object
capList = dynamicCapsuleList;
capList.MaxNumSteps = numel(tSteps) + 1;

% Specify the ego vehicle geometry
carLen = 4.7;
carWidth = 1.8;
rearAxleRatio = 0.25;
egoID = 1;
[egoID, egoGeom] = egoGeometry(capList,egoID);

8 Featured Examples

8-486

% Inflate to allow uncertainty and safety gaps
egoGeom.Geometry.Length = 2*carLen; % in meters
egoGeom.Geometry.Radius = carWidth/2; % in meters
egoGeom.Geometry.FixedTransform(1,end) = -2*carLen*rearAxleRatio; % in meters
updateEgoGeometry(capList,egoID,egoGeom);

Run Simulation

In this section, you advance the simulation, generate sensor data and perform dynamic replanning
using estimations about the surroundings. The entire process is divided into 5 main steps:

1 You collect simulated sensor data from radar and camera sensors.
2 You feed the sensor data to the JPDA tracker to estimate current state of objects.
3 You predict the state of objects using the predictTracksToTime function.
4 You update the object list for the planner and plan a highway trajectory.
5 You move the simulated ego vehicle on the planned trajectory.

% Create display for visualizing results
display = HelperTrackingAndPlanningDisplay;

% Initial state of the ego vehicle
refPath = helperGetReferencePath;
egoState = frenet2global(refPath,[0 0 0 0.5*3.6 0 0]);
helperMoveEgoToState(egoVehicle, egoState);

while advance(scenario)
 % Current time
 time = scenario.SimulationTime;

 % Step 1. Collect data
 detections = helperGenerateDetections(sensors, egoVehicle, time);

 % Step 2. Feed detections to tracker
 tracks = tracker(detections, time);

 % Step 3. Predict tracks in planning horizon
 timesteps = time + tSteps;
 predictedTracks = repmat(tracks,[1 numel(timesteps)+1]);
 for i = 1:numel(timesteps)
 predictedTracks(:,i+1) = predictTracksToTime(tracker,'confirmed',timesteps(i));
 end

 % Step 4. Update capsule list and plan highway trajectory
 currActorState = helperUpdateCapsuleList(capList, predictedTracks);
 [optimalTrajectory, trajectoryList] = helperPlanHighwayTrajectory(capList, currActorState, egoState);

 % Visualize the results
 display(scenario, egoVehicle, sensors, detections, tracks, capList, trajectoryList);

 % Step 5. Move ego on planned trajectory
 egoState = optimalTrajectory(2,:);
 helperMoveEgoToState(egoVehicle,egoState);
end

 Object Tracking and Motion Planning Using Frenet Reference Path

8-487

Results

In the animation below, you can observe the planned ego vehicle trajectories highlighted in green
color. The animation also shows all other sampled trajectories for the ego vehicle. For these other
trajectories, the colliding trajectories are shown in red, unevaluated trajectories are shown in grey,
and kinematically-infeasible trajectories are shown in cyan color. Each track is annotated by an ID
representing its unique identity. Notice that the ego vehicle successfully maneuvers around obstacles
in the scene.

In the following sub-sections, you analyze the estimates from the tracker at certain time steps and
understand how it impacts the choices made by the motion planner.

Road-integrated motion prediction

In this section, you learn how the road-integrated motion model allows the tracker to obtain more
accurate long-term predictions about the objects on the highway. Shown below is a snapshot from the
simulation taken at time = 30 seconds. Notice the trajectory predicted for the green vehicle to the
right of the blue ego vehicle. The predicted trajectory follows the lane of the vehicle because the road
network information is integrated with the tracker. If instead, you use a constant-velocity model
assumption for objects, the predicted trajectory will follow the direction of instantaneous velocity and
will be falsely treated as a collision by the motion planner. In this case, the motion planner can
possibly generate an unsafe maneuver.

showSnaps(display,2,4); % Shows snapshot while publishing

8 Featured Examples

8-488

Lane change prediction

In the first section, you learned how the lane change maneuvers are captured by using a decaying
lateral velocity model of the objects. Now, notice the snapshot taken at time = 17.5 seconds. At this
time, the yellow vehicle on the right side of the ego vehicle initiates a lane change and intends to
enter the lane of the ego vehicle. Notice that its predicted trajectory captures this maneuver, and the
tracker predicts it to be in the same lane as the ego vehicle at the end of planning horizon. This
prediction informs the motion planner about a possible collision with this vehicle, thus the planner
first proceeds to test feasibility for the ego vehicle to change lane to the left. However, the presence
of purple vehicle on the left and its predicted trajectory causes the ego vehicle to make a right lane
change. You can also observe these colliding trajectories colored as red in the snapshot below.

showSnaps(display,2,1); % Shows snapshot while publishing

 Object Tracking and Motion Planning Using Frenet Reference Path

8-489

Tracker imperfections

A multi-object tracker may have certain imperfections that can affect motion planning decisions.
Specifically, a multi-object tracker can miss objects, report false tracks, or sometimes report
redundant tracks. In the snapshot below taken at time = 20 seconds, the tracker drops tracks on two
vehicles in front of the ego vehicle due to occlusion. In this particular situation, these missed targets
are less likely to influence the decision of the motion planner due to their distance from the ego
vehicle.

showSnaps(display,2,2); % Shows snapshot while publishing

8 Featured Examples

8-490

However, as the ego vehicle approaches these vehicles, their influence on the ego vehicle's decision
increases. Notice that the tracker is able to establish a track on these vehicles by time = 20.4
seconds, as shown in the snapshot below, thus making the system slightly robust to these
imperfections. While configuring a tracking algorithm for motion planning, it is important to consider
these imperfections from the tracker and tune the track confirmation and track deletion logics.

showSnaps(display,2,3); % Show snapshot while publishing

 Object Tracking and Motion Planning Using Frenet Reference Path

8-491

Summary

You learned how to use a joint probabilistic data association tracker to track vehicles using a Frenet
reference path with radar and camera sensors. You configured the tracker to use highway map data
to provide long term predictions about objects. You also used these long-term predictions to drive a
motion planner for planning trajectories on the highway.

Supporting Functions

function detections = helperGenerateDetections(sensors, egoVehicle, time)
 detections = cell(0,1);
 for i = 1:numel(sensors)
 thisDetections = sensors{i}(targetPoses(egoVehicle),time);
 detections = [detections;thisDetections]; %#ok<AGROW>
 end

 detections = helperAddEgoVehicleLocalization(detections,egoVehicle);
 detections = helperPreprocessDetections(detections);
end

function detectionsOut = helperAddEgoVehicleLocalization(detectionsIn, egoPose)

8 Featured Examples

8-492

defaultParams = struct('Frame','Rectangular',...
 'OriginPosition',zeros(3,1),...
 'OriginVelocity',zeros(3,1),...
 'Orientation',eye(3),...
 'HasAzimuth',false,...
 'HasElevation',false,...
 'HasRange',false,...
 'HasVelocity',false);

fNames = fieldnames(defaultParams);

detectionsOut = cell(numel(detectionsIn),1);

for i = 1:numel(detectionsIn)
 thisDet = detectionsIn{i};
 if iscell(thisDet.MeasurementParameters)
 measParams = thisDet.MeasurementParameters{1};
 else
 measParams = thisDet.MeasurementParameters(1);
 end

 newParams = struct;
 for k = 1:numel(fNames)
 if isfield(measParams,fNames{k})
 newParams.(fNames{k}) = measParams.(fNames{k});
 else
 newParams.(fNames{k}) = defaultParams.(fNames{k});
 end
 end

 % Add parameters for ego vehicle
 thisDet.MeasurementParameters = [newParams;newParams];
 thisDet.MeasurementParameters(2).Frame = 'Rectangular';
 thisDet.MeasurementParameters(2).OriginPosition = egoPose.Position(:);
 thisDet.MeasurementParameters(2).OriginVelocity = egoPose.Velocity(:);
 thisDet.MeasurementParameters(2).Orientation = rotmat(quaternion([egoPose.Yaw egoPose.Pitch egoPose.Roll],'eulerd','ZYX','frame'),'frame')';

 % No information from object class and attributes
 thisDet.ObjectClassID = 0;
 thisDet.ObjectAttributes = struct;
 detectionsOut{i} = thisDet;
end

end

function detections = helperPreprocessDetections(detections)
 % This function pre-process the detections from radars and cameras to
 % fit the modeling assumptions used by the tracker

 % 1. It removes velocity information from camera detections. This is
 % because those are filtered estimates and the assumptions from camera
 % may not align with defined prior information for tracker.
 %
 % 2. It fixes the bias for camera sensors that arise due to camera
 % projections for cars just left or right to the ego vehicle.
 %

 Object Tracking and Motion Planning Using Frenet Reference Path

8-493

 % 3. It inflates the measurement noise for range-rate reported by the
 % radars to match the range-rate resolution of the sensor
 for i = 1:numel(detections)
 if detections{i}.SensorIndex > 1 % Camera
 % Remove velocity
 detections{i}.Measurement = detections{i}.Measurement(1:3);
 detections{i}.MeasurementNoise = blkdiag(detections{i}.MeasurementNoise(1:2,1:2),25);
 detections{i}.MeasurementParameters(1).HasVelocity = false;

 % Fix bias
 pos = detections{i}.Measurement(1:2);
 if abs(pos(1)) < 5 && abs(pos(2)) < 5
 [az, ~, r] = cart2sph(pos(1),pos(2),0);
 [pos(1),pos(2)] = sph2cart(az, 0, r + 0.7); % Increase range
 detections{i}.Measurement(1:2) = pos;
 detections{i}.MeasurementNoise(2,2) = 0.25;
 end
 else % Radars
 detections{i}.MeasurementNoise(3,3) = 0.5^2/4;
 end
 end
end

function helperMoveEgoToState(egoVehicle, egoState)
egoVehicle.Position(1:2) = egoState(1:2);
egoVehicle.Velocity(1:2) = [cos(egoState(3)) sin(egoState(3))]*egoState(5);
egoVehicle.Yaw = egoState(3)*180/pi;
egoVehicle.AngularVelocity(3) = 180/pi*egoState(4)*egoState(5);
end

See Also
trackerJPDA | referencePathFrenet | trajectoryGeneratorFrenet | drivingScenario

More About
• “Highway Trajectory Planning Using Frenet Reference Path” on page 8-744
• “Optimal Trajectory Generation for Urban Driving” (Navigation Toolbox)
• “Highway Lane Change” on page 8-867

8 Featured Examples

8-494

Asynchronous Sensor Fusion and Tracking with Retrodiction
This example shows how to construct an asynchronous sensor fusion and tracking model in
Simulink®.

Introduction

In this example you create a model for sensor fusion and tracking by simulating radar and vision
camera, each running at a different update rate. The sensors and the tracker run on separate
electronic control units (ECUs). The tracker runs asynchronously from the sensors at a different
update rate.

Model Description

Open the Simulink model using the open_system command.

open_system('AsynchronousTrackingModel.slx');

The model consists of five parts.

The Scenario part of the model consists of a Scenario Reader block, which loads the scenario saved in
AsynchronousTrackingScenario.mat. In the scenario, there are 4 vehicles: the ego vehicle, a car
in front of it, a passing car, and a car behind the ego car.

The ego car has two sensors: a radar and a vision camera. The radar is simulated using the Driving
Radar Data Generator block, running at 25 Hz, or every 40 milliseconds. The camera is simulated
using a Vision Detection Generator block, running every 44 milliseconds. Due to the combination of
sensor rates, the scenario needs to run at a rate of at least 250 Hz, or every 4 milliseconds. Both
sensor models are shown in the Sensor Simulation part of the model.

The Message Delivery System part of the model simulates the asynchronous communication system
between the sensors and the tracker. Each sensor outputs a bus of detections that is packed into by a
Message Send block and delivered to an Entity Queue. The queues are organized as a last-in-first-out
(LIFO) queue with a capacity of 1. The queues store only latest data from sensors. The Entity
Transport Delay blocks are used to simulate communication delays in the network. The blocks delay
an entity for a period of time received at its second input port. In this example you use the Random
Number block to generate mean delay values of 40 and 44 milliseconds for radar and vision sensors
respectively.

The Sensor Fusion and Tracking part of the model consists of the Message Receive blocks and a
Triggered Subsystem block. The Message Receive blocks read the messages and pass their payload to

 Asynchronous Sensor Fusion and Tracking with Retrodiction

8-495

the subsystem. The subsystem is triggered using an external signal at 20Hz or 50 milliseconds. This
means that the tracker is updated every 50 milliseconds. The trigger signal is generated using the
Pulse Generator block.

open_system('AsynchronousTrackingModel/SensorFusionAndTracking');

In the subsystem, the Detection Concatenation block concatenates detections from both sensors and
passes them to the tracker.

The final part of the model is the Visualization, where all the scenario, sensor, and tracking data are
visualized by a helper block.

Configure the Tracker to Use Retrodiction

For the tracker, you use a Global Nearest Neighbor Tracker block. You modify the tracker to use the
retrodiction technique for out-of-sequence measurement (OOSM) handling. When using the tracker in
an asynchronous way, the tracker clock may run ahead of the messages that arrive, which renders the
messages 'out-of-sequence'. Setting the tracker OOSM handling to retrodiction allows the tracker to
process them instead of terminating with an error or neglecting the OOSM. Overall, retrodiction
improves the tracker accuracy.

Using retrodiction requires more memory because the tracker must maintain a history of each track.
To reduce the memory allocation, you reduce the maximum number of tracks to 20, because there are
just a few objects in the scenario. Similarly, you reduce the maximum number of sensors to 2, because
only two sensors report to the tracker.

You increase the threshold for assigning detections to tracks from the default 30 to 50 to allow vision
and radar detections that may have different offsets on the object to be assigned to the same track. A
larger assignment threshold may result in false detections getting assigned to each other and
creating false tracks. To reduce the rate of false tracks, you make the confirmation threshold stricter
by increasing it from the default 2-out-of-3 to 4-out-of-5 detections.

Run the Model and See the Results

You build and run the model using the command below.

sim('AsynchronousTrackingModel.slx');
close_system('AsynchronousTrackingModel.slx');

8 Featured Examples

8-496

The simulation shows that the tracker tracks the vehicle in front of the ego vehicle after a few steps
required for confirmation and maintains the track throughout the scenario. The passing vehicle, in
yellow, is tracked only after it enters the field of view of sensors. The vehicle behind the ego vehicle is
never detected by any sensor and therefore it is never tracked.

Summary

This example showed you how to use an asynchronous sensor fusion and tracking system. The
example showed how to connect sensors with different update rates using an asynchronous tracker
and how to trigger the tracker to process sensor data at a different rate from sensors. The tracker
uses the retrodiction out-of-sequence measurement handling technique to process sensor data that
arrives out of sequence.

See Also
Scenario Reader | Driving Radar Data Generator | Vision Detection Generator | Global Nearest
Neighbor Multi Object Tracker

More About
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” on page 8-295
• “Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink” on page 8-

465

 Asynchronous Sensor Fusion and Tracking with Retrodiction

8-497

Extended Target Tracking with Multipath Radar Reflections in
Simulink

This example shows how to model and mitigate multipath radar reflections in a highway driving
scenario in Simulink®. It closely follows the “Highway Vehicle Tracking with Multipath Radar
Reflections” (Radar Toolbox) MATLAB® example.

Introduction

While automotive radars provide robust detection performance across the diverse array of
environmental conditions encountered in autonomous driving scenarios, interpreting the detections
reported by the radar can prove challenging. Sensor fusion algorithms processing the radar
detections will need to be able to identify the desired target detections returned along with
detections arising from road (often referred to as clutter) and multipath between the various objects
in the driving scenario like guardrails and other vehicles on the road. Detections generated by
multiple reflections between the radar and a particular target are often referred to as ghost
detections because they seem to originate in regions where no targets exist. This example shows you
the impact of these multipath reflections on designing and configuring an object tracking strategy
using radar detections. For more details regarding the multipath phenomenon and simulation of
ghost detections, see the “Simulate Radar Ghosts Due to Multipath Return” (Radar Toolbox) example.

Load Scenario and Radars

This example uses the same scenario and radars defined by the
helperCreateMultipathDrivingScenario function used in the “Highway Vehicle Tracking with
Multipath Radar Reflections” (Radar Toolbox) example. Opening the model loads this scenario into
the workspace for use by the Scenario Reader block.

open_system('MultipathRadarDetectionsTrackingModel')

8 Featured Examples

8-498

Use the Ego radars helper block to play back detections recorded from four radars providing full 360
degree coverage around the ego vehicle. To record a new set of detections, clear the Playback radar
recording check box.

open_system('MultipathRadarDetectionsTrackingModel/Ego radars')

close_system('MultipathRadarDetectionsTrackingModel/Ego radars')

The four sensor models are configured in the Record radars block.

open_system('MultipathRadarDetectionsTrackingModel/Ego radars/Record radars')

 Extended Target Tracking with Multipath Radar Reflections in Simulink

8-499

Use Bird's-Eye Scope to visualize the scenario and sensor coverage in this model.

8 Featured Examples

8-500

 Extended Target Tracking with Multipath Radar Reflections in Simulink

8-501

The Classify detections helper block classifies the detections generated by the four radars by
comparing their measurements to the confirmed tracks from the Probability Hypothesis Density
(PHD) Tracker (Sensor Fusion and Tracking Toolbox) block. The detection classification utilizes the
measured radial velocity from the targets to determine if the target generating the detection was
static or dynamic [1]. The detections are classified into four categories:

1 Dynamic targets — These (red) detections are classified to originate from real dynamic targets in
the scene.

2 Static ghosts — These (green) detections are classified to originate from dynamic targets but
reflected via the static environment.

3 Dynamic ghosts — These (blue) detections are classified to originate from dynamic targets but
reflected via other dynamic objects.

4 Static targets — These (black) detections are classified to originate from the static environment.

Configure GGIW-PHD Extended Object Tracker

Configure the Probability Hypothesis Density (PHD) Tracker (Sensor Fusion and Tracking Toolbox)
block with the same parameters as used by the “Highway Vehicle Tracking with Multipath Radar
Reflections” (Radar Toolbox) example. Reuse the helperMultipathExamplePartitionFcn
function to define the detection partitions used within the tracker.

open_system('MultipathRadarDetectionsTrackingModel/Probability Hypothesis Density Tracker')

8 Featured Examples

8-502

close_system('MultipathRadarDetectionsTrackingModel/Probability Hypothesis Density Tracker',0)

Run Simulation

Use the following command to play back the recorded detections and generate tracks.

simout = sim('MultipathRadarDetectionsTrackingModel')

 Extended Target Tracking with Multipath Radar Reflections in Simulink

8-503

8 Featured Examples

8-504

Use helperSaveSimulationLogs to save the logged tracks and classified detections for offline
analysis.

helperSaveSimulationLogs('MultipathRadarDetectionsTrackingModel',simout);

Analyze Performance

Load the logged tracks and detections to assess the performance of the tracking algorithm by using
the GOSPA metric and its associated components.

[confirmedTracks,confusionMatrix] = helperLoadSimulationLogs('MultipathRadarDetectionsTrackingModel');

Use trackGOSPAMetric to calculate GOSPA metrics from the logged tracks.

gospaMetric = trackGOSPAMetric('Distance','custom', ...
 'DistanceFcn',@helperGOSPADistance, ...
 'CutoffDistance',35);

% Number of simulated track updates
numSteps = numel(confirmedTracks.Time);

% GOSPA metric
gospa = NaN(4,numSteps);

restart(scenario);
groundTruth = scenario.Actors(2:end);
iStep = 1;
tol = seconds(scenario.SampleTime/4);
while scenario.SimulationTime<=seconds(confirmedTracks.Time(end))
 % Select data from time table for current simulation time
 tsim = scenario.SimulationTime;
 wt = withtol(seconds(tsim),tol);

 % Select tracks from time table and compute GOSPA metrics
 theseTracks = confirmedTracks{wt,'Tracks'}{1};
 [gospa(1,iStep),~,~,gospa(2,iStep),gospa(3,iStep),gospa(4,iStep)] = gospaMetric(theseTracks,groundTruth);

 if scenario.IsRunning
 advance(scenario);
 else
 break
 end
 iStep = iStep+1;
end

Quantitatively assess the performance of the tracking algorithm by using the GOSPA metric and its
associated components. A lower value of the metric denotes better tracking performance. In the
following figure, the Missed-target component of the metric remains zero after a few steps in the
beginning, representing establishment delay of the tracker. This component shows that no targets
were missed by the tracker. The False-tracks component of the metric is zero for most of the
simulation, indicating that no false tracks were confirmed by the tracker during those times.

% Plot GOSPA metrics
plot(seconds(confirmedTracks.Time),gospa','LineWidth',2);
xlabel('Time (s)');
title('GOSPA Metrics');
grid on;
legend('GOSPA','Localization GOSPA','Missed-target GOSPA','False-tracks GOSPA');

 Extended Target Tracking with Multipath Radar Reflections in Simulink

8-505

Similar to the tracking algorithm, you also quantitatively analyze the performance of the radar
detection classification algorithm by using a confusion matrix [2]. The rows shown in the table denote
the true classification information of the radar detections and the columns represent the predicted
classification information. For example, the second element of the first row defines the percentage of
target detections predicted as ghosts from static object reflections.

91% of the target detections are classified correctly. However, a small percentage of the target
detections are misclassified as ghosts from dynamic reflections. Also, approximately 3% of ghosts
from static object reflections and 24% of ghosts from dynamic object reflections are misclassified as
targets and sent to the tracker for processing. A common situation when this occurs in this example
is when the detections from two-bounce reflections lie inside the estimated extent of the vehicle.
Further, the classification algorithm used in this example is not designed to find false alarms or
clutter in the scene. Therefore, the fifth column of the confusion matrix is zero. Due to spatial
distribution of the false alarms inside the field of view, the majority of false alarm detections are
either classified as reflections from static objects or dynamic objects.

% Accumulate confusion matrix over all steps
confMat = shiftdim(reshape([confusionMatrix{:,'Confusion Matrix'}],numSteps,5,5),1);
confMat = sum(confMat,3);

% Number of detections for each target type
numDetections = sum(confMat,2);

numDetsTable = array2table(numDetections,'RowNames',{'Targets','Ghost (S)','Ghost (D)','Environment','Clutter'},...
 'VariableNames',{'Number of Detections'});

8 Featured Examples

8-506

disp('True Information');disp(numDetsTable);

True Information
 Number of Detections

 Targets 1990
 Ghost (S) 3242
 Ghost (D) 848
 Environment 27451
 Clutter 139

% Calculate classification percentages
percentMatrix = confMat./numDetections*100;

percentMatrixTable = array2table(round(percentMatrix,2),'RowNames',{'Targets','Ghost (S)','Ghost (D)','Environment','Clutter'},...
 "VariableNames",{'Targets','Ghost (S)','Ghost (D)', 'Environment','Clutter'});

disp('True vs Predicted Confusion Matrix (%)');disp(percentMatrixTable);

True vs Predicted Confusion Matrix (%)
 Targets Ghost (S) Ghost (D) Environment Clutter
 _______ _________ _________ ___________ _______

 Targets 91.46 0.7 7.44 0.4 0
 Ghost (S) 3.42 85.47 10.8 0.31 0
 Ghost (D) 24.29 0.35 75.35 0 0
 Environment 1.65 2.98 3.25 92.12 0
 Clutter 18.71 66.19 14.39 0.72 0

Summary

In this example, you simulated radar detections due to multipath propagation in an urban highway
driving scenario using Simulink. You configured a data processing algorithm to simultaneously filter
ghost detections and track vehicles on the highway. You also analyzed the performance of the
tracking algorithm and the classification algorithm using the GOSPA metric and confusion matrix.

References

[1] Prophet, Robert, et al. "Instantaneous Ghost Detection Identification in Automotive Scenarios."
2019 IEEE Radar Conference (RadarConf). IEEE, 2019.

[2] Kraus, Florian, et al. "Using machine learning to detect ghost images in automotive radar." 2020
IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020.

See Also
Scenario Reader | Driving Radar Data Generator | Probability Hypothesis Density (PHD) Tracker

More About
• “Highway Vehicle Tracking with Multipath Radar Reflections” (Radar Toolbox)
• “Simulate Radar Ghosts Due to Multipath Return” (Radar Toolbox)

 Extended Target Tracking with Multipath Radar Reflections in Simulink

8-507

Processor-in-the-Loop Verification of JPDA Tracker for
Automotive Applications

This example shows you how to generate embedded code for a trackerJPDA (Sensor Fusion and
Tracking Toolbox) (JPDA) tracker and verify it using processor-in-the-loop (PIL) simulations on a
STM32 Nucleo board with 1 MB RAM and 2 MB flash memory. In this example, you configure the
JPDA tracker to process detections from a camera and a radar sensor mounted in front of an ego
vehicle in highway scenarios. For PIL simulations, you use simulated detections to verify the tracking
and computational performance of the generated code.

Setup Tracking Algorithm for Embedded Code Generation

Balanced between computing requirements and tracking performance. the JPDA tracker is a suitable
choice for embedded systems. At every step, the JPDA tracker splits the detections-to-tracks data
association problem into multiple clusters per sensor. Each cluster contains a set of detections and
tracks that can be assigned to each other after gating. The exact separation of detections and tracks
into clusters, the size of each cluster, and number of feasible data association events per cluster is
typically determined by run-time inputs and is not known at compilation time. For more information
about the JPDA tracking algorithm, refer to the “Algorithms” (Sensor Fusion and Tracking Toolbox)
section of trackerJPDA (Sensor Fusion and Tracking Toolbox).

When generating embedded code from trackers for safety critical applications such as highway lane
following, dynamic memory allocation is typically discouraged. This means that the amount of
memory allocated to the tracker must be known at compilation time. Further, the generated code
must fit the memory offered by the embedded device. To efficiently manage the memory footprint of a
tracker without dynamic memory allocation, you must specify certain bounds on the tracker. These
bounds are typically defined using prior knowledge about the targeted application. To bound the
number of feasible events per cluster, you use a K-best JPDA tracker by specifying a finite value for
the MaxNumEvents property. This allows the tracker to use a maximum of K data association events
per cluster without enumerating over all feasible events. You use the
MaxNumDetectionsPerCluster and MaxNumTracksPerCluster properties to bound the size of
the cluster. For highway driving scenarios, the cluster size can be bounded by using prior knowledge
about the maximum number of closely-spaced vehicles. You choose an appropriate value for
AssignmentThreshold property for gating the detection-to-track association. A large
AssignmentThreshold value can cause the gate size to be much larger than desired, which can
result in the formation of large clusters. To avoid large clusters, you set the
ClusterViolationHandling property to 'Terminate', which causes the tracker to error out if
the cluster sizes are violated. You set the MaxNumDetections and MaxNumDetectionsPerSensor
properties using the information from the simulated or actual sensor. In this example, the radar
outputs a maximum of 36 object-level detections and the camera outputs a maximum of 10 object-
level detections.

Finally, embedded code generation using Embedded® Coder™ requires MATLAB® code to be written
in the form of a function. This function is typically referred to as an entry-point function. To rewrite
tracking algorithm as a function, you define the tracker inside the entry-point function using as a
persistent variable to preserve its state between function calls. For this example, the tracking
algorithm is wrapped in the entry-point function, trackingAlgorithm shown below and attached
with this example.

type trackingAlgorithm.m

function tracks = trackingAlgorithm(detections, time)

8 Featured Examples

8-508

% Define the tracker as a persistent variable
persistent tracker

% Initialize the tracker on first call using isempty
if isempty(tracker)
 tracker = trackerJPDA(FilterInitializationFcn=@helperInitFVSFFilter,...
 MaxNumEvents=5,...% 5 best events per cluster
 MaxNumSensors=2,...% Only 2 sensors feed data to tracker
 MaxNumTracks=36,...% should be at least MaxNumDetectionsPerSensor
 MaxNumDetections=46,...% maximum number of detections from all sensors
 ClutterDensity=1e-9,...% False alarm rate per unit measurement volume
 AssignmentThreshold=50,...% Threshold for gating assignments
 ConfirmationThreshold=[5 6],...% Confirm a track with 5 hits out of 6
 DeletionThreshold=[4 5],...% Delete a track with 4 misses out of 5
 HitMissThreshold=0.5,...% Probability of assignment resulting in hit/miss
 EnableMemoryManagement=true,...% Enable memory management for reducing footprint
 MaxNumDetectionsPerCluster=5,...% Maximum detections per cluster
 MaxNumTracksPerCluster=5,...% Maximum tracks per cluster
 MaxNumDetectionsPerSensor=36,...% Maximum detections per cluster
 ClusterViolationHandling='Terminate'...% Error if cluster sizes are violated
);
end

% Update the tracker every step using current detections and time stamp
tracks = tracker(detections, time);

end

Setup the Test Bench

To test the tracking algorithm, you use the drivingScenario object to simulate a highway driving
scenario. You use the drivingRadarDataGenerator and visionDetectionGenerator objects to
simulate detections from radar and camera sensor respectively. The scenarios and sensor
configurations used in this example are similar to the one shown in the “Forward Vehicle Sensor
Fusion” on page 8-1121 example and are applicable for automotive applications such as “Highway
Lane Following” on page 8-922. The process of scenario and sensor model generation is wrapped in
the helper function, helperCreateFVSFPILScenario, attached with this example. This function
accepts the name of the scenario as an input. For compatible scenario names, see the Explore
Other Scenarios on page 8-0 section at the bottom of this example.

The target board used in this example supports floating point operations in both single and double
precision. To reduce the memory footprint of the tracker, you use single-precision inputs to the
tracker. Using single-precision inputs to the tracker allows it to use strict single-precision arithmetic
in the generated code. To cast detections to the single-precision, you use the
helperCastDetections function attached with this example. You can configure the tracking
algorithm to use double-precision inputs by changing the dataType variable to 'double'.

You evaluate the performance of the tracking algorithm using the trackGOSPAMetric (Sensor
Fusion and Tracking Toolbox) (GOSPA) metric. The GOSPA metric uses the available ground truth
from the scenario simulation and captures the accuracy of a tracking algorithm as a scalar distance
per step. This feature of the metric also makes it an attractive method to assess the equivalency of a
tracking algorithm during PIL simulation. In this example, you verify that the generated code on the
target hardware produces the same results by comparing the GOSPA values from MATLAB simulation
and PIL simulation.

 Processor-in-the-Loop Verification of JPDA Tracker for Automotive Applications

8-509

% Create scenario.
scenarioName = 'scenario_FVSF_01_Curve_FourVehicles';
[scenario, egoVehicle, radar, camera] = helperCreateFVSFPILScenario(scenarioName);

% Create GOSPA metric object
gospaObj = trackGOSPAMetric(Distance='posabserr');

Next, you run the test bench on this particular scenario by running the tracker in MATLAB
environment to ensure that the test bench and tracking algorithm produce expected results. You also
capture the GOSPA metric during the MATLAB execution.

% Capture the GOSPA metric
gospa = zeros(0,1);

% Create display
scope = HelperJPDATrackerPILDisplay;

% Clear persistent variable before every run
clear trackingAlgorithm;

% Choose data type
dataType = 'single';

while advance(scenario)
 % Get current simulation time
 time = cast(scenario.SimulationTime, dataType);

 % Collect detections from both radar and camera sensors
 detections = helperCollectDetections(egoVehicle, radar, camera, time);

 % Cast detections to single precision
 detections = helperCastDetections(detections, dataType);

 % Feed detections to the tracking algorithm
 tracks = trackingAlgorithm(detections, time);

 % Find detectable targets for truth
 truths = helperFilterWithinCoverage(egoVehicle, radar, camera);

 % Calculate the GOSPA metric
 gospa(end+1,1) = gospaObj(tracks, truths); %#ok<SAGROW>

 % Visualize the results
 scope(scenario, egoVehicle, {radar;camera}, detections, tracks);
end

8 Featured Examples

8-510

To conveniently to re-run this test bench during PIL simulations, you also wrap the test bench in a
separate function, helperJPDATrackerPILTestBench. This function can be called with the
following syntax:

gospa = helperJPDATrackerPILTestBench(scenarioName, trackingAlgorithmName, dataType); % No visualization
gospa = helperJPDATrackerPILTestBench(scenarioName, trackingAlgorithmName, dataType, true); % Enable visualization

Generate Code for PIL

In this section, you generate standalone C code for the tracking algorithm as a static library. You
further verify the code by running PIL simulations on a STM32 Nucleo H743ZI2 target board. This
target board has an ARM®-Cortex® M7 CPU with 1 MB of RAM and 2 MB of Flash memory. For more
information regarding PIL simulations on this board, refer to the “Processor-in-the-Loop Verification
of MATLAB Functions Using STMicroelectronics Nucleo Boards” (Simulink Coder Support Package
for STMicroelectronics Nucleo Boards) example. Although this example discusses about PIL
simulation on the Nucleo target hardware, this approach can be used on any supported hardware.
See the “Embedded Coder Supported Hardware” (Embedded Coder) page for more information about
supported hardware boards.

To generate code for the tracking algorithm, you must define the types of the inputs to the entry-point
function. An easy way to define these inputs is by using the codegen (MATLAB Coder) argument. You
use the detections captured during the MATLAB execution to define the input types for the entry
point function. Note that the data type of the inputs cannot be changed after code generation.
Therefore, if the embedded code is generated with single-precision measurements, the test bench
must provide single-precision measurements as inputs to the tracking algorithm. As the number of
detections change between each call to the tracking algorithm, you define the detection input type as

 Processor-in-the-Loop Verification of JPDA Tracker for Automotive Applications

8-511

a variable-sized cell array with a maximum of 46 elements using the coder.typeof (MATLAB Coder)
function. You also define the input type of time input using the correct data type as defined in the
Setup the Test Bench on page 8-0 section.

sampleDetection = detections{1};
detectionsInput = coder.typeof({sampleDetection},[46 1],[1 0]);
timeInput = cast(0,dataType);

You define the code generation configuration for PIL verification by creating a
coder.EmbeddedCodeConfig (MATLAB Coder) object. You define the VerificationMode as
'PIL' and specify certain hardware properties on the configuration. To profile the generated code on
the target hardware, you also set the CodeExecutionProfiling property to true.

cfg = coder.config('lib','ecoder',true); % Creates a coder.EmbeddedeCodeConfig object
cfg.VerificationMode = 'PIL'; % Enable PIL for verification
cfg.DynamicMemoryAllocation = 'off'; % Turn-off dynamic memory allocation
cfg.Toolchain = 'GNU Tools for ARM Embedded Processors'; % Specify toolchain
cfg.Hardware = coder.hardware('STM32 Nucleo H743ZI2'); % Specify hardware board
cfg.StackUsageMax = 512; % (Bytes) Limit stack usage
cfg.Hardware.PILCOMPort = 'COM3'; % Specify the port for connecting with hardware board
cfg.CodeExecutionProfiling = true; % Enable code execution profiling

Generate code using the codegen function. This function produces a MEX file named
trackingAlgorithm_pil in the current working directory. This MEX file provides a wrapper to
send inputs from MATLAB environment to the target hardware and collect outputs from the target
hardware back to MATLAB.

codegen('trackingAlgorithm.m','-args',{detectionsInput,timeInput},'-config',cfg);

Connectivity configuration for function 'trackingAlgorithm': 'STM32 Microcontroller'
COM port: COM3
Baud rate: 115200
Code generation successful.

PIL Simulation and Results

In this section, you use the MEX generated from the previous section to run PIL simulations using the
target hardware. To reuse the test bench created in the Setup the Test Bench on page 8-0 section,
you specify the tracking algorithm name as trackingAlgorithm_pil

trackingAlgorithmName = 'trackingAlgorithm_pil';
gospaPIL = helperJPDATrackerPILTestBench(scenarioName, trackingAlgorithmName, dataType);

Starting application: 'codegen\lib\trackingAlgorithm\pil\trackingAlgorithm.elf'
 To terminate execution: clear trackingAlgorithm_pil
Downloading executable to the hardware on Drive: S:
H:\MATLAB\Examples\driving_fusion_nucleo-ex84625170\codegen\lib\trackingAlgorithm\pil\..\..\..\..\trackingAlgorithm.bin
1 File(s) copied
 Execution profiling data is available for viewing. Open Simulation Data Inspector.
 Execution profiling report available after termination.

The plots below show the GOSPA metric captured during MATLAB run and during PIL simulation.
Note that the GOSPA metrics captured during both runs are same, which assures that the generated
code running on target hardware produces the same results as MATLAB.

figure;
plot(gospa,'LineWidth',2);
hold on;

8 Featured Examples

8-512

plot(gospaPIL,'LineWidth',2,'LineStyle','--');
legend('MATLAB Simulation','PIL Simulation');
title("GOSPA Metric");
xlabel('Time step');
ylabel('Metric');
grid on;

In addition to tracking performance, you also use the profiling results captured by the PIL simulation
to check computational performance of the tracking algorithm on the target hardware. The plots
below show the run-time performance of the tracking algorithm on the target hardware. Note that
the tracker is able to run at a rate faster than 100 Hz, assuring the capability of real-time
computation on this particular board.

clear(trackingAlgorithmName); % Results available after PIL ends

 Execution profiling report: report(getCoderExecutionProfile('trackingAlgorithm'))

% Plot execution profile
executionProfile = getCoderExecutionProfile('trackingAlgorithm')

Code execution profiling data for trackingAlgorithm. To open a report,
enter the command report(executionProfile).

figure;
stepSection = executionProfile.Sections(2);
execTime = stepSection.ExecutionTimeInSeconds;

 Processor-in-the-Loop Verification of JPDA Tracker for Automotive Applications

8-513

plot(1e3*execTime,'LineWidth',2);
title('Tracker Execution Time (Simulated Data)');
xlabel('Time step');
ylabel('Time (ms)');
grid on;

Real-Time Performance Verification on Recorded Data

In the previous sections, you verified the tracking and computational performance of the tracking
algorithm on the Nucleo target hardware. The scenario simulation allows you to define a variety of
situations and verify the performance of the tracker in such situations. However, it is also critical to
verify the performance of the tracker on a real data set. This ensures that the tracking algorithm can
bear the challenges and complexity of real-world situations.

In this section, you verify the computational performance of the tracker using recorded data from
camera and radar on a highway scenario. The radar used in this recording is a multimode radar,
which provides a wide coverage at mid-range and a narrow but high-resolution coverage at long
range. In addition to providing detections from target objects, the radar also outputs detections from
the road infrastructure, making the tracking algorithm susceptible to many false tracks. You filter out
the infrastructure detections using the helper function, helperFilterStaticDetections. This
helper function uses the recorded speed, yaw-rate of the ego vehicle, as well as doppler (range-rate)
information from the radar to filter out detections from static objects in the environment.

videoFile = '05_highway_lanechange_25s.mp4';
sensorFile = '05_highway_lanechange_25s_sensor.mat';

% Load the data

8 Featured Examples

8-514

recording = load(sensorFile);
numSteps = numel(recording.radar);

% Visualize the scenario using a camera recording
videoReader = VideoReader(videoFile);

% Initialize display
scope = HelperJPDATrackerPILDisplay('UseRecordedData',true);

% Timer at 20 Hz
time = cast(0,dataType);
timeStep = cast(0.05,dataType);

% Reinitialize tracker
clear(trackingAlgorithmName);

for currentStep = 1:numSteps
 % Update time
 time = time + timeStep;

 % Collect detections from recording
 [radarTotalDetections, visionDetections, laneData, imuData] = helperCollectDetectionsFromRecording(recording, time, currentStep);

 % Radar detections from the targets and clutter
 [radarDetections, staticDetections] = helperFilterStaticDetections(radarTotalDetections, imuData);

 % Concatenate detections
 detections = [radarDetections;visionDetections];

 detections = helperCastDetections(detections,dataType);

 % Run the tracker on hardware
 tracks = feval(trackingAlgorithmName,detections, time); %#ok<FVAL>

 % Visualize
 vidImage = readFrame(videoReader);
 scope(vidImage, laneData, detections, staticDetections, tracks);
end

Connectivity configuration for function 'trackingAlgorithm': 'STM32 Microcontroller'
COM port: COM3
Baud rate: 115200
Starting application: 'codegen\lib\trackingAlgorithm\pil\trackingAlgorithm.elf'
 To terminate execution: clear trackingAlgorithm_pil
Downloading executable to the hardware on Drive: S:
H:\MATLAB\Examples\driving_fusion_nucleo-ex84625170\codegen\lib\trackingAlgorithm\pil\..\..\..\..\trackingAlgorithm.bin
1 File(s) copied
 Execution profiling data is available for viewing. Open Simulation Data Inspector.
 Execution profiling report available after termination.

 Processor-in-the-Loop Verification of JPDA Tracker for Automotive Applications

8-515

clear(trackingAlgorithmName); % Results available after PIL ends

 Execution profiling report: report(getCoderExecutionProfile('trackingAlgorithm'))

% Plot execution profile
executionProfile = getCoderExecutionProfile('trackingAlgorithm')

Code execution profiling data for trackingAlgorithm. To open a report,
enter the command report(executionProfile).

figure;
stepSection = executionProfile.Sections(2);
execTime = stepSection.ExecutionTimeInSeconds;
plot(1e3*execTime,'LineWidth',2);
title('Tracker Execution Time (Recorded Data)');
xlabel('Time step');
ylabel('Time (ms)');
grid on;

8 Featured Examples

8-516

Note that the tracker is able to track the targets within the field of view of the sensors and is able to
run faster than 60 Hz on this particular hardware board. This verifies the real-time tracking
capability of the algorithm in denser traffic scenarios captured in the recording.

Explore Other Scenarios

It is important to assess the performance of the tracking algorithm under different scenarios. You can
use the simulation environment in this example to explore other scenarios, compatible with the test
bench defined by helperJPDATrackerPILTestBench. Here are five compatible scenarios that you
can use by specifying the scenarioName input as one of the following:

• 'scenario_FVSF_01_Curve_FourVehicles'
• 'scenario_FVSF_02_Straight_FourVehicles'
• 'scenario_FVSF_03_Curve_SixVehicle'
• 'scenario_FVSF_04_Straight_FourVehicles'
• 'scenario_FVSF_05_Straight_TwoVehicles'

Summary

In this example, you learned how to generate code from a tracking algorithm for PIL simulations. You
verified the generated code on a STM32 Nucleo board using simulated data as well as recorded data
from highway driving scenarios. You further assessed the computational performance and real-time
capability of the tracking algorithm in such scenarios on the chosen target hardware.

 Processor-in-the-Loop Verification of JPDA Tracker for Automotive Applications

8-517

Scenario Generation from Recorded Vehicle Data
This example shows how to generate a virtual driving scenario from recorded vehicle data. The
scenario is generated from position information recorded from a GPS sensor and recorded object lists
processed from a lidar sensor.

Overview

Virtual driving scenarios can be used to recreate a real scenario from recorded vehicle data. These
virtual scenarios enable you to visualize and study the original scenario. Because you can
programmatically modify virtual scenarios, you can also use them to synthesize scenario variations
when designing and evaluating autonomous driving systems.

In this example, you create a virtual driving scenario by generating a drivingScenario object
from data that was recorded from a test (ego) vehicle and an ASAM OpenDRIVE® file. The ASAM
OpenDRIVE file describes the road network of the area where the data was recorded. The recorded
vehicle data includes:

• GPS data: Text file containing the latitude and longitude coordinates of the ego vehicle at each
timestamp.

• Lidar object list data: Text file containing the number of non-ego actors and the positions of
their centers, relative to the ego vehicle, at each timestamp.

• Video data: MP4 file recorded from a forward-facing monocular camera mounted on the ego
vehicle.

To generate and simulate the driving scenario, you follow these steps:

1 Explore recorded vehicle data.
2 Import ASAM OpenDRIVE road network into driving scenario.
3 Add ego vehicle data from GPS to driving scenario.
4 Add non-ego actors from lidar object list to driving scenario.
5 Simulate and visualize generated scenario.

The following diagram shows how you use the recorded data in this example. Notice that you create
the driving scenario from the GPS, lidar object lists, and ASAM OpenDRIVE files. You use the camera
data to visualize the original scenario and can compare this data with the scenario you generate. You
also visualize the scenario route on a map using geoplayer.

8 Featured Examples

8-518

Explore Recorded Vehicle Data

The positions of the ego vehicle were captured using a UBlox GPS NEO M8N sensor. The GPS sensor
was placed on the center of the roof of the ego vehicle. This data is saved in the text file
EgoUrban.txt.

The positions of the non-ego actors were captured using a Velodyne® VLP-16 lidar sensor with a
range of 30 meters. The VLP-16 sensor was placed on the roof of the ego vehicle at a position and
height that avoids having the sensor collide with the body of the ego vehicle. The point cloud from the
lidar sensor was processed on the vehicle to detect objects and their positions relative to the ego
vehicle. This data is saved in the text file NonEgoUrban.txt.

To help understand the original scenario, video from a monocular camera was recorded as a
reference. This video can also be used to visually compare the original and generated scenarios. A
preview of this recorded video is saved in the video file urbanpreview.mp4. You can download the
full recorded video file from here.

Generate a preview of the urban traffic scenario used in this example.

vidObj = VideoReader("urbanpreview.mp4");
fig = figure;
set(fig,Position=[0, 0, 800, 600]);
movegui(fig,"center");
pnl = uipanel(fig,Position=[0 0 1 1],...
 Title="Urban Traffic Scenario");
plt = axes(pnl);
while hasFrame(vidObj)
 vidFrame = readFrame(vidObj);
 image(vidFrame,Parent=plt);
 plt.Visible = "off";
 pause(1/vidObj.FrameRate);
end

 Scenario Generation from Recorded Vehicle Data

8-519

https://ssd.mathworks.com/supportfiles/driving/scenarios/Playback_City.mp4

8 Featured Examples

8-520

Though the sensor coverage area can be defined around the entire ego vehicle, this example shows
only the forward-looking scenario.

Import ASAM OpenDRIVE Road Network into Driving Scenario

The road network data for generating the virtual scenario is obtained from OpenStreetMap®. The
OpenStreetMap data files are converted to ASAM OpenDRIVE files and saved with extension .xodr.
Use the roadNetwork function to import this road network data to a driving scenario.

Create a driving scenario object and import the desired ASAM OpenDRIVE road network into the
generated scenario.

scenario = drivingScenario;
openDRIVEFile = "OpenDRIVEUrban.xodr";
roadNetwork(scenario,"OpenDRIVE",openDRIVEFile);

Add Ego Vehicle Data from GPS to Generated Scenario

The ego vehicle data is collected from the GPS sensor and stored as a text file. The text file consists of
three columns that store the latitude, longitude, and timestamp values for the ego vehicle. Use the

 Scenario Generation from Recorded Vehicle Data

8-521

https://www.openstreetmap.org

helperGetEgoData function to import the ego vehicle data from the text file into a structure in the
MATLAB® workspace. The structure contains three fields specifying the latitude, longitude and
timestamps.

egoFile = "EgoUrban.txt";
egoData = helperGetEgoData(egoFile);

Compute the trajectory waypoints of the ego vehicle from the recorded GPS coordinates. Use the
latlon2local function to convert the raw GPS coordinates to the local east-north-up Cartesian
coordinates. The transformed coordinates define the trajectory waypoints of the ego vehicle.

% Specify latitude and longitude at origin of data from ASAM OpenDRIVE file. This point will also define the origin of the local coordinate system.
alt = 540.0 % Average altitude in Hyderabad, India

alt = 540

origin = [17.425853702697903, 78.44939480188313, alt]; % [lat, lon, altitude]
% Specify latitude and longitude of ego vehicle
lat = egoData.lat;
lon = egoData.lon;
% Compute waypoints of ego vehicle
[X,Y,~] = latlon2local(lat,lon,alt,origin);
egoWaypoints(:,1) = X;
egoWaypoints(:,2) = Y;

Visualize the GPS path of the ego vehicle using the geoplayer object.

zoomLevel = 17;
player = geoplayer(lat(1),lon(1),zoomLevel);
plotRoute(player,lat,lon);
for i = 1:size(lat,1)
 plotPosition(player,lat(i),lon(i));
end

8 Featured Examples

8-522

 Scenario Generation from Recorded Vehicle Data

8-523

Use helperComputeEgoData to compute the speed and the heading angle values of the ego vehicle
at each sensor data timestamp.

[egoSpeed,egoAngle] = helperComputeEgoData(egoData,X,Y);

Add the ego vehicle to the driving scenario.

ego = vehicle(scenario,ClassID=1,Name="Ego",...
 Length=3.6,Width=1.55,Height=1.6,...
 Mesh=driving.scenario.carMesh);

Create a trajectory for the ego vehicle from the computed set of ego waypoints and the speed. The
ego vehicle follows the trajectory at the specified speed.

trajectory(ego,egoWaypoints,egoSpeed);

Add Non-Ego Actors from Lidar Object Lists to Generated Scenario

The non-ego actor data is collected from the lidar sensor and stored as a text file. The text file
consists of five columns that store the actor IDs, x-positions, y-positions, z-positions and timestamp

8 Featured Examples

8-524

values, respectively. Use the helperGetNonEgoData function to import the non-ego actor data from
the text file into a structure in the MATLAB® workspace. The output is a structure with three fields:

1 ActorID - Scenario-defined actor identifier, specified as a positive integer.
2 Position - Position of actor, specified as an [x y z] real vector. Units are in meters.
3 Time - Timestamp of the sensor recording.

nonEgoPosFile = "NonEgoUrban.txt";
nonEgoPropertiesFile = "NonEgoProperties.txt";
[nonEgoData, nonEgoProperties] = ...
 helperGetNonEgoData(nonEgoPosFile, nonEgoPropertiesFile);

Use helperComputeNonEgoData to compute the trajectory waypoints and the speed of each non-
ego actor at each timestamp. The trajectory waypoints are computed relative to the ego vehicle.

actors = unique(nonEgoData(1).ActorID);
[nonEgoSpeed, nonEgoWaypoints] = ...
 helperComputeNonEgoData(egoData,...
 egoWaypoints,nonEgoData,egoAngle);

Determine the mesh for non-ego actor according to their class ID.

for i = 1:size(nonEgoProperties.ClassID,1)
 switch nonEgoProperties.ClassID(i)
 case 3
 nonEgoProperties.Mesh(i,1) = driving.scenario.bicycleMesh;
 case 2
 nonEgoProperties.Mesh(i,1) = driving.scenario.truckMesh;
 otherwise
 nonEgoProperties.Mesh(i,1) = driving.scenario.carMesh;
 end
end

Add the non-ego actors to the driving scenario.You can populate the non-ego actors with appropriate
class ID, dimension, colour and mesh. Create trajectories for the non-ego actors from the computed
set of actor waypoints and the speed.

for i = 1:size(actors,1)
 actor = vehicle(scenario,ClassID=1,...
 Length=nonEgoProperties.Length(i),...
 Width=nonEgoProperties.Width(i),...
 Height=nonEgoProperties.Height(i),...
 PlotColor=nonEgoProperties.Color(i,:),...
 Mesh=nonEgoProperties.Mesh(i));
 trajectory(actor,nonEgoWaypoints{i},nonEgoSpeed{i});
end

Visualize the ego vehicle and non-ego actors that you imported into the generated scenario. Also
visualize the corresponding trajectory waypoints of the ego vehicle and non-ego actors.

% Create a custom figure window and define an axes object
fig = figure;
set(fig,Position=[0, 0, 800, 600]);
movegui(fig,"center");
hViewPnl = uipanel(fig,Position=[0 0 1 1],...
 Title="Ego Vehicle and Actors");
hCarPlt = axes(hViewPnl);

 Scenario Generation from Recorded Vehicle Data

8-525

% Plot the generated driving scenario.
plot(scenario,"Parent",hCarPlt);
axis([270 320 80 120]);
legend("Imported Road Network","Lanes","Ego Vehicle",...
 "Actor 1","Actor 2","Actor 3","Actor 4","Actor 5")
legend(hCarPlt,"boxoff");

figure,
plot(egoWaypoints(:,1),egoWaypoints(:,2),...
 Color=[0 0.447 0.741],LineWidth=2)
hold on
for i =1:size(actors,1)
 plot(nonEgoWaypoints{i}(:,1),...
 nonEgoWaypoints{i}(:,2),...
 Color=nonEgoProperties.Color(i,:),LineWidth=2)
end
axis("tight")
xlabel("X (m)")
ylabel("Y (m)")
title("Computed Ego Vehicle and Actor Trajectories")

8 Featured Examples

8-526

legend("Ego Vehicle", "Actor 1", "Actor 2", "Actor 3",...
 "Actor 4","Actor 5","Location","Best")
hold off

Simulate and Visualize Generated Scenario

Plot the scenario and the corresponding chase plot. Run the simulation to visualize the generated
driving scenario. The ego vehicle and the non-ego actors follow their respective trajectories.

% Create a custom figure window to show the scenario and chase plot
figScene = figure(Name="Driving Scenario",...
 Tag="ScenarioGenerationDemoDisplay");
set(figScene,Position=[0, 0, 1000, 400]);
movegui(figScene,"center");

% Add the chase plot
hCarViewPanel = uipanel(figScene,...
 Position=[0.5 0 0.5 1],Title="Chase Camera View");
hCarPlot = axes(hCarViewPanel);
chasePlot(ego,Parent=hCarPlot, Meshes="on");

% Add the top view of the generated scenario
hViewPanel = uipanel(figScene,...
 Position=[0 0 0.5 1],Title="Top View");
hCarPlot = axes(hViewPanel);
chasePlot(ego,Parent=hCarPlot,Meshes="on",...
 ViewHeight=120, ViewPitch=90, ViewLocation=[0, 0]);

 Scenario Generation from Recorded Vehicle Data

8-527

% Run the simulation
while advance(scenario)
 pause(0.01)
end

8 Featured Examples

8-528

Export to ASAM OpenSCENARIO

You can also export the scenario to ASAM OpenSCENARIO file.

warning("off","driving:scenario:ExportOpenScenarioODWarning");
export(scenario, "OpenSCENARIO", "PlaybackScenarioExample.xosc");
warning("on","driving:scenario:ExportOpenScenarioODWarning");

The ASAM OpenSCENARIO file can be imported into other tools to visualise add use the same
scenario.

Summary

This example shows how to automatically generate a virtual driving scenario from vehicle data
recorded using the GPS and lidar sensors.

Helper Functions

helperGetEgoData

This function reads the ego vehicle data from a text file and converts into a structure.

function [egoData] = helperGetEgoData(egoFile)
%Read the ego vehicle data from text file
fileID = fopen(egoFile);
content = textscan(fileID,'%f %f %f');
fields = {'lat','lon','Time'};
egoData = cell2struct(content,fields,2);
fclose(fileID);
end

helperGetNonEgoData

This function reads the processed lidar data and non-ego actor properties in the from text files. You
can convert it into a structure. The processed lidar data contains information about the position of
non-ego actors, were the non-ego actor properties contains type, dimention and colour information
about respective non-ego actors.

 Scenario Generation from Recorded Vehicle Data

8-529

function [nonEgoPos, nonEgoProperties] = ...
 helperGetNonEgoData(nonEgoPosFile, nonEgoPropertiesFile)
% Read the processed lidar data of non-ego actors from text file.
fileID1 = fopen(nonEgoPosFile);
content = textscan(fileID1,'%d %f %f %f %f');
newcontent{1} = content{1};
newcontent{2} = [content{2} content{3} content{4}];
newcontent{3} = content{5};
fields = {'ActorID','Position','Time'};
nonEgoPos = cell2struct(newcontent,fields,2);
fclose(fileID1);

fileID2 = fopen(nonEgoPropertiesFile);
content = textscan(fileID2,'%d %f %f %f %f %f %f');
newcontent{1} = content{1};
newcontent{2} = content{2};
newcontent{3} = content{3};
newcontent{4} = content{4};
newcontent{5} = [content{5} content{6} content{7}];
fields = {'ClassID','Length','Width','Height','Color'};
nonEgoProperties = cell2struct(newcontent,fields,2);
fclose(fileID2);
end

helperComputeEgoData

This function calculates the speed and heading angle of the ego vehicle based on the trajectory
waypoints and the timestamps.

function [egoSpeed, egoAngle] = ...
 helperComputeEgoData(egoData, X, Y)
egoTime = egoData.Time;
timeDiff = diff(egoTime);
points = [X Y];
difference = diff(points, 1);
distance = sqrt(sum(difference .* difference, 2));
egoSpeed = distance./timeDiff;
egoAngle = atan(diff(Y)./diff(X));
egoAngle(end+1) = egoAngle(end);
egoSpeed(end+1) = egoSpeed(end);
end

helperComputeNonEgoData

This function calculates the speed and heading angle of each non-ego actor based on the trajectory
waypoints and timestamps. The speed and heading angle are calculated relative to the ego vehicle.

function [nonEgoSpeed, nonEgoWaypoints] = ...
 helperComputeNonEgoData(...
 egoData, egoWaypoints, nonEgoData, egoAngle)

actors = unique(nonEgoData.ActorID);
numActors = size(actors,1);

nonEgoWaypoints = cell(numActors, 1);
nonEgoSpeed = cell(numActors, 1);

for i = 1:numActors

8 Featured Examples

8-530

 id = actors(i);
 idx = find([nonEgoData.ActorID] == id);
 actorXData = nonEgoData.Position(idx,1);
 actorYData = nonEgoData.Position(idx,2);
 actorTime = nonEgoData.Time(idx);
 actorWaypoints = [0 0];

 % Compute the trajectory waypoints of non-ego actor
 [sharedTimeStamps,nonEgoIdx,egoIdx] = ...
 intersect(actorTime,egoData.Time,"stable");
 tempX = actorXData(nonEgoIdx);
 tempY = actorYData(nonEgoIdx);
 relativeX = -tempX .* cos(egoAngle(egoIdx)) + tempY .* sin(egoAngle(egoIdx));
 relativeY = -tempX .* sin(egoAngle(egoIdx)) - tempY .* cos(egoAngle(egoIdx));
 actorWaypoints(nonEgoIdx,1) = egoWaypoints(egoIdx,1) + relativeX;
 actorWaypoints(nonEgoIdx,2) = egoWaypoints(egoIdx,2) + relativeY;

 % Compute the speed values of non-ego actor
 timeDiff = diff(sharedTimeStamps);
 difference = diff(actorWaypoints, 1);
 distance = sqrt(sum(difference .* difference, 2));
 actorSpeed = distance./timeDiff;
 actorSpeed(end+1) = actorSpeed(end);

 % Smooth the trajectory waypoints of non-ego actor
 actorWaypoints = smoothdata(actorWaypoints,"sgolay");

 % Store the values of trajectory waypoints and speed computed of each non-ego actor
 nonEgoWaypoints(i) = {actorWaypoints};
 nonEgoSpeed(i) = {actorSpeed'};
end
end

See Also
Apps
Driving Scenario Designer

Functions
roadNetwork | trajectory | vehicle

Objects
drivingScenario | visionDetectionGenerator | geoplayer

Related Examples
• “Generate Scenario from Recorded GPS and Lidar Data” on page 8-1034
• “Automatic Scenario Generation” on page 8-997
• “Automatic Scenario Variant Generation for Testing AEB Systems” on page 8-1011
• “Generate Lane Information from Recorded Data” on page 8-533

More About
• “Create Driving Scenario Programmatically” on page 8-644

 Scenario Generation from Recorded Vehicle Data

8-531

• “Create Actor and Vehicle Trajectories Programmatically” on page 8-663

See Also

External Websites
• ASAM OpenDRIVE

8 Featured Examples

8-532

https://www.asam.net/standards/detail/opendrive/

Generate Lane Information from Recorded Data
This example shows how to generate lane information using recorded data. This workflow enables
you to add lane specifications to a road network imported from standard definition (SD) map data
using recorded data from a camera and a GPS sensor.

Overview

You can use virtual driving scenarios to recreate real scenarios from recorded vehicle data.
Generating road networks is an important stage in creating a virtual driving scenario. Using a
drivingScenario object or the Driving Scenario Designer app, you can import a road network from
OpenStreetMap® that provides SD map data. However, such road networks lack detailed lane
information that is essential for navigation in an autonomous system. In this example, you create a
virtual driving scenario by generating a drivingScenario object using data recorded from a test
(ego) vehicle and OpenStreetMap file. The OpenStreetMap file describes the road network
information in the area where the data has been recorded.

The recorded data includes:

• GPS data — Contains the latitude, longitude, and altitude of the ego vehicle at each timestamp.
• Video data — MP4 file recorded from a forward-facing monocular camera mounted on the ego

vehicle.
• Track data — Contains the detected lane tracks at each timestamp of the ego trajectory in the

local coordinate frame of the ego vehicle.

To create lane specifications and simulate a scenario, follow these steps:

1 Explore the recorded vehicle data.
2 Import an OpenStreetMap road network into a driving scenario.
3 Add ego vehicle data from the GPS to the driving scenario.
4 Identify roads on which the ego vehicle is traveling.
5 Create lane specifications.
6 Generate a new scenario.
7 Simulate and visualize the generated scenario.

This diagram shows how you use the recorded data in this example. Note that you create the driving
scenario from the GPS data, and OpenStreetMap file.

 Generate Lane Information from Recorded Data

8-533

Explore Recorded Vehicle Data

The position of the ego vehicle has been captured using a lane detection sensor module. The inbuilt
GPS sensor is placed in the middle of the dashboard of the ego vehicle. The inbuilt camera in the
sensor module returns lane detections in terms of parabolic parameters.

Load Data

Define the range of timestamps for the data.

startTimeStamp = 1461634426377778;
endTimeStamp = 1461634462779242;

Load the GPS data, track detections, and image data from their respective MAT files for the selected
range of timestamps.

[gpsData,laneDetections,cameraImages] = helperLoadFile(startTimeStamp,endTimeStamp);

Visualize Ego Trajectory

Extract the latitude, longitude, time, and altitude values from the GPS data.

count = size(gpsData,2);
time = arrayfun(@(x) x.timeStamp,gpsData)';
lat = arrayfun(@(x) x.latitude,gpsData)';
lon = arrayfun(@(x) x.longitude,gpsData)';
alt = arrayfun(@(x) x.altitude,gpsData)';

Visualize the recorded GPS data using the geoplayer object.

zoomLevel = 17;
player = geoplayer(lat(1),lon(1),zoomLevel);
plotRoute(player,lat,lon);
for i = 1:length(lat)
 plotPosition(player,lat(i),lon(i));
end

8 Featured Examples

8-534

Visualize Lane Detections

The recorded lane detections show information about the driving lane of the ego vehicle. Visualize
these detections using a bird's-eye plot.

currentFigure = figure(Name="Lane Detections");
hPlot = axes(uipanel(currentFigure));
bep = birdsEyePlot(XLim=[0 60],YLim=[-35 35],Parent=hPlot);
bepPlotters.LaneLeft = laneBoundaryPlotter(bep, ...
 DisplayName="Left lane marking", ...
 Color="red",LineStyle="-");

bepPlotters.LaneRight = laneBoundaryPlotter(bep, ...
 DisplayName="Right lane marking", ...
 Color="red",LineStyle="-");
olPlotter = outlinePlotter(bep);
for i= 1:size(laneDetections,2)
 plotOutline(olPlotter,[0 0],0,4.7,1.8,OriginOffset=[-1.35 0],Color=[0 0.447 0.741]);

 % Draw left lane boundary
 egoLaneLeft = cast([laneDetections(i).left.curvature,laneDetections(i).left.headingAngle, ...
 laneDetections(i).left.offset],"single");
 bepPlotters.LaneLeft.LineStyle = drivingUtils.getLaneTypeBEV(laneDetections(i).left.boundaryType);
 lb = parabolicLaneBoundary(egoLaneLeft);
 plotLaneBoundary(bepPlotters.LaneLeft,lb);

 Generate Lane Information from Recorded Data

8-535

 % Draw right lane boundary
 egoLaneRight = cast([laneDetections(i).right.curvature,laneDetections(i).right.headingAngle, ...
 laneDetections(i).right.offset],"single");
 bepPlotters.LaneRight.LineStyle = drivingUtils.getLaneTypeBEV(laneDetections(i).right.boundaryType);
 rb = parabolicLaneBoundary(egoLaneRight);
 plotLaneBoundary(bepPlotters.LaneRight,rb);
 pause(0.01);
end

Import OpenStreetMap Road Network into Driving Scenario

The road network file used to generate the virtual scenario has been downloaded from the
OpenStreetMap (OSM) website. The OpenStreetMap provides access to worldwide, crowd-sourced
map data. The data is licensed under the Open Data Commons Open Database License (ODbL). For
more information on the ODbL, see the Open Data Commons Open Database License site. Use the
latitude and longitude data from the GPS to fetch an OpenStreetMap file containing the
corresponding road network information. Use the roadNetwork function to import this road network
information into a driving scenario.

Create a driving scenario object and import the OSM road network into the generated scenario.

scenario = drivingScenario;
% Fetch SD map according to GPS coordinates
url = ['https://api.openstreetmap.org/api/0.6/map?bbox=' ...
 num2str(min(lon)) ',' num2str(min(lat)) ',' ...
 num2str(max(lon)) ',' num2str(max(lat))];

8 Featured Examples

8-536

https://www.openstreetmap.org
https://opendatacommons.org/licenses/odbl/

fileName = websave("drive_map.osm",url,weboptions(ContentType="xml"));
roadNetwork(scenario,"OpenStreetMap",fileName);

Add Ego Vehicle Data from GPS to Imported Scenario

The ego vehicle position data is collected from the GPS sensor and stored as a MAT file. This file
specifies the latitude, longitude, altitude in meters, velocity in meters per second, and timestamp
values in the Unix POSIX timestamp format for each data instance recorded for the ego vehicle.

Compute the trajectory waypoints of the ego vehicle from the recorded GPS coordinates. Use the
latlon2local function to convert the raw GPS coordinates to the local east-north-up Cartesian
coordinates. The transformed coordinates define the trajectory waypoints of the ego vehicle.

origin = [(max(lat) + min(lat))/2,(min(lon) + max(lon))/2,0];
waypoints = zeros(count,3);
% Convert lat and lon to local coordinates to create waypoints for ego vehicle
[waypoints(:,1),waypoints(:,2)] = latlon2local(lat,lon,alt,origin);
% Filter to remove noise
window = round(count*0.2);
waypoints = smoothdata(waypoints,"rloess",window);

Compute velocity of the the ego vehicle.

distancediff = diff(waypoints);
timediff = cast(diff(time),"double")./1000000;
egoSpeed = zeros(count,1);
egoSpeed(2:end) = vecnorm(distancediff./timediff,2,2);
egoSpeed(1) = egoSpeed(2);

Add the ego vehicle to the imported scenario.

egoVehicle = vehicle(scenario,ClassID=1,Mesh=driving.scenario.carMesh);
trajectory(egoVehicle,waypoints,egoSpeed);

Identify Roads Intersecting Ego Path

The imported road network contains many roads. Extract the roads on which the ego vehicle is
traveling.

[roads,roadData] = helperGetRoadsInEgoPath(scenario,waypoints);

The helperGetRoadsInEgoPath function extracts the roads on which the ego vehicle is traveling.
The function returns the RoadIDs and roadData structures, which contain information such as road
centers, road widths, and road names for the relevant roads created in the imported scenario.

When junctions are present in the ego vehicle path, the helper function helperGetRoadsInEgoPath
tries to create a sequence of roads without junctions by extending the connecting roads of junctions.
When the helper function helperGetRoadsInEgoPath is not able to do so, it returns an error.

Create Lane Specifications

This example uses recorded lane detections to create lane specifications. The recorded data provides
driving lane information in the vehicle coordinate frame. Initialize these parameters to create lane
specifications:

• numOfLanes — Number of lanes in the road. The example assumes three lanes that have the
same lane widths.

 Generate Lane Information from Recorded Data

8-537

• startingLane — Lane ID for the first waypoint of the ego vehicle. By default, this example sets
this value to 3.

Find Ego Lane

The helper function helperGetEgoLanePosition uses the startingLane argument to compute
the lane in which the ego vehicle is traveling. Sudden changes in lane width at points where the ego
vehicle changes lanes can cause the function to return the incorrect lane.

numOfLanes = 3;
startingLane = 3;
% Fetch ego pose from imported scenario
[yaw,pitch,roll] = drivingUtils.getEgoPose(scenario,waypoints);
egoPose = struct("yaw",yaw,"pitch",pitch,"roll",roll);
egoLanePosition = helperGetEgoLanePosition(laneDetections,egoPose,waypoints,startingLane,numOfLanes);

Create Lane Specifications from Lane Detections

Create lane specifications using the helperCreateLaneSpecification function. This function
accepts these input arguments: lane detections, ego vehicle waypoints, ego vehicle pose, IDs of roads
on which the ego vehicle is traveling, number of lanes, and lane in which the ego vehicle is present at
each waypoint.

Optionally, you can also specify these name-value arguments:

• showAllLanes — Set this parameter to true to create lane markings for all of the lanes.
Otherwise, set this parameter to false. When set to false, the function creates lane markings
for only the lane in which data is recorded, which is the ego vehicle lane. By default, the helper
function sets this parameter to true. When creating non-ego lane markings, the function uses
left-lane track detection for all lane markings between the current left-lane track detection and
the left road edge. The function uses right-lane track detection for all lane markings between the
current right-lane track detection and the right road edge.

• RoadEdges — Specify lane marking styles for the left and right road edges, respectively, as a two-
element vector of lane marking objects. By default, the helper function applies solid lane markings
for both road edges.

The helperCreateLaneSpecification function returns a structure that stores lane specifications
and IDs for the roads.

% Lane marking styles for road edges
roadEdges = [laneMarking("Solid",Color="y") laneMarking("Solid")];
% Create lane markings for all lanes

% Create lane specifications
lanespecifications = helperCreateLaneSpecification(laneDetections,waypoints,egoPose,roads,numOfLanes, ...
 egoLanePosition,showAllLanes=true,RoadEdges=roadEdges);

Generate Scenario

Create a new driving scenario. Add the extracted roads, lane specifications, ego vehicle, and ego
trajectory to the scenario.

newScenario = drivingScenario;

Add the roads with their computed lane specifications.

8 Featured Examples

8-538

for i = 1:length(lanespecifications)
 roadId = lanespecifications{i}.RoadID;
 pos = arrayfun(@(x) x.ID == roadId,roadData);
 road(newScenario,roadData(pos).RoadCenters,"Lanes",lanespecifications{i}.specifications);
end

Waypoints generated from the GPS data are skewed to the left. Add a correction factor to shift the
waypoints to the right, and smooth the waypoints to remove any noise.

correction = 3.5;
waypoints = mathUtils.shiftPoints(waypoints,correction,1);
window = round(length(waypoints)*0.2);
waypoints = smoothdata(waypoints,"rloess",window);

Add the ego vehicle and its waypoints.

egoVehicle = vehicle(newScenario, ...
 ClassID=1, ...
 Mesh=driving.scenario.carMesh, ...
 Length=2, ...
 Width=1);
trajectory(egoVehicle,[waypoints(:,1) waypoints(:,2) waypoints(:,3)],egoSpeed);

Simulate and Visualize Generated Scenario

Run the simulation to visualize the generated driving scenario. The ego vehicle follows the
trajectories generated from the GPS data. Verify the lane information generated from the recorded
lane detections.

% Visualization
currentFigure = figure(Name="Generated Scenario and Ground Truth Camera Images",Position=[0 0 1400 600]);
movegui(currentFigure,"center");
% Add the chase plot
hCarViewPanel = uipanel(currentFigure,Position=[0.5 0 0.5 1],Title="Chase Plot");
hCarPlot = axes(hCarViewPanel);
chasePlot(egoVehicle,Parent=hCarPlot,ViewPitch=90,ViewHeight=120,ViewLocation=[0 0]);

% Add the top view of the generated scenario
hViewPanel = uipanel(currentFigure,Position=[0 0 0.5 1],Title="Camera View");
hPlot = axes(hViewPanel);
i = 1;
camerTime = cast([cameraImages(:).timeStamp]' - gpsData(1).timeStamp,"double")/10^6;
while advance(newScenario)
 while i <= length(camerTime) && newScenario.SimulationTime >= camerTime(i)
 image(cameraImages(i).mov.cdata,Parent=hPlot);
 i = i + 1;
 end
 pause(0.001);
end

 Generate Lane Information from Recorded Data

8-539

See Also

Related Examples
• “Scenario Generation from Recorded Vehicle Data” on page 8-518
• “Automatic Scenario Generation” on page 8-997

8 Featured Examples

8-540

Improve Ego Vehicle Localization
This example shows how to improve ego vehicle localization by fusing global positioning system (GPS)
and inertial measurement unit (IMU) sensor data. GPS and IMU sensors suffer from noise and
inaccuracies, such as drift in position and orientation. This example enables you to generate an
accurate ego trajectory for creating a virtual scenario from recorded sensor data. To interpret ego
sensor information accurately, you must accurately localize the ego vehicle.

Introduction

Using recorded vehicle data, you can generate virtual driving scenarios to recreate a real-world
scenario. Virtual scenarios enable you to study and visualize these recorded scenarios. To generate a
reliable virtual scenario, you must have accurate ego vehicle localization data. However, GPS and
IMU sensor data often suffers from noise, as well as other inaccuracies such as drift in the position
and orientation of the ego vehicle. This example shows how to perform information fusion using GPS
and IMU sensor data, as well as the prior vehicle position, to correct the drift in the ego position and
improve ego vehicle localization. You then use these accurate ego trajectories to create a virtual
driving scenario. This example also shows how to construct a map with estimated poses and lidar
data to visually analyze the estimated trajectory of the ego vehicle.

This example uses Udacity® data recorded using GPS, IMU, camera, and lidar sensors. You
preprocess and align the data recorded from each sensor to its respective reference frame. Then, you
follow these steps to improve ego vehicle localization through accurate estimation of the position and
orientation of the ego vehicle.

• Fuse GPS and IMU sensor data.
• Convert poses from the north-east-down (NED) to the east-north-up (ENU) frame.
• Correct drift using start and end pose information.

This example uses OpenStreetMap® to get the road network of the area where the data was
recorded. Using this road network and the generated ego trajectories, you create a virtual driving
scenario.

This flowchart gives an overview of the workflow presented in this example.

 Improve Ego Vehicle Localization

8-541

https://www.openstreetmap.org/

Sensor Data block consists of preprocessed and aligned GPS, IMU, and lidar data.

Ego Vehicle Pose Extraction block extracts the pose of the ego vehicle. Pose information consists
of both position and orientation. The block obtains the orientation of the ego vehicle from IMU sensor
data. If IMU sensor data is not present, then the block predicts ego orientation using position and
GPS timestamps.

If there is a visual drift in the ego trajectory obtained from the Ego Vehicle Pose Extraction block,
with respect to the road network, then perform drift correction.

Drift Correction block takes ego poses obtained from the Ego Vehicle Pose Extraction block for
drift correction. Drift correction is done on the basis of initialized start and end pose. If initialized
poses are unavailable, then you can correct slight drift by taking an average of a few poses at the
start and end of the trajectory to obtain the start and end pose, respectively.

Scenario Composition block reads OpenStreetMap (OSM) data to get information about the road
network. Then the block adds drift-corrected, localized ego pose information to generate the
scenario.

Download and Prepare Data Set

In this example, recorded vehicle data is collected from the Udacity data set and stored as a .mat
file. The recorded data includes:

8 Featured Examples

8-542

https://github.com/udacity/self-driving-car/tree/master/datasets/CH2

• GPS data — Contains the latitude, longitude, altitude, and velocity of the ego vehicle at each GPS
timestamp.

• IMU data — Contains the linear acceleration and angular velocity values at each IMU timestamp.
• Lidar data — Contains the point cloud, saved as a pointCloud object, at each lidar timestamp.
• Camera data — Contains a cell array of image data, as 480-by-640-by-3 arrays, at each camera

timestamp.

Note: The download time of the data depends on your internet connection. MATLAB will be
temporarily unresponsive during the execution of this code block.

downloadFolder = fullfile(tempdir="AutomotiveDataset");
if ~isfolder(downloadFolder)
 mkdir(downloadFolder)
end
if ~exist("gps","var")
 url = "https://ssd.mathworks.com/supportfiles/driving/data/UdacityHighway/gps.zip";
 filePath = fullfile(downloadFolder,"gps/gps.mat");

 if ~isfile(filePath)
 unzip(url,downloadFolder)
 end
 load(filePath);
end
if ~exist("imu","var")
 url = "https://ssd.mathworks.com/supportfiles/driving/data/UdacityHighway/imu.zip";
 filePath = fullfile(downloadFolder,"imu/imu.mat");

 if ~isfile(filePath)
 unzip(url,downloadFolder)
 end
 load(filePath);
end
if ~exist("lidar","var")
 url = "https://ssd.mathworks.com/supportfiles/driving/data/UdacityHighway/lidar.zip";
 filePath = fullfile(downloadFolder,"lidar/lidar.mat");

 if ~isfile(filePath)
 unzip(url,downloadFolder)
 end
 load(filePath);
end
if ~exist("centerCamera","var")
 url = "https://ssd.mathworks.com/supportfiles/driving/data/UdacityHighway/centerCamera.zip";
 filePath = fullfile(downloadFolder,"centerCamera/centerCamera.mat");

 if ~isfile(filePath)
 unzip(url,downloadFolder)
 end
 load(filePath);
end

Process GPS Data

Compute the waypoints for the ego vehicle trajectory from the recorded GPS coordinates. Use the
latlon2local function to convert the raw GPS coordinates to the local frame. The GPS local frame

 Improve Ego Vehicle Localization

8-543

is ENU, and the IMU local frame is NED. To align the GPS and IMU frames, convert the local
coordinates to the NED frame.

referenceLocation = [gps.Latitude(1,1) gps.Longitude(1,1) gps.Altitude(1,1)];
[currentEast,currentNorth,currentUp] = latlon2local(gps.Latitude,gps.Longitude,gps.Altitude,referenceLocation);

Convert the GPS local frame to the NED frame.

gpsX = currentNorth;
gpsY = currentEast;
gpsZ = -1*currentUp;

waypoints = [gpsX gpsY gpsZ];
wp = waypointTrajectory(Waypoints=waypoints,TimeOfArrival=seconds(gps.Time),ReferenceFrame="NED");

% Estimate orientation information
[~,orientationGPS] = lookupPose(wp,seconds(imu.Time));

Process Lidar Frames

Select lidar frames, and align them so that the ego vehicle points to the positive x-axis in the lidar
point cloud.

% Select lidar frames for drift correction and scenario creation
lidarFrames = 50:100;

% Rotation matrix for rotations around x-, y-, and z-axes
rotX = @(t) [1 0 0;
 0 cosd(t) -sind(t);
 0 sind(t) cosd(t)];

rotY = @(t) [cosd(t) 0 sind(t);
 0 1 0;
 -sind(t) 0 cosd(t)];

rotZ = @(t) [cosd(t) -sind(t) 0;
 sind(t) cosd(t) 0;
 0 0 1];

% Transform to align lidar frames
lidarData = lidar.PointCloud;
rot = rotZ(-90)*rotY(0)*rotX(0);
tform = rigid3d(rot',[0 0 0]);

% Preallocate variable
lidarDataAlign = lidarData(lidarFrames);

% Align lidar frames
for i = 1:size(lidarDataAlign,1)
 lidarDataAlign(i) = pctransform(lidarDataAlign(i),tform);
end

Combine GPS, IMU and Lidar Data

GPS, IMU and lidar data are stored in the timetable format. Combine the data together into one
matrix, inputDataMatrix, for use in fusion.

gpsTable = timetable(gps.Time,[gps.Latitude gps.Longitude gps.Altitude],gps.Velocity);
gpsTable.Properties.VariableNames{1} = 'latLonAlt';

8 Featured Examples

8-544

gpsTable.Properties.VariableNames{2} = 'gpsVelocity';

imuTable = timetable(imu.Time,imu.LinearAcceleration,imu.AngularVelocity,compact(orientationGPS));
imuTable.Properties.VariableNames{1} = 'linearAcceleration';
imuTable.Properties.VariableNames{2} = 'angularVelocity';
imuTable.Properties.VariableNames{3} = 'orientation';

lidarTable = timetable(lidar.Time,ones(size(lidar.Time,1),1));
lidarTable.Properties.VariableNames{1} = 'lidarFlag';

inputDataMatrix = synchronize(gpsTable,imuTable,lidarTable);
inputDataMatrix.Properties.VariableNames{5} = 'orientation';
inputDataMatrix.Properties.VariableNames{1} = 'latLonAlt';

Initialization

Initialize the ego vehicle start and end poses.

% Initialize ego vehicle Yaw, Pitch and Roll angle
initialYaw = atan2d(median(gpsY(1:12,:)),median(gpsX(1:12,:)));
initialPitch = 0;
initialRoll = 0;

% Initial orientation
initialEgoVehicleOrientationNED = eul2quat(deg2rad([(initialYaw),initialPitch,initialRoll]));

% Accurate vehicle start and end positions for drift correction
startPosition = [7.5 0.1752 1.15968]; % In meters
startOrientationAngle = [-104.9690 0 0]; % [Yaw, Pitch, Roll] in degrees
endPosition = [-21.9728 -109.8728 0.798131]; % In meters
endOrientationAngle = [-105.3025 0 0]; % [Yaw, Pitch, Roll] in degrees

If an accurate initial orientation is available, then alignment is not required. Otherwise, set these
flags to 0 to align angles using GPS position.

groundStartPositionFlag = 1; % Flag 1 to use initialized start position
groundEndPositionFlag = 1; % Flag 1 to use initialized end position

Define the measurement noise for each sensor. This example obtains the noise parameters using
experimentation and by autotuning an insfilterAsync (Sensor Fusion and Tracking Toolbox)
object. For more information, see “Automatic Tuning of the insfilterAsync Filter” (Sensor Fusion and
Tracking Toolbox).

% Velocity
Rvel = 1;
% Acceleration
Racc = 1e+5;
% Angular acceleration
Rgyro = 1e+5;
% GPS
Rpos = [1 1 1e+5].^2;
% RollPitchHead
Rcorr = 1;

Preallocate variables for position and orientation.

sizeInputDataMatrix = size(inputDataMatrix,1);
fusedPosition = zeros(sizeInputDataMatrix,3);

 Improve Ego Vehicle Localization

8-545

fusedOrientation = zeros(sizeInputDataMatrix,1,"quaternion");
egoPositionLidar = zeros(size(lidar.Time,1),3);
egoOrientationLidar = zeros(size(lidar.Time,1),1,"quaternion");

GPS and IMU Sensor Data Fusion

This example uses the Kalman filter to asynchronously fuse GPS, accelerometer, and gyroscope data
using an insfilterAsync filter. If IMU sensor data is not available, then you can estimate
orientation information using the lookupPose function. To visualize ego vehicle position along with
heading direction, use the helperPlotPositionAndHeading function.

% Create an INS filter to fuse asynchronous GPS and INS data to estimate pose.
filt = insfilterAsync(ReferenceFrame="NED");

% GPS reference location
filt.ReferenceLocation = referenceLocation;
filt.State = [initialEgoVehicleOrientationNED,[0 0 0],[gpsX(1,1) gpsY(1,1) gpsZ(1,1)],[0 0 0], ...
 imu.LinearAcceleration(1,:),[0 0 0],[0 0 0],[0 0 0],[0 0 0]]';
imuFs = 1/seconds(imu.Time(2)-imu.Time(1));
gpsFs = 1/seconds(gps.Time(2)-gps.Time(1));
prevTime = seconds(inputDataMatrix.Time(1));

% Obtain poses at lidar timestamps
lidarStep = 1;

% Fusion starts with GPS data
startRow = find(~isnan(inputDataMatrix.latLonAlt),1,"first");

for row = startRow:size(inputDataMatrix,1)
 currTime = seconds(inputDataMatrix.Time(row));

 % Predict the filter forward time difference
 predict(filt,currTime-prevTime);

 if any(~isnan(inputDataMatrix.latLonAlt(row,:)))
 % Fuse GPS with velocity readings
 fusegps(filt,inputDataMatrix.latLonAlt(row,:),Rpos,inputDataMatrix.gpsVelocity(row,:),Rvel);
 end

 if any(~isnan(inputDataMatrix.angularVelocity(row,:)))
 % Fuse accelerometer and gyroscope readings
 fuseaccel(filt,inputDataMatrix.linearAcceleration(row,:),Racc);
 fusegyro(filt,inputDataMatrix.angularVelocity(row,:),Rgyro);

 if any(~isnan(inputDataMatrix.orientation(row,:)))
 % Correct orientation on the basis of orientation obtained from
 % GPS data at IMU timestamp
 correct(filt,1:4,inputDataMatrix.orientation(row,:),Rcorr);
 end
 end

 % Get poses at lidar timestamp
 if ~isnan(inputDataMatrix.lidarFlag(row))
 [egoPositionLidar(lidarStep,:),egoOrientationLidar(lidarStep),~] = pose(filt);
 lidarStep = lidarStep+1;
 end

 prevTime = currTime;

8 Featured Examples

8-546

 % Log the current pose estimate for visualization
 [fusedPosition(row,:),fusedOrientation(row)] = pose(filt);
end

Visualize the fused estimated trajectory with orientation.

helperPlotPositionAndHeading(fusedPosition,fusedOrientation,100);
title("Fused Trajectory Using GPS and IMU")
xlabel("North (m)")
ylabel("East (m)")
zlabel("Down (m)")

Pose Conversion from NED to ENU Frame

Convert poses from the NED frame to the ENU frame. In this example, the ENU frame is the
reference frame for road network import.

% Convert to map frame (ENU frame)
gpsXENU = gpsY;
gpsYENU = gpsX;
gpsZENU = -1*gpsZ;

% Roll and Pitch remains same
yawPitchRoll = rad2deg(quat2eul(initialEgoVehicleOrientationNED));
initialEgoVehicleOrientationENU = eul2quat(deg2rad([90-yawPitchRoll(1,1),yawPitchRoll(1,2),yawPitchRoll(1,3)]));

% Pose at lidar timestamps

 Improve Ego Vehicle Localization

8-547

egoPositionLidarENU(:,2) = egoPositionLidar(:,1);
egoPositionLidarENU(:,1) = egoPositionLidar(:,2);
egoPositionLidarENU(:,3) = -1*egoPositionLidar(:,3);

% Preallocate variable
egoOrientationLidarENU = zeros(size(egoOrientationLidar,1),4);
for i = 1:size(egoOrientationLidar,1)
 yawPitchRoll = rad2deg(quat2eul(egoOrientationLidar(i,:)));

 % Convert to ENU frame
 egoOrientationLidarENU(i,:) = eul2quat([deg2rad(90-yawPitchRoll(1,1)),yawPitchRoll(1,2:3)]);
end

Visualize the poses at the selected lidar timestamps from the vehicle trajectory information.

figure
scatterPlot1 = helperPlotPositionAndHeading(egoPositionLidarENU(lidarFrames,:),egoOrientationLidarENU(lidarFrames,:),1);
hold on
scatterPlot2 = scatter3(gpsXENU,gpsYENU,gpsZENU);
axis([-600 200 -1400 50 -10 10])
view(0,90)
hold off
legend([scatterPlot1 scatterPlot2],"Selected Lidar Pose","GPS Position",Location="NorthEastOutside")
title("Selected Pose from Lidar Timestamp")
xlabel("East (m)")
ylabel("North (m)")
zlabel("Up (m)")

8 Featured Examples

8-548

Drift Correction Using Start and End Pose Information

Sensor noise and inaccuracies introduce drift in the estimated trajectory. Correct the drift using
specified start and end pose information. Create a poseGraph3D (Navigation Toolbox) object by
using the helperComputeRelativePose function. The helper function computes relative poses
between local frames using the global frame of reference. Match the initialized and estimated final
poses using loop-closure-based graph optimization.

Visualize drift correction by comparing corrected and estimated trajectories against road networks.

% Calculate relative poses at lidar timestamps
% Convert pose from global to local reference frame
globalPose = [egoPositionLidarENU(lidarFrames,:) egoOrientationLidarENU(lidarFrames,:)];

% Normalize poses to take origin as reference
normGlobalPose = [globalPose(:,1:3)-globalPose(1,1:3) globalPose(:,4:7)];

% Initialize relative pose
relativePose = zeros(lidarFrames(1)+size(normGlobalPose,1)-1,7);
relativePose(lidarFrames(1),:) = [[0 0 0] initialEgoVehicleOrientationENU];

% Calculate relative pose
for i = 1:(size(normGlobalPose,1)-1)
 computedPose = helperComputeRelativePose(normGlobalPose(i,:),normGlobalPose(i+1,:));
 relativePose(lidarFrames(1)+i,:) = computedPose;
end

% Calculate start pose
if groundStartPositionFlag == 1
 % Use initialized start position
 startOrientation = eul2quat(deg2rad(startOrientationAngle));
 startPose = [startPosition startOrientation];
else
 % Align position by taking average of estimated poses
 startPosition = normGlobalPose(1,1:3);
 startOrientationAngle = [atan2d(median(normGlobalPose(1:12,2)),median(normGlobalPose(1:12,1))) 0 0];
 startOrientation = eul2quat(deg2rad(startOrientationAngle));
 startPose = [startPosition startOrientation];
end

poseGraphDrift = poseGraph3D;

% Add start pose
addRelativePose(poseGraphDrift,startPose);

% Add estimated pose information
for i = lidarFrames(2):lidarFrames(end)
 addRelativePose(poseGraphDrift,relativePose(i,:));
end
driftPosition = poseGraphDrift.nodes;

% First pose of poseGraph
firstPose = driftPosition(2,:);

% Final pose of poseGraph
finalPose = driftPosition(end,:);
startNodeId = 2;
endNodeId = poseGraphDrift.NumNodes;

 Improve Ego Vehicle Localization

8-549

% Calculate end pose
if groundEndPositionFlag == 1
 % Use initialized end position
 endOrientation = eul2quat(deg2rad(endOrientationAngle));
 endPose = [endPosition endOrientation];
else
 % Align position by taking average of estimated poses
 endPosition = normGlobalPose(end,1:3);
 endOrientationAngle = [atan2d(median(normGlobalPose(end-3:end,2)),median(normGlobalPose(end-3:end,1))) 0 0];
 endOrientation = eul2quat(deg2rad(endOrientationAngle));
 endPose = [endPosition endOrientation];
end
relativeEndPose = helperComputeRelativePose(firstPose,endPose);

% Error in measurement of end pose
error = 1;

% Add end pose to graph
addRelativePose(poseGraphDrift,relativeEndPose,[error 0 0 0 0 0 error 0 0 0 0 1 0 0 0 1 0 0 1 0 1],startNodeId);
endPoseID = poseGraphDrift.NumNodes;

% Apply loop closure
addRelativePose(poseGraphDrift,[0 0 0 1 0 0 0],[1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1],endPoseID,endNodeId);

Visualize pose graph with estimated trajectory.

figure
scatter3(gpsXENU,gpsYENU,gpsZENU)
hold on
show(poseGraphDrift);
hold off
axis([-78 48 -146 15 -5 5])
view(0,90)
title("Pose Graph with Estimated Trajectory")
xlabel("East (m)")
ylabel("North (m)")
zlabel("Up (m)")

8 Featured Examples

8-550

Visualize the difference between the initialized and estimated end poses.

figure
scatter3(gpsXENU,gpsYENU,gpsZENU)
hold on
show(poseGraphDrift);
hold off
axis([-24.65 -18.65 -113.47 -105.52 -5.00 5.00])
view(0,90)
title("Difference in Final Pose")
xlabel("East (m)")
ylabel("North (m)")
zlabel("Up (m)")

 Improve Ego Vehicle Localization

8-551

[poseGraphDriftOptimized] = optimizePoseGraph(poseGraphDrift,MaxIterations=1000);

Visualize the optimized pose graph with drift correction.

figure
scatter3(gpsXENU,gpsYENU,gpsZENU)
hold on
show(poseGraphDriftOptimized);
hold off
axis([-24.93 -18.93 -113.17 -105.22 -5.00 5.00])
view(0,90)
title("Optimized Pose Graph")
xlabel("East (m)")
ylabel("North (m)")
zlabel("Up (m)")

8 Featured Examples

8-552

optimizedPose = poseGraphDriftOptimized.nodes(startNodeId:endNodeId);

Import and visualize the road network with the corrected and drift-affected trajectories.

scenario = drivingScenario;
gpsExtend = 0.0001;

% Add road to the scenario using OSM network information
% Specify bounds for the area of the road network to import
minLat = min(gps.Latitude) - gpsExtend;
maxLat = max(gps.Latitude) + gpsExtend;
minLon = min(gps.Longitude) - gpsExtend;
maxLon = max(gps.Longitude) + gpsExtend;

% Fetch the OpenStreetMap XML
if ~isfile("drive_map.osm")
 url = ['https://api.openstreetmap.org/api/0.6/map?bbox=' ...
 num2str(minLon, "%.10f") ',' num2str(minLat,"%.10f") ',' ...
 num2str(maxLon, "%.10f") ',' num2str(maxLat,"%.10f")];
 % Save OSM data into a file
 fileName = websave("drive_map.osm",url,weboptions("ContentType","xml"));
end

% Import OSM road network into driving scenario.
roadNetwork(scenario,OpenStreetMap="drive_map.osm");
plot(scenario)
title("Imported Road Network")
xlabel("East (m)")

 Improve Ego Vehicle Localization

8-553

ylabel("North (m)")
zlabel("Up (m)")

Align the reference location with the scenario.

% Mean value of latitude and longitude
mapRef = [(minLat + maxLat)/2,(minLon + maxLon)/2];
[mapBiasX,mapBiasY,mapBiasZ] = latlon2local(mapRef(1,1),mapRef(1,2),0,referenceLocation);

% Align drift-affected ego vehicle position with map frame
mapVehicleDriftPosition(:,1) = normGlobalPose(:,1) - mapBiasX;
mapVehicleDriftPosition(:,2) = normGlobalPose(:,2) - mapBiasY;
mapVehicleDriftPosition(:,3) = normGlobalPose(:,3);
mapVehicleDriftPosition(:,4:7) = normGlobalPose(:,4:7);

% Align corrected ego vehicle position with map frame
mapVehiclePosition(:,1) = optimizedPose(:,1) - mapBiasX;
mapVehiclePosition(:,2) = optimizedPose(:,2) - mapBiasY;
mapVehiclePosition(:,3) = optimizedPose(:,3);
mapVehiclePosition(:,4:7) = optimizedPose(:,4:7);

Visualize the scenario with the drift-corrected ego position.

plot(scenario)
hold on
scatterPlot1 = scatter3(gpsXENU-mapBiasX,gpsYENU-mapBiasY,gpsZENU);
scatterPlot2 = scatter3(mapVehicleDriftPosition(:,1),mapVehicleDriftPosition(:,2),mapVehicleDriftPosition(:,3));
scatterPlot3 = scatter3(mapVehiclePosition(:,1),mapVehiclePosition(:,2),mapVehiclePosition(:,3));

8 Featured Examples

8-554

hold off
axis([-67 206 498 771 -10 10])
legend([scatterPlot1 scatterPlot2 scatterPlot3],{'GPS Position','Fused Position','Drift Corrected Position'})
title("Scenario with Drift Corrected Ego Position")
xlabel("East (m)")
ylabel("North (m)")
zlabel("Up (m)")

Scenario Composition

Create a virtual scenario using the localized trajectory and road network obtained from
OpenStreetMap.

To compose a scenario, compute the ego speed and yaw angles using the drift-corrected trajectory.

% Calculate ego vehicle speed
timeOfArrivalEgo = seconds(lidarTable.Time(lidarFrames));
diffXPosition = diff(mapVehiclePosition(:,1));
diffYPosition = diff(mapVehiclePosition(:,2));
diffZPosition = diff(timeOfArrivalEgo);
euclideanDistance = sqrt(diffXPosition.^2 + diffYPosition.^2);
speedEgoVehicle = euclideanDistance./diffZPosition;
speedEgoVehicle(end+1) = speedEgoVehicle(end);

% Calculate yaw angle
mapVehicleAngle = quat2eul(mapVehiclePosition(:,4:7));
yawEgoVehicle = rad2deg(mapVehicleAngle(:,1));

 Improve Ego Vehicle Localization

8-555

https://www.openstreetmap.org/

% Reduce ego vehicle and map elevation to ground
updatedScenario = drivingScenario;
[roadTaken,roadData] = helperGetRoadsInEgoPath(scenario,mapVehiclePosition(:,1:3));
roadCenter = roadData.RoadCenters;
roadCenter(:,3) = zeros(size(roadCenter,1),1);
road(updatedScenario,roadCenter,roadData.RoadWidth,Lanes=roadData.LanesSpecifications);
mapVehiclePosition(:,3) = zeros(size(mapVehiclePosition,1),1);

% Add ego vehicle and drift corrected trajectory to the scenario.
% Add corrected ego trajectory to scenario
egoVehicle = vehicle(updatedScenario,ClassID=1,Name="EgoVehicle", ...
 Position=mapVehiclePosition(1,1:3),Yaw=yawEgoVehicle(1,1), ...
 Mesh=driving.scenario.carMesh,Wheelbase=2);

% Create ego trajectory
trajectory(egoVehicle,mapVehiclePosition(:,1:3),speedEgoVehicle,Yaw=yawEgoVehicle);

Simulate and Visualize Generated Scenario

Plot the scenario and the corresponding chase plot. Run the simulation to visualize the generated
driving scenario. Use camTimeBias to synchronize between the camera frame and scenario time
instance.

% Plot scenario
plot(updatedScenario,waypoints="on")

fig.chasePlot = figure;
set(fig.chasePlot,Position=[680 60 640 600])
fig.hPanel.chasePlot = uipanel(fig.chasePlot, ...
 Title="Chase View Plot",Position=[0 0 1 1]);
fig.hPlot.chasePlot = axes(fig.hPanel.chasePlot);
chasePlot(egoVehicle,Parent=fig.hPlot.chasePlot,ViewHeight=1.5,ViewYaw=-5,Meshes="on")

% Center camera images
fig.camera = figure;
set(fig.camera,Position=[30 60 640 600])
fig.hPanel.camera = uipanel(fig.camera, ...
 Title="Camera Image Plot",Position=[0 0 1 1]);
fig.hPlot.camera = axes(fig.hPanel.camera);
updatedScenario.SampleTime = 0.1;
updatedScenario.StopTime = 5;
cameraTime = seconds(centerCamera.Time);
cameraData = centerCamera.Images;
camTimeBias = 0.04;
camTime = cameraTime - cameraTime(1) - camTimeBias;
while advance(updatedScenario)
 camIdx = find(camTime<=updatedScenario.SimulationTime,1,"last");
 image(cameraData{camIdx,1},Parent=fig.hPlot.camera);
 drawnow
 pause(0.1)
end

8 Featured Examples

8-556

 Improve Ego Vehicle Localization

8-557

8 Featured Examples

8-558

 Improve Ego Vehicle Localization

8-559

Construct Map

For visual analysis, construct a map with the estimated poses and lidar data using the pcalign
function.

% Initialize variable to store orientation matrix
mapOrientation = rigid3d.empty;
for row = 1:size(optimizedPose,1)
 mapOrientation(row,1) = rigid3d((quat2rotm(optimizedPose(row,4:7)))',(optimizedPose(row,1:3)));
end

% Construct map using orientation matrix and lidar data
pointCloudMap = pcalign(lidarDataAlign(1:end,:),mapOrientation,0.5);

8 Featured Examples

8-560

% Transform the map point cloud to correct bias
tform = rigid3d(rotZ(0)',[-mapBiasX -mapBiasY 0]);

Visualize the map with the generated scenario.

plot(scenario)
hold on
scatterPlot1 = scatter3(gpsXENU-mapBiasX,gpsYENU-mapBiasY,gpsZENU);
scatterPlot2 = scatter3(optimizedPose(:,1)-mapBiasX,optimizedPose(:,2)-mapBiasY,optimizedPose(:,3));
pcshow(pctransform(pointCloudMap,tform))
hold off
axis([100 200 500 700 -10 10])
view(0,90)
lgnd = legend([scatterPlot1 scatterPlot2],{'GPS Position','Drift Corrected Position'});
set(lgnd,color="White")
title("Generated Scenario")
xlabel("East (m)")
ylabel("North (m)")
zlabel("Up (m)")

See Also
Functions
insfilterAsync | roadNetwork

Objects
drivingScenario | poseGraph

 Improve Ego Vehicle Localization

8-561

Related Examples
• “Scenario Generation from Recorded Vehicle Data” on page 8-518
• “Generate Lane Information from Recorded Data” on page 8-533
• “Automatic Tuning of the insfilterAsync Filter” (Sensor Fusion and Tracking Toolbox)

8 Featured Examples

8-562

Lane Keeping Assist with Lane Detection
This example shows how to simulate and generate code for an automotive lane keeping assist (LKA)
controller.

In this example, you:

1 Review a control algorithm that combines data processing from lane detections and a lane
keeping controller from the Model Predictive Control Toolbox™.

2 Test the control system in a closed-loop Simulink® model using synthetic data generated by the
Automated Driving Toolbox™.

3 Configure the code generation settings for software-in-the-loop simulation and automatically
generate code for the control algorithm.

Introduction

A lane keeping assist (LKA) system is a control system that aids a driver in maintaining safe travel
within a marked lane of a highway. The LKA system detects when the vehicle deviates from a lane and
automatically adjusts the steering to restore proper travel inside the lane without additional input
from the driver. In this example, the LKA system switches between the driver steering command and
lane keeping controller. This approach is sufficient to introduce a modeling architecture for an LKA
system, however a real system would also provide haptic feedback to the steering wheel and enable
the driver to override the LKA system by applying sufficient counter-torque.

For the LKA to work correctly, the ego vehicle must determine the lane boundaries and how the lane
in front of it curves. Idealized LKA designs rely mostly on the previewed curvature, the lateral
deviation, and relative yaw angle between the centerline of the lane and the ego vehicle. An example
of such a system is given in “Lane Keeping Assist System Using Model Predictive Control” (Model
Predictive Control Toolbox). Moving from advanced drive-assistance system (ADAS) designs to more
autonomous systems, the LKA must be robust to missing, incomplete, or inaccurate measurement
readings from real-world lane detectors.

This example demonstrates a robust approach to the controller design when the data from lane
detections may not be accurate. To do so, it uses data from a synthetic lane detector that simulates
the impairments introduced by a wide-angle monocular vision camera. The controller makes decisions
when the data from the sensor is invalid or outside a range. This provides a safety guard when the
sensor measurement is false due to conditions in the environment, such as a sharp curve on the road.

Open Test Bench Model

To open the Simulink test bench model, use the following command.

open_system('LKATestBenchExample')

 Lane Keeping Assist with Lane Detection

8-563

The model contains two main subsystems:

1 Lane Keeping Assist, which controls the front steering angle of the vehicle
2 Vehicle and Environment subsystem, which models the motion of the ego vehicle and models the

environment

Opening this model also runs the helperLKASetUp script, which initializes data used by the model.
The script loads certain constants needed by the Simulink model, such as the vehicle model
parameters, controller design parameters, road scenario, and driver path. You can plot the road and
the path that the driver model will follow.

plotLKAInputs(scenario,driverPath)

8 Featured Examples

8-564

Simulate Assisting a Distracted Driver

You can explore the behavior of the algorithm by enabling lane-keeping assistance and setting the
safe lateral distance. In the Simulink model, in the User Controls section, switch the toggle to On,
and set the Safe Lateral Distance to 1 meter. Alternatively, enable the lane-keeping assist and set
the safe lateral distance.

set_param('LKATestBenchExample/Enable','Value','1')
set_param('LKATestBenchExample/Safe Lateral Offset','Value','1')

To plot the results of the simulation, use the Bird's-Eye Scope. The Bird's-Eye Scope is a model-level
visualization tool that you can open from the Simulink toolstrip. On the Simulation tab, under
Review Results, click Bird's-Eye Scope. After opening the scope, click Find Signals to set up the
signals. Then run the simulation for 15 seconds, and explore the contents of the Bird's-Eye Scope.

sim('LKATestBenchExample','StopTime','15') % Simulate 15 seconds

 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

ans =

 Simulink.SimulationOutput:
 logsout: [1x1 Simulink.SimulationData.Dataset]
 tout: [4684x1 double]

 Lane Keeping Assist with Lane Detection

8-565

 SimulationMetadata: [1x1 Simulink.SimulationMetadata]
 ErrorMessage: [0x0 char]

8 Featured Examples

8-566

The Bird's-Eye Scope shows a symbolic representation of the road from the perspective of the ego
vehicle. In this example, the Bird's-Eye Scope renders the coverage area of the synthetic vision
detector as a shaded area. The ideal lane markings are additionally shown, as well as the
synthetically detected left and right lane boundaries (shown here in red).

To run the full simulation and explore the results, use the following commands.

sim('LKATestBenchExample') % Simulate to end of scenario
plotLKAResults(scenario,logsout,driverPath)

 Lane Keeping Assist with Lane Detection

8-567

 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

8 Featured Examples

8-568

The blue curve for the driver path shows that the distracted driver may drive the ego vehicle to
another lane when the road curvature changes. The red curve for the driver with Lane Keeping Assist
shows that the ego vehicle remains in its lane when the road curvature changes.

To plot the controller performance, use the following command.

plotLKAPerformance(logsout)

 Lane Keeping Assist with Lane Detection

8-569

• Top plot shows the lateral deviation relative to ego vehicle. The lateral deviation with LKA is
within [-0.5,0.5] m.

• Middle plot shows the relative yaw angle. The relative yaw angle with LKA is within [-0.15,0.15]
rad.

• Bottom plot shows the steering angle of the ego vehicle. The steering angle with LKA is within
[-0.5,0.5] rad.

To view the controller status, use the following command.

plotLKAStatus(logsout)

8 Featured Examples

8-570

• Top plot shows the left and right lane offset. Around 5.5 s, 19 s, 31 s, and 33 s, the lateral offset is
within the distance set by the lane keeping assist. When this happens, the lane departure is
detected.

• Middle plot shows the LKA status and the detection of lane departure. The departure detected
status is consistent with the top plot. The LKA is turned on when the lane departure is detected,
but the control is returned to the driver later when the driver can steer the ego vehicle correctly.

• Bottom plot shows the steering angle from driver and LKA. When the difference between the
steering angle from driver and LKA is small, the LKA releases control to driver (for example,
between 9 s to 17 s).

Simulate Lane Following

You can modify the value of Safe Lateral Offset for LKA to ignore the driver input, putting the
controller into a pure lane following mode. By increasing this threshold, the lateral offset is always

 Lane Keeping Assist with Lane Detection

8-571

within the distance set by the lane keeping assist. Thus, the status for lane departure is on and the
lane keeping assist takes control all the time.

set_param('LKATestBenchExample/Safe Lateral Offset','Value','2')
sim('LKATestBenchExample') % Simulate to end of scenario

 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

8 Featured Examples

8-572

You can explore the results of the simulation using the following commands.

plotLKAResults(scenario,logsout)

 Lane Keeping Assist with Lane Detection

8-573

The red curve shows that the Lane Keeping Assist on its own can keep the ego vehicle travelling
along the centerline of its lane.

Use the following command to depict the controller performance.

plotLKAPerformance(logsout)

8 Featured Examples

8-574

• Top plot shows the lateral deviation relative to ego vehicle. The lateral deviation with LKA is
within [-0.1,0.1] m.

• Middle plot shows the relative yaw angle. The relative yaw angle with LKA is within [-0.02,0.02]
rad.

• Bottom plot shows the steering angle of the ego vehicle. The steering angle with LKA is within
[-0.04,0.04] rad.

To view the controller status, use the following command.

plotLKAStatus(logsout)

 Lane Keeping Assist with Lane Detection

8-575

• Top plot shows the left and right lane offset. Since the lateral offset is never within the distance
set by the lane keeping assist, the lane departure is not detected.

• Middle plot shows that the LKA status is always one, that is, the Lane Keeping Assist takes control
all the time.

• Bottom plot shows the steering angle from driver and LKA. The steering angle from driver
negotiating with the curved road is too aggressive. The small steering angle from LKA is sufficient
for the curved road in this example.

Explore Lane Keeping Assist Algorithm

The Lane Keeping Assist model contains four main parts: 1) Estimate Lane Center 2) Lane Keeping
Controller 3) Detect Lane Departure, and 4) Apply Assist.

open_system('LKATestBenchExample/Lane Keeping Assist')

8 Featured Examples

8-576

The Detect Lane Departure subsystem outputs a signal that is true when the vehicle is too close to a
detected lane. You detect a departure when the offset between the vehicle and lane boundary from
the Lane Sensor is less than the Lane Assist Offset input.

The Estimate Lane Center subsystem outputs the data from lane sensors to the lane keeping
controller. The detector in this example is configured to report the left and right lane boundaries of
the current lane in the current field-of-view of the camera. Each boundary is modeled as a length of a
curve whose curvature varies linearly with distance (clothoid curve). To feed this data to a controller,
offset both of the detected curves toward the center of the lane by the width of the car and a small
margin (1.8 m total). Weight each of the resulting centered curves by the strength of the detection
and pass the averaged result to the controller. Also, The Estimate Lane Center subsystem provides
finite values for inputs to the Lane Keeping Controller subsystem. The previewed curvature provides
the centerline of lane curvature ahead of the ego vehicle. In this example, the ego vehicle can look
ahead for three seconds, which is the product of the prediction horizon and sample time. This look-
ahead time enables the controller to use previewed information for calculating steering angle for the
ego vehicle, which improves the MPC controller performance.

The goal for the Lane Keeping Controller block is to keep the vehicle in its lane and follow the curved
road by controlling the front steering angle . This goal is achieved by driving the lateral deviation
and the relative yaw angle to be small (see the following figure).

 Lane Keeping Assist with Lane Detection

8-577

The LKA controller calculates a steering angle for the ego vehicle based on the following inputs:

• Previewed curvature (derived from Lane Detections)
• Ego vehicle longitudinal velocity
• Lateral deviation (derived from Lane Detections)
• Relative yaw angle (derived from Lane Detections)

Considering physical limitations of the ego vehicle, the steering angle is constrained to be within
[-0.5,0.5] rad. You can change the prediction horizon or move the Controller Behavior slider to
adjust the performance of the controller.

The Apply Assist subsystem decides if the lane keeping controller or the driver takes control of the
ego vehicle. The subsystem switches between the driver commanded steering and the assisted
steering from the Lane Keeping Controller. The switch to assisted steering is initiated when a lane
departure is detected. Control is returned to the driver when the driver begins steering within the
lane again.

Explore Vehicle and Environment

The Vehicle and Environment subsystem enables closed loop simulation of the lane keeping assist
controller.

open_system('LKATestBenchExample/Vehicle and Environment')

8 Featured Examples

8-578

The Vehicle Dynamics subsystem models the vehicle dynamics with Vehicle Body 3DOF Single Track
block from Vehicle Dynamics Blockset™.

The Scenario Reader block generates the ideal left and right lane boundaries based on the position of
the vehicle with respect to the scenario read from scenario file LKATestBenchScenario.mat.

The Vision Detection Generator block takes the ideal lane boundaries from the Scenario Reader
block. The detection generator models the field of view of a monocular camera and determines the
heading angle, curvature, curvature derivative, and valid length of each road boundary, accounting
for any other obstacles.

The Driver subsystem generates the driver steering angle based on the driver path which was
created in helperLKASetUp.

Generate Code for the Control Algorithm

The LKARefMdl model is configured to support generating C code using Embedded Coder®
software. To check if you have access to Embedded Coder, run:

hasEmbeddedCoderLicense = license('checkout','RTW_Embedded_Coder')

You can generate a C function for the model and explore the code generation report by running:

if hasEmbeddedCoderLicense
 slbuild('LKARefMdl')
end

You can verify that the compiled C code behaves as expected using software-in-the-loop (SIL)
simulation. To simulate the LKARefMdl referenced model in SIL mode, use:

if hasEmbeddedCoderLicense
 set_param('LKATestBenchExample/Lane Keeping Assist',...
 'SimulationMode','Software-in-the-loop (SIL)')
end

 Lane Keeping Assist with Lane Detection

8-579

When you run the LKATestBenchExample model, code is generated, compiled, and executed for the
LKARefMdl model. This allows you to test the behavior of the compiled code through simulation.

Conclusions

This example shows how to implement an integrated lane keeping assist (LKA) controller on a curved
road with lane detection. It also shows how to test the controller in Simulink using synthetic data
generated by the Automated Driving Toolbox, componentize it, and automatically generate code for it.

close all
bdclose all

See Also
Apps
Bird's-Eye Scope

Blocks
Vehicle Body 3DOF | Vision Detection Generator

More About
• “Lane Keeping Assist System Using Model Predictive Control” (Model Predictive Control

Toolbox)
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” on page 8-295
• “Automated Driving Using Model Predictive Control” (Model Predictive Control Toolbox)

8 Featured Examples

8-580

Model Radar Sensor Detections
This example shows how to model and simulate the output of an automotive radar sensor for different
driving scenarios. Generating synthetic radar detections is important for testing and validating
tracking and sensor fusion algorithms in corner cases or when sensor hardware is unavailable. This
example analyzes the differences between radar measurements and the vehicle ground truth position
and velocity for a forward collision warning (FCW) scenario, a passing vehicle scenario, and a
scenario with closely spaced targets. It also includes a comparison of signal-to-noise ratio (SNR)
values between pedestrian and vehicle targets at various ranges.

In this example, you generate radar detections programmatically. You can also generate detections by
using the Driving Scenario Designer app. For an example, see “Create Driving Scenario Interactively
and Generate Synthetic Sensor Data” on page 5-2.

Introduction

Vehicles that contain advanced driver assistance system (ADAS) features or are designed to be fully
autonomous typically rely on multiple types of sensors. These sensors include sonar, radar, lidar, and
vision. A robust solution includes a sensor fusion algorithm to combine the strengths across the
various types of sensors included in the system. For more information about sensor fusion of synthetic
detections from a multisensor ADAS system, see “Sensor Fusion Using Synthetic Radar and Vision
Data” on page 8-286.

When using synthetic detections for testing and validating tracking and sensor fusion algorithms, it is
important to understand how the generated detections model the sensor's unique performance
characteristics. Each kind of automotive sensor provides a specific set of strengths and weaknesses
which contribute to the fused solution. This example presents some important performance
characteristics of automotive radars and shows how the radar performance is modeled by using
synthetic detections.

Radar Sensor Model

This example uses drivingRadarDataGenerator to generate synthetic radar detections.
drivingRadarDataGenerator models the following performance characteristics of automotive
radar:

Strengths

• Good range and range-rate accuracy over long detection ranges
• Long detection range for vehicles

Weaknesses

• Poor position and velocity accuracy along the cross-range dimension
• Shorter detection range for pedestrians and other nonmetallic objects
• Close range detection clusters pose a challenge to tracking algorithms
• Inability to resolve closely spaced targets at long ranges

FCW Driving Scenario

Create a forward collision warning (FCW) test scenario, which is used to illustrate how to measure a
target's position with a typical long-range automotive radar. The scenario consists of a moving ego
vehicle and a stationary target vehicle placed 150 meters down the road. The ego vehicle has an

 Model Radar Sensor Detections

8-581

initial speed of 50 kph before applying its brakes to achieve a constant deceleration of 3 m/s^2. The
vehicle then comes to a complete stop 1 meter before the target vehicle's rear bumper.

addpath(fullfile(matlabroot,'toolbox','shared','tracking','fusionlib'));

rng default;
initialDist = 150; % m
initialSpeed = 50; % kph
brakeAccel = 3; % m/s^2
finalDist = 1; % m
[scenario, egoCar] = helperCreateSensorDemoScenario('FCW', initialDist, initialSpeed, brakeAccel, finalDist);

Forward-Facing Long-Range Radar

Create a forward-facing long-range radar sensor mounted on the ego vehicle's front bumper, 20 cm
above the ground. The sensor generates raw detections at 10 Hz (every 0.1 seconds) and has an
azimuthal field of view of 20 degrees and an angle resolution of 4 degrees. Its maximum range is 150
m and its range resolution is 2.5 m. The ActorProfiles property specifies the physical dimensions
and radar cross-section (RCS) patterns of the vehicles seen by the radar in the simulation. As an
alternative to raw detections, the drivingRadarDataGeneratior can output clustered detections
or track updates, as specified with the TargetReportFormat property.

radarSensor = drivingRadarDataGenerator(...
 'SensorIndex', 1, ...
 'TargetReportFormat', 'Detections', ...
 'UpdateRate', 10, ...
 'MountingLocation', [egoCar.Wheelbase+egoCar.FrontOverhang 0 0.2], ...
 'FieldOfView', [20 5], ...
 'RangeLimits', [0 150], ...
 'AzimuthResolution', 4, ...
 'RangeResolution', 2.5, ...
 'Profiles', actorProfiles(scenario))

radarSensor =

 drivingRadarDataGenerator with properties:

 SensorIndex: 1
 UpdateRate: 10

 MountingLocation: [3.7000 0 0.2000]
 MountingAngles: [0 0 0]

 FieldOfView: [20 5]
 RangeLimits: [0 150]
 RangeRateLimits: [-100 100]

 DetectionProbability: 0.9000
 FalseAlarmRate: 1.0000e-06

 Use get to show all properties

Simulation of Radar Detections

8 Featured Examples

8-582

Simulate the radar measuring the position of the target vehicle by advancing the simulation time of
the scenario. The radar sensor generates detections from the true target pose (position, velocity, and
orientation) expressed in the ego vehicle's coordinate frame.

The radar is configured to generate detections at 0.1-second intervals, which is consistent with the
update rate of typical automotive radars. However, to accurately model the motion of the vehicles, the
scenario simulation advances every 0.01 seconds. The sensor returns a logical flag, isValidTime,
that is true when the radar reaches its required update interval, indicating that this simulation time
step will generate detections.

% Create display for FCW scenario
[bep, figScene] = helperCreateSensorDemoDisplay(scenario, egoCar, radarSensor);

metrics = struct; % Initialize struct to collect scenario metrics
while advance(scenario) % Update vehicle positions
 gTruth = targetPoses(egoCar); % Get target positions in ego vehicle coordinates

 % Generate time-stamped radar detections
 time = scenario.SimulationTime;
 [dets, ~, isValidTime] = radarSensor(gTruth, time);

 if isValidTime
 % Update Bird's-Eye Plot with detections and road boundaries
 helperUpdateSensorDemoDisplay(bep, egoCar, radarSensor, dets);

 % Collect radar detections and ground truth for offline analysis
 metrics = helperCollectScenarioMetrics(metrics, gTruth, dets);
 end

 % Take a snapshot for the published example
 helperPublishSnapshot(figScene, time>=9.1);
end

 Model Radar Sensor Detections

8-583

Position Measurements

Over the duration of the FCW test, the target vehicle's distance from the ego vehicle spans a wide
range of values. By comparing the radar's measured longitudinal and lateral positions of the target
vehicle to the vehicle's ground truth position, you can observe the accuracy of the radar's measured
positions.

Use helperPlotSensorDemoDetections to plot the longitudinal and lateral position errors as the
difference between the measured position reported by the radar and the target vehicle's ground
truth. The ground truth reference for the target vehicle is the point on the ground directly below the
center of the target vehicle's rear axle, which is 1 meter in front of the car's bumper.

helperPlotSensorDemoDetections(metrics, 'position', 'reverse range', [-6 6]);

% Show rear overhang of target vehicle
tgtCar = scenario.Actors(2);
rearOverhang = tgtCar.RearOverhang;

subplot(1,2,1);
hold on; plot(-rearOverhang*[1 1], ylim, 'k'); hold off;
legend('Error', '2\sigma noise', 'Rear overhang');

8 Featured Examples

8-584

Longitudinal Position Measurements

For a forward-facing radar configuration, the radar's range measurements correspond to the
longitudinal position of the target vehicle.

The longitudinal position errors in the preceding plot on the left show a -1 meter bias between the
longitude measured by the radar and the target's ground truth position. This bias indicates that the
radar consistently measures the target to be closer than the position reported by the ground truth.
Instead of approximating the target as a single point in space, the radar models the physical
dimensions of the vehicle's body. Detections are generated along the vehicle's rear side according to
the radar's resolution in azimuth, range, and (when enabled) elevation. This -1 meter offset is then
explained by the target vehicle's rear overhang, which defines the distance between the vehicle's rear
side and its rear axle, where the ground truth reference is located.

The radar is modeled with a range resolution of 2.5 meters. However, the measurement noise is
reported to be as small as 0.25 meter at the closest point and grows slightly to 0.41 meter at the
farthest tested range. The realized sensor accuracy is much smaller than the radar's range resolution.
Because the radar models the SNR dependence of the range errors using the Cramer-Rao lower
bound, targets with a large radar cross-section (RCS) or targets that are close to the sensor will have
better range accuracy than smaller or more distant targets.

This SNR dependence on the radar's measurement noise is modeled for each of the radar's measured
dimensions: azimuth, elevation, range, and range rate.

Lateral Position Measurements

For a forward-facing radar configuration, the dimension orthogonal to the radar's range
measurements (commonly referred to as the sensor's cross-range dimension) corresponds to the
lateral position of the target vehicle.

The lateral position errors from the FCW test in the preceding plot on the right show a strong
dependence on the target's ground truth range. The radar reports lateral position accuracies as small
as 0.03 meters at close ranges and up to 2.6 meters when the target is far from the radar.

Additionally, multiple detections appear when the target is at ranges less than 30 meters. As
previously mentioned, the target vehicle is not modeled as a single point in space, but the radar
model compares the vehicle's dimensions with the radar's resolution. In this scenario, the radar views

 Model Radar Sensor Detections

8-585

the rear side of the target vehicle. When the vehicle's rear side spans more than one of the radar's
azimuth resolution cells, the radar generates detections from each resolution cell that the target
occupies.

Compute the azimuth spanned by the target vehicle in the FCW test when it is at 30 meters ground
truth range from the ego vehicle.

% Range from radar to target vehicle's rear side
radarRange = 30-(radarSensor.MountingLocation(1)+tgtCar.RearOverhang);

% Azimuth spanned by vehicle's rear side at 30 meters ground truth range
width = tgtCar.Width;
azSpan = rad2deg(width/radarRange)

azSpan =

 4.0764

At a ground truth range of 30 meters, the vehicle's rear side begins to span an azimuth greater than
the radar's azimuth resolution of 4 degrees. Because the azimuth spanned by the target's rear side
exceeds the sensor's resolution, 3 resolved points along the vehicle's rear side are generated: one
from the center of the rear side, one from the left edge of the rear side, and one from the right edge.

Velocity Measurements

Create a driving scenario with two target vehicles (a lead car and a passing car) to illustrate the
accuracy of a radar's longitudinal and lateral velocity measurements. The lead car is placed 40
meters in front of the ego vehicle and is traveling with the same speed. The passing car starts in the
left lane alongside the ego vehicle, passes the ego vehicle, and merges into the right lane just behind
the lead car. This merging maneuver generates longitudinal and lateral velocity components, enabling
you to compare the sensor's accuracy along these two dimensions.

Because the lead car is directly in front of the radar, it has a purely longitudinal velocity component.
The passing car has a velocity profile with both longitudinal and lateral velocity components. These
components change as the car passes the ego vehicle and moves into the right lane behind the lead
car. Comparing the radar's measured longitudinal and lateral velocities of the target vehicles to their
ground truth velocities illustrates the radar's ability to observe both of these velocity components.

% Create passing scenario
leadDist = 40; % m
speed = 50; % kph
passSpeed = 70; % kph
[scenario, egoCar] = helperCreateSensorDemoScenario('Passing', leadDist, speed, passSpeed);

Configuration of Radar Velocity Measurements

A radar generates velocity measurements by observing the Doppler frequency shift on the signal
energy returned from each target. The rate at which the target's range is changing relative to the
radar is derived directly from these Doppler frequencies. Take the radar sensor used in the previous
section to measure position, and configure it to generate range-rate measurements. These
measurements have a resolution of 0.5 m/s, which is a typical resolution for an automotive radar.

% Configure radar for range-rate measurements
release(radarSensor);

8 Featured Examples

8-586

radarSensor.HasRangeRate = true;
radarSensor.RangeRateResolution = 0.5; % m/s

% Use actor profiles for the passing car scenario
radarSensor.Profiles = actorProfiles(scenario);

Use helperRunSensorDemoScenario to simulate the motion of the ego and target vehicles. This
function also collects the simulated metrics, as was previously done for the FCW driving scenario.

snapTime = 6; % Simulation time to take snapshot for publishing
metrics = helperRunSensorDemoScenario(scenario, egoCar, radarSensor, snapTime);

Use helperPlotSensorDemoDetections to plot the radar's longitudinal and lateral velocity errors
as the difference between the measured velocity reported by the radar and the target vehicle's
ground truth.

helperPlotSensorDemoDetections(metrics, 'velocity', 'time', [-25 25]);
subplot(1,2,1);
legend('Lead car error', 'Lead car 2\sigma noise', ...
 'Pass car error', 'Pass car 2\sigma noise', 'Location', 'northwest');

 Model Radar Sensor Detections

8-587

Longitudinal Velocity Measurements

For a forward-facing radar, longitudinal velocity is closely aligned to the radar's range-rate
measurements. The preceding plot on the left shows the radar's longitudinal velocity errors for the
passing vehicle scenario. Because the radar can accurately measure longitudinal velocity from the
Doppler frequency shift observed in the signal energy received from both cars, the velocity errors for
both vehicles (shown as points) are small. However, when the passing car enters the radar's field of
view at 3 seconds, the passing car's measurement noise (shown using solid yellow lines) is initially
large. The noise then decreases until the car merges into the right lane behind the lead car at 7
seconds. As the car passes the ego vehicle, the longitudinal velocity of the passing car includes both
radial and nonradial components. The radar inflates its reported longitudinal velocity noise to
indicate its inability to observe the passing car's nonradial velocity components as it passes the ego
vehicle.

Lateral Velocity Measurements

For a forward-facing radar, the measured lateral velocity corresponds to a target's nonradial velocity
component. The preceding plot on the right shows the passing car's lateral velocity measurement
errors, which display as yellow points. The radar's inability to measure lateral velocity produces a
large error during the passing car's lane change maneuver between 5 and 7 seconds. However, the
radar reports a large lateral velocity noise (shown as solid lines) to indicate that it is unable to
observe velocity along the lateral dimension.

Pedestrian and Vehicle Detection

A radar "sees" not only an object's physical dimensions (length, width, and height) but also is
sensitive to an object's electrical size. An object's electrical size is referred to as its radar cross-
section (RCS) and is commonly given in units of decibel square meters (dBsm). An object's RCS
defines how effectively it reflects the electromagnetic energy received from the radar back to the
sensor. An object's RCS value depends on many properties, including the object's size, shape, and the
kind of materials it contains. An object's RCS also depends on the transmit frequency of the radar.
This value can be large for vehicles and other metallic objects. For typical automotive radar
frequencies near 77 GHz, a car has a nominal RCS of approximately 10 square meters (10 dBsm).
However, nonmetallic objects typically have much smaller values. -8 dBsm is a reasonable RCS to
associate with a pedestrian. This value corresponds to an effective electrical size of only 0.16 square

8 Featured Examples

8-588

meters. In an ADAS or autonomous driving system, a radar must be able to generate detections on
both of these objects.

FCW Driving Scenario with a Pedestrian and a Vehicle

Revisit the FCW scenario from earlier by adding a pedestrian standing on the sidewalk beside the
stopped vehicle. Over the duration of the FCW test, the distance from the radar to the target vehicle
and pedestrian spans a wide range of values. Comparing the radar's measured signal-to-noise ratio
(SNR) reported for the test vehicle and pedestrian detections across the tested ranges demonstrates
how the radar's detection performance changes with both detection range and object type.

% Create FCW test scenario
initialDist = 150; % m
finalDist = 1; % m
initialSpeed = 50; % kph
brakeAccel = 3; % m/s^2
withPedestrian = true;
[scenario, egoCar] = helperCreateSensorDemoScenario('FCW', initialDist, initialSpeed, brakeAccel, finalDist, withPedestrian);

Configuration of Radar Detection Performance

A radar's detection performance is usually specified by the probability of detecting a reference target
that has an RCS of 0 dBsm at a specific range. Create a long-range radar that detects a target with an
RCS of 0 dBsm at a range of 100 meters, with a detection probability of 90%.

% Configure radar's long-range detection performance
release(radarSensor);
radarSensor.ReferenceRange = 100; % m
radarSensor.ReferenceRCS = 0; % dBsm
radarSensor.DetectionProbability = 0.9;

% Use actor profiles for the passing car scenario
radarSensor.Profiles = actorProfiles(scenario);

Run the scenario to collect radar detections and ground truth data. Store them for offline analysis.

snapTime = 8; % Simulation time to take snapshot for publishing
metrics = helperRunSensorDemoScenario(scenario, egoCar, radarSensor, snapTime);

 Model Radar Sensor Detections

8-589

Plot SNR of detections for both the target vehicle and the pedestrian.

helperPlotSensorDemoDetections(metrics, 'snr', 'range', [0 160]);
legend('Vehicle', 'Pedestrian');

8 Featured Examples

8-590

This plot shows the effect of an object's RCS on the radar's ability to "see" it. Detections
corresponding to the stationary test vehicle are shown in red. Detections from the pedestrian are
shown in yellow.

The test vehicle is detected out to the farthest range included in this test, but detection of the
pedestrian becomes less consistent near 70 meters. This difference between the detection range of
the two objects occurs because the test vehicle has a much larger RCS (10 dBsm) than the pedestrian
(-8 dBsm), which enables the radar to detect the vehicle at longer ranges than the pedestrian.

The test vehicle is also detected at the closest range included in this test, but the radar stops
generating detections on the pedestrian near 20 meters. In this scenario, the target vehicle is placed
directly in front of the radar, but the pedestrian is offset from the radar's line of sight. Near 20
meters, the pedestrian is no longer inside of the radar's field of view and cannot be detected by the
radar.

Revisit this scenario for a mid-range automotive radar to illustrate how the radar's detection
performance is affected. Model a mid-range radar to detect an object with an RCS of 0 dBsm at a
reference range of 50 meters, with a detection probability of 90%.

% Configure radar for a mid-range detection requirement
release(radarSensor);
radarSensor.ReferenceRange = 50; % m
radarSensor.ReferenceRCS = 0; % dBsm
radarSensor.DetectionProbability = 0.9;

 Model Radar Sensor Detections

8-591

Additionally, to improve the detection of objects at close ranges that are offset from the radar's line of
sight, the mid-range radar's azimuthal field of view is increased to 90 degrees. The radar's azimuth
resolution is set to 10 degrees to search this large coverage area more quickly.

% Increase radar's field of view in azimuth and elevation to 90 and 10 degrees respectively
radarSensor.FieldOfView = [90 10];

% Increase radar's azimuth resolution
radarSensor.AzimuthResolution = 10;

Run the FCW test using the mid-range radar and the SNR for the detections from the target vehicle
and pedestrian. Plot the SNR.

% Run simulation and collect detections and ground truth for offline analysis
metrics = helperRunSensorDemoScenario(scenario, egoCar, radarSensor);

% Plot SNR for vehicle and pedestrian detections
helperPlotSensorDemoDetections(metrics, 'snr', 'range', [0 160]);
legend('Vehicle', 'Pedestrian');

For the mid-range radar, the detections of both the vehicle and pedestrian are limited to shorter
ranges. With the long-range radar, the vehicle is detected out to the full test range, but now vehicle
detection becomes unreliable at 95 meters. Likewise, the pedestrian is detected reliably only out to
35 meters. However, the mid-range radar's extended field of view in azimuth enables detections on
the pedestrian to a 10-meter ground truth range from the sensor, a significant improvement in
coverage over the long-range radar.

8 Featured Examples

8-592

Detection of Closely Spaced Targets

When multiple targets occupy a radar's resolution cell, the group of closely spaced targets are
reported as a single detection. The reported location is the centroid of the location of each
contributing target. This merging of multiple targets into a single detection is common at long
ranges, because the area covered by the radar's azimuth resolution grows with increasing distance
from the sensor.

Create a scenario with two motorcycles traveling side-by-side in front of the ego vehicle. This
scenario shows how the radar merges closely spaced targets. The motorcycles are 1.8 meters apart
and are traveling 10 kph faster than the ego vehicle.

Over the duration of the scenario, the distance between the motorcycles and the ego vehicle
increases. When the motorcycles are close to the radar, they occupy different radar resolution cells.
By the end of the scenario, after the distance between the radar and the motorcycles has increased,
both motorcycles occupy the same radar resolution cells and are merged. The radar's longitudinal
and lateral position errors show when this transition occurs during the scenario.

duration = 8; % s
speedEgo = 50; % kph
speedMotorcycles = 60; % kph
distMotorcycles = 25; % m
[scenario, egoCar] = helperCreateSensorDemoScenario('Side-by-Side', duration, speedEgo, speedMotorcycles, distMotorcycles);

% Create forward-facing long-range automotive radar sensor mounted on ego vehicle's front bumper
radarSensor = drivingRadarDataGenerator(...
 'SensorIndex', 1, ...
 'TargetReportFormat', 'Detections', ...
 'MountingLocation', [egoCar.Wheelbase+egoCar.FrontOverhang 0 0.2], ...
 'Profiles', actorProfiles(scenario));

% Run simulation and collect detections and ground truth for offline analysis
snapTime = 5.6; % Simulation time to take snapshot for publishing
metrics = helperRunSensorDemoScenario(scenario, egoCar, radarSensor, snapTime);

 Model Radar Sensor Detections

8-593

Plot the radar's longitudinal and lateral position errors. By analyzing the position errors reported for
each motorcycle, you can identify the range where the radar no longer can distinguish the two
motorcycles as unique objects.

helperPlotSensorDemoDetections(metrics, 'position', 'range', [-3 3], true);
subplot(1,2,2);
legend('Left error', 'Right error', 'Merged error');

Detections are generated from the rear and along the inner side of each motorcycle. The red errors
are from the left motorcycle, the yellow errors are from the right motorcycle, and the purple points

8 Featured Examples

8-594

show the detections that are merged between the two motorcycles. The motorcycles are separated by
a distance of 1.8 meters. Each motorcycle is modeled to have a width of 0.6 meters and a length of
2.2 meters. The inner sides of the motorcycles are only 1.2 meters apart.

Inner Side Detections

Detections are generated from points along the inner side of each motorcycle. The detections start at
the closest edge and are sampled in range according to the radar's range resolution of 2.5 meters and
the motorcycle's position relative to the radar. The location of the range cell's boundary produces a
detection that occurs either at the middle or far edge of the motorcycle's inner side. A detection from
the motorcycle's closest edge is also generated. This movement through the radar's range resolution
cell boundaries creates the 3 bands of longitudinal position errors seen in the preceding plot on the
left. The total longitudinal extent covered by these 3 bands is 2.2 meters, which corresponds to the
length of the motorcycles.

Because the inner sides of the motorcycles are separated by only 1.2 meters, these sampled points all
fall within a common azimuthal resolution cell and are merged by the radar. The centroid of these
merged points lies in the middle of the two motorcycles. The centroiding of the merged detections
produces a lateral bias with a magnitude of 0.9 meters, corresponding to half of the distance between
the motorcycles. In the lateral position error plot on the right, all of the merged detections (shown in
purple) have this bias.

Rear Side Detections

Detections generated from the rear side of each motorcycle are further apart (1.8 m) than the
sampled points along the inner sides (1.2 m).

At the beginning of the scenario, the motorcycles are at a ground truth range of 25 meters from the
ego vehicle. At this close range, detections from the rear sides lie in different azimuthal resolution
cells and the radar does not merge them. These distinct rear-side detections are shown as red points
(left motorcycle) and yellow points (right motorcycle) in the preceding longitudinal and lateral
position error plots. For these unmerged detections, the longitudinal position errors from the rear
sides are offset by the rear overhang of the motorcycles (0.37 m). The lateral position errors from the
rear sides do not exhibit any bias. This result is consistent with the position errors observed in the
FCW scenario.

Summary

This example demonstrated how to model the output of automotive radars using synthetic detections.
In particular, it presented how the drivingRadarDataGenerator model:

• Provides accurate longitudinal position and velocity measurements over long ranges, but has
limited lateral accuracy at long ranges

• Generates multiple detections from single target at close ranges, but merges detections from
multiple closely spaced targets into a single detection at long ranges

• Sees vehicles and other targets with large radar cross-sections over long ranges, but has limited
detection performance for nonmetallic objects such as pedestrians

See Also
Apps
Driving Scenario Designer

 Model Radar Sensor Detections

8-595

Objects
drivingScenario | drivingRadarDataGenerator | visionDetectionGenerator

More About
• “Sensor Fusion Using Synthetic Radar and Vision Data” on page 8-286
• “Model Vision Sensor Detections” on page 8-597
• “Simulate Radar Ghosts Due to Multipath Return” on page 8-627
• “Highway Vehicle Tracking with Multipath Radar Reflections” on page 8-454

8 Featured Examples

8-596

Model Vision Sensor Detections
This example shows how to model and simulate the output of an automotive vision sensor for different
driving scenarios. Generating synthetic vision detections is important for testing and validating
tracking and sensor fusion algorithms in corner cases or when sensor hardware is unavailable. This
example analyzes the differences between vision measurements and vehicle ground truth position
and velocity for a forward collision warning (FCW) scenario, a passing vehicle scenario, and a hill
descent scenario.

In this example, you generate vision detections programmatically. You can also generate detections by
using the Driving Scenario Designer app. For an example, see “Create Driving Scenario Interactively
and Generate Synthetic Sensor Data” on page 5-2.

Introduction

Vehicles that contain advanced driver assistance system (ADAS) features or are designed to be fully
autonomous typically rely on multiple types of sensors. These sensors include sonar, radar, lidar, and
vision. A robust solution includes a sensor fusion algorithm to combine the strengths across the
various types of sensors included in the system. For more information about sensor fusion of synthetic
detections from a multisensor ADAS system, see “Sensor Fusion Using Synthetic Radar and Vision
Data” on page 8-286.

When using synthetic detections for testing and validating tracking and sensor fusion algorithms, it is
important to understand how the generated detections model the sensor's unique performance
characteristics. Each kind of automotive sensor provides a specific set of strengths and weaknesses
which contribute to the fused solution. This example presents some important performance
characteristics of automotive vision sensors and shows how the sensor performance is modeled by
using synthetic detections.

Vision Sensor Model

This example uses visionDetectionGenerator to generate synthetic vision sensor detections.
visionDetectionGenerator models the following performance characteristics of automotive
vision sensors:

Strengths

• Good lateral position and velocity accuracy
• One detection reported per target

Weaknesses

• Poor longitudinal position and velocity accuracy
• Inability to detect occluded targets
• Longitudinal biases for elevated targets

FCW Driving Scenario

Create a forward collision warning (FCW) test scenario, which is used to illustrate how to measure a
target's position with an automotive vision sensor. The scenario consists of a moving ego vehicle and
a stationary target vehicle placed 75 meters down the road. The ego vehicle has an initial speed of 50
kph before applying its brakes to achieve a constant deceleration of 3 m/s^2. The vehicle then comes
to a complete stop 1 meter before the target vehicle's rear bumper.

 Model Vision Sensor Detections

8-597

rng default;
initialDist = 75; % m
finalDist = 1; % m
initialSpeed = 50; % kph
brakeAccel = 3; % m/s^2
[scenario, egoCar] = helperCreateSensorDemoScenario('FCW', initialDist, initialSpeed, brakeAccel, finalDist);

Forward-Facing Vision Sensor

Create a forward-facing vision sensor mounted on the ego vehicle's front windshield, 1.1 m above the
ground. The sensor is pitched down 1 degree toward the road and generates measurements every 0.1
second. The sensor's camera has a 480-by-640 pixel imaging array and a focal length of 800 pixels.
The sensor can locate objects within a single image with an accuracy of 5 pixels and has a maximum
detection range of 150 m. The ActorProfiles property specifies the physical dimensions of the
vehicles seen by the vision sensor in the simulation.

visionSensor = visionDetectionGenerator(...
 'SensorIndex', 1, ...
 'UpdateInterval', 0.1, ...
 'SensorLocation', [0.75*egoCar.Wheelbase 0], ...
 'Height', 1.1, ...
 'Pitch', 1, ...
 'Intrinsics', cameraIntrinsics(800, [320 240], [480 640]), ...
 'BoundingBoxAccuracy', 5, ...
 'MaxRange', 150, ...
 'ActorProfiles', actorProfiles(scenario))

visionSensor =

 visionDetectionGenerator with properties:

 SensorIndex: 1
 UpdateInterval: 0.1000

 SensorLocation: [2.1000 0]
 Height: 1.1000
 Yaw: 0
 Pitch: 1
 Roll: 0
 Intrinsics: [1x1 cameraIntrinsics]

 DetectorOutput: 'Objects only'
 FieldOfView: [43.6028 33.3985]
 MaxRange: 150
 MaxSpeed: 100
 MaxAllowedOcclusion: 0.5000
 MinObjectImageSize: [15 15]

 DetectionProbability: 0.9000
 FalsePositivesPerImage: 0.1000

 Use get to show all properties

Simulation of Vision Detections

8 Featured Examples

8-598

Simulate the vision sensor measuring the position of the target vehicle by advancing the simulation
time of the scenario. The vision sensor generates detections from the true target pose (position,
velocity, and orientation) expressed in the ego vehicle's coordinate frame.

The vision sensor is configured to generate detections at 0.1-second intervals, which is consistent
with the update rate of typical automotive vision sensors. However, to accurately model the motion of
the vehicles, the scenario simulation advances every 0.01 seconds. The sensor returns a logical flag,
isValidTime, that is true when the vision sensor reaches its required update interval, indicating
that this simulation time step will generate detections.

% Create display for FCW scenario
[bep, figScene] = helperCreateSensorDemoDisplay(scenario, egoCar, visionSensor);

metrics = struct; % Initialize struct to collect scenario metrics
while advance(scenario) % Update vehicle positions
 gTruth = targetPoses(egoCar); % Get target positions in ego vehicle coordinates

 % Generate time-stamped vision detections
 time = scenario.SimulationTime;
 [dets, ~, isValidTime] = visionSensor(gTruth, time);

 if isValidTime
 % Update Bird's-Eye Plot with detections and road boundaries
 helperUpdateSensorDemoDisplay(bep, egoCar, visionSensor, dets);

 % Collect vision detections and ground truth for offline analysis
 metrics = helperCollectScenarioMetrics(metrics, gTruth, dets);
 end

 % Take a snapshot for the published example
 helperPublishSnapshot(figScene, time>=6);
end

 Model Vision Sensor Detections

8-599

Position Measurements

Over the duration of the FCW test, the target vehicle's distance from the ego vehicle spans a wide
range of values. By comparing the vision sensor's measured longitudinal and lateral positions of the
target vehicle to the target vehicle's ground truth position, you can observe the accuracy of the
sensor's measured positions.

Use helperPlotSensorDemoDetections to plot the longitudinal and lateral position errors as the
difference between the measured position reported by the vision sensor and the target vehicle's
ground truth. The ground truth reference for the target vehicle is the point on the ground directly
below the center of the target vehicle's rear axle, which is 1 meter in front of the car's bumper.

helperPlotSensorDemoDetections(metrics, 'position', 'reverse range', [-6 6]);

% Show rear overhang of target vehicle
tgtCar = scenario.Actors(2);
rearOverhang = tgtCar.RearOverhang;

subplot(1,2,1);
hold on; plot(-rearOverhang*[1 1], ylim, 'k'); hold off;
legend('Error', '2\sigma noise', 'Rear overhang');

8 Featured Examples

8-600

The vision sensor converts the target's position in the camera's image to longitudinal and lateral
positions in the ego vehicle's coordinate system. The sensor does this conversion by assuming that
the detected points in the image lie on a flat road that is at the same elevation as the ego vehicle.

Longitudinal Position Measurements

For a forward-facing vision sensor configuration, longitudinal position measurements are derived
primarily from the target's vertical placement in the camera's image.

An object's vertical position in the image is strongly correlated to the object's height above the road,
but it is weakly correlated to the object's distance from the camera. This weak correlation causes a
monocular vision sensor's longitudinal position errors to become large as an object moves away from
the sensor. The longitudinal position errors in the preceding plot on the left show how the sensor's
longitudinal errors quickly increase when the target vehicle is far from the sensor. The sensor's
longitudinal measurement noise is less than 1 meter when the ground truth range to the target
vehicle is less than 30 meters, but grows to more than 5 meters at ranges beyond 70 meters from the
ego vehicle.

The longitudinal position errors also show a -1 meter bias between the longitude measured by the
vision sensor and the target's ground truth position. The -1 meter bias indicates that the sensor
consistently measures the target to be closer to the ego vehicle than the target vehicle's ground truth
position. Instead of approximating the target as a single point in space, the vision sensor models the
physical dimensions of the vehicle's body. For the FCW scenario, the vision sensor views the target
vehicle's rear side. The -1 meter bias in the detections generated from this side corresponds to the
vehicle's rear overhang. A vehicle's rear overhang defines the distance between the vehicle's rear
side and its rear axle, which is where the ground truth reference is located.

Lateral Position Measurements

For a forward-facing vision sensor configuration, lateral position is derived from the target's
horizontal location in the camera's image.

Unlike longitudinal position, an object's lateral position is strongly correlated to its horizontal
position in the vision sensor's image. This strong correlation produces accurate lateral position
measurements that do not degrade quickly with an object's distance from the sensor. The lateral
position errors in the preceding plot on the right grow slowly with range. The measurement noise
reported by the sensor remains below 0.2 meters out to a ground truth range of 70 meters.

 Model Vision Sensor Detections

8-601

Velocity Measurements and Target Occlusion

Create a driving scenario with two target vehicles (a lead car and a passing car) to illustrate the
accuracy of a vision sensor's longitudinal and lateral velocity measurements. The lead car is placed
40 meters in front of the ego vehicle and is traveling with the same speed. The passing car starts in
the left lane alongside the ego vehicle, passes the ego vehicle, and merges into the right lane just
behind the lead car. This merging maneuver generates longitudinal and lateral velocity components,
enabling you to compare the sensor's accuracy along these two dimensions.

Because the lead car is directly in front of the sensor, it has a purely longitudinal velocity component.
The passing car has a velocity profile with both longitudinal and lateral velocity components. These
components change as the car passes the ego vehicle and moves into the right lane behind the lead
car. Comparing the sensor's measured longitudinal and lateral velocities of the target vehicles to their
ground truth velocities illustrates the vision sensor's ability to observe both of these velocity
components.

% Create passing scenario
leadDist = 40; % m
speed = 50; % kph
passSpeed = 70; % kph
mergeFract = 0.55; % Merge 55% into right lane
[scenario, egoCar] = helperCreateSensorDemoScenario('Passing', leadDist, speed, passSpeed, mergeFract);

Configuration of Vision Sensor Velocity Measurements

The vision sensor cannot determine an object's velocity from a single image. To estimate velocity, the
vision sensor compares the object's movement between multiple images. The extracted target
positions from multiple images are processed by using a smoothing filter. In addition to estimating
velocity, this filter produces a smoothed position estimate. To adjust the amount of smoothing that the
filter applies, you can set the sensor's process noise intensity. The sensor's process noise should be
set to be of the order of the maximum acceleration magnitude expected from a target that must be
detected by the sensor.

Take the vision sensor used in the previous section, and configure it to generate position and velocity
estimates from a smoothing filter with a process noise intensity of 5 m/s^2.

% Configure vision sensor's noise intensity used by smoothing filter
release(visionSensor);
visionSensor.ProcessNoiseIntensity = 5; % m/s^2

% Use actor profiles for the passing car scenario
visionSensor.ActorProfiles = actorProfiles(scenario);

Use helperRunSensorDemoScenario to simulate the motion of the ego and target vehicles. This
function also collects the simulated metrics, as was previously done for the FCW driving scenario.

snapTime = 5.9; % Simulation time to take snapshot for publishing
metrics = helperRunSensorDemoScenario(scenario, egoCar, visionSensor, snapTime);

8 Featured Examples

8-602

Use helperPlotSensorDemoDetections to plot the vision sensor's longitudinal and lateral
velocity errors as the difference between the measured velocity reported by the sensor and the target
vehicle's ground truth.

helperPlotSensorDemoDetections(metrics, 'velocity', 'time', [-25 25]);
subplot(1,2,1);
legend('Lead car error', 'Lead car 2\sigma noise', 'Pass car error', 'Pass car 2\sigma noise');

Longitudinal Velocity Measurements

 Model Vision Sensor Detections

8-603

Forward-facing vision sensors measure longitudinal velocity by comparing how the sensor's
longitudinal position measurements change between sensor update intervals. Because the sensor's
longitudinal position errors grow with range, the longitudinal velocity errors will also grow with
increasing target range.

The longitudinal velocity errors from the passing vehicle scenario are shown in the preceding plot on
the left. Because the lead car maintains a constant distance from the vision sensor, its errors
(displayed as red points) show the same measurement noise throughout the scenario. However,
the passing car's distance from the sensor is not constant, but this distance increases as the car
passes the sensor and moves toward the lead car. The passing car's longitudinal velocity errors
(displayed as yellow points) are small when it first enters the sensor's field of view at 2 seconds. The
passing car is close to the vision sensor at this point in the scenario. From 2 seconds to 6 seconds, the
passing car is moving away from the ego vehicle and approaching the lead car. Its longitudinal
velocity errors grow as its distance from the sensor increases. Once the passing car merges into the
right lane behind the lead car, it maintains a constant distance from the sensor, and its
measurement noise remains constant.

Lateral Velocity Measurements

Forward-facing vision sensors measure lateral velocity by comparing how the sensor's lateral position
measurements change between sensor update intervals. Because the sensor's lateral position errors
are not strongly correlated with the target's range from the sensor, the lateral velocity errors will also
show little dependence on target range.

The lateral velocity errors from the passing vehicle scenario are shown in the preceding plot on the
right. The errors from the lead car (red points) and the passing car (yellow points) have nearly the
same measurement noise for the entire scenario. The passing car's reported lateral velocity errors
show little change as it moves away from the sensor.

Detection of Targets with Partial Occlusion

In the preceding velocity error plots, the lead car (red points) is reliably detected during the first 6
seconds of the scenario. The passing car (yellow points) is detected at 2 seconds when it first enters
the camera's field of view. Detections are then generated on both of the target vehicles until 6
seconds. At 6 seconds, the passing car merges into the right lane and moves between the ego vehicle
and the lead car. For the remainder of the scenario, the passing car partially occludes the vision
sensor's view of the lead car. 55% of the lead car's rear side is occluded, leaving only 45% visible to
the sensor for detection. This occluded view of the lead car prevents the sensor from finding the car
in the camera's image and generating detections.

A vision sensor's ability to provide reliable detections is strongly dependent on an unobstructed view
of the object it is detecting. In dense traffic, the visibility of vehicles in the scenario can change
rapidly as distances between vehicles change and vehicles move in and out of lanes. This inability to
maintain detection on obstructed targets poses a challenge to tracking algorithms processing the
vision sensor's detections.

Rerun the passing vehicle scenario with a vision sensor that can detect targets with as much as 60%
of the target's viewable area occluded.

% Configure vision sensor to support maximum occlusion of 60%
release(visionSensor);
visionSensor.MaxAllowedOcclusion = 0.6;

% Run simulation and collect detections and ground truth for offline analysis

8 Featured Examples

8-604

metrics = helperRunSensorDemoScenario(scenario, egoCar, visionSensor);

% Plot longitudinal and lateral velocity errors
helperPlotSensorDemoDetections(metrics, 'velocity', 'time', [-25 25]);
subplot(1,2,1);
legend('Lead car error', 'Lead car 2\sigma noise', 'Pass car error', 'Pass car 2\sigma noise');

In the preceding plot, velocity errors are shown for both the lead car (red points) and the passing car
(yellow points). The same error performance is observed as before, but now detections on the lead
car are maintained after the passing car has merged behind it at 6 seconds. By adjusting the
maximum allowed occlusion, you can model a vision sensor's sensitivity to target occlusion.

Longitudinal Position Bias from Target Elevation

An object's vertical location in the camera's image is strongly correlated to its height above the road.
Because a monocular vision sensor generates longitudinal position measurements from the vertical
location of objects in its camera's image, large errors can arise for targets at different elevations from
the ego vehicle. When an object changes elevation, the sensor incorrectly interprets the vertical
displacement in the camera's image as a change in the object's longitudinal position.

Run the FCW scenario again with a stationary target vehicle placed at a location 2 meters lower than
the initial position of the ego vehicle. The ego vehicle descends a small hill as it approaches the
target vehicle. As the ego vehicle descends the hill, the target vehicle's vertical location in the
camera's image changes, introducing a bias in the sensor's measured longitudinal position.

% Create FCW hill descent scenario
initialDist = 75; % m
finalDist = 1; % m
initialSpeed = 50; % kph
brakeAccel = 3; % m/s^2
[scenario, egoCar] = helperCreateSensorDemoScenario('FCW', initialDist, initialSpeed, brakeAccel, finalDist, false, 2);

% Use actor profiles for the FCW hill descent scenario
release(visionSensor);
visionSensor.ActorProfiles = actorProfiles(scenario);

% Run simulation and collect detections and ground truth for offline analysis
snapTime = 3; % Simulation time to take snapshot for publishing
metrics = helperRunSensorDemoScenario(scenario, egoCar, visionSensor, snapTime, true);

 Model Vision Sensor Detections

8-605

Plot the position errors generated for the target vehicle as the ego vehicle descends the small hill.

helperPlotSensorDemoDetections(metrics, 'position', 'reverse range', [-6 6;0 80]);
subplot(1,2,1); xlim([-10 60]); ylim([0 80]);
legend('Error', '2\sigma noise');

The preceding plots show the longitudinal position errors (on the left) and the lateral position errors
(on the right) for the hill descent scenario. Note that in the longitudinal position error plot, the limits
of the error axis have been increased to accommodate the large bias induced by the target's elevation
relative to the camera sensor as the ego vehicle descends the hill.

8 Featured Examples

8-606

The ego vehicle begins its descent when it is 75 meters away from the target vehicle. Because the
ego vehicle is pitched down as it descends the hill, the target appears at an elevated position near the
top of the camera's image. As the ego vehicle descends the hill, the target vehicle's location in the
camera's image moves from the top of the image and crosses the horizon line. For monocular vision
sensors, targets located near the horizon line in the camera's image are mapped to positions that are
very far from the sensor. (By definition, points on the horizon line are located at infinity.) The vision
sensor does not generate detections for objects appearing above the horizon in the camera's image,
because these points do not map to locations on the road's surface.

Large changes in the vehicle's longitudinal position as its location in the image moves away from the
horizon also cause the sensor's smoothing filter to generate large longitudinal velocity estimates. The
sensor rejects detections with speeds exceeding its MaxSpeed property. These large longitudinal
velocities produced by the target's elevation also prevent the sensor from generating detections when
the target vehicle is near the camera's horizon.

When the ego vehicle is approximately 40 meters from the target vehicle, the target vehicle's image
location has crossed the horizon line and the sensor's velocity estimates satisfy its max speed
constraint. At this distance, the vision sensor begins to generate detections from the target vehicle.
The mapping of target locations near the camera's horizon to points on the road far from the sensor
explains the large longitudinal errors modeled by the monocular vision sensor when it begins
detecting the target vehicle. The longitudinal bias continues to decrease as the ego vehicle
approaches the bottom of the hill and the target's location moves away from the horizon line in the
camera's image. At the end of the ego vehicle's descent, the target is at the same elevation as the ego
vehicle. Only the -1 meter bias corresponding to the target vehicle's rear overhang is present. The
sensor's lateral position errors show no bias, because the pitch of the ego vehicle as it descends the
hill does not change the target's horizontal location in the camera's image.

Pedestrian and Vehicle Detection

A vision sensor's ability to detect an object in its camera's image depends on the number of pixels the
object occupies in the image. When an object's size in the image is large (hundreds of pixels), the
sensor can easily identify the object and generate a detection. However when an object's size in the
image is small (tens of pixels) the sensor might not find it and will not generate a detection. An
object's projected size on the camera's imaging array is a function of both the object's physical size
and its distance from the camera. Therefore, when a vehicle is positioned farther from the camera
than a pedestrian, both the vehicle and the pedestrian might have similar sizes in the camera's
image. This means that a vision sensor will detect large objects (vehicles) at longer ranges than
smaller objects (pedestrians).

Run the FCW scenario again with both a stationary car and pedestrian 75 meters in front of the
sensor. This scenario illustrates the difference in the sensor's detection range for these two objects.
The ego vehicle, stationary car, and pedestrian are all placed at the same elevation.

% Create FCW test scenario
initialDist = 75; % m
finalDist = 1; % m
initialSpeed = 50; % kph
brakeAccel = 3; % m/s^2
[scenario, egoCar] = helperCreateSensorDemoScenario('FCW', initialDist, initialSpeed, brakeAccel, finalDist, true);

% Use actor profiles for the FCW hill descent scenario
release(visionSensor);
visionSensor.ActorProfiles = actorProfiles(scenario);

% Run simulation and collect detections and ground truth for offline analysis

 Model Vision Sensor Detections

8-607

snapTime = 5; % Simulation time to take snapshot for publishing
metrics = helperRunSensorDemoScenario(scenario, egoCar, visionSensor, snapTime);

Plot the position errors generated for the target vehicle and pedestrian from the FCW scenario.

helperPlotSensorDemoDetections(metrics, 'position', 'reverse range', [-6 6]);
legend('Car error','Car 2\sigma noise', 'Pedestrian error', 'Pedestrian 2\sigma noise');

The preceding plots show the longitudinal position errors (on the left) and lateral position errors (on
the right) generated by the vision sensor's detections of the target vehicle and pedestrian. Errors

8 Featured Examples

8-608

from detections for the target vehicle (shown in red) are generated out to the farthest range included
in this test (75 m), but errors for the pedestrian (shown in yellow) do not appear until the ego vehicle
has reached a distance of approximately 30 m. This difference in the detection ranges is due to the
difference in the sizes of these two objects.

The sensor stops generating detections from the pedestrian at ranges less than 12 m. At this range,
the offset of the pedestrian from the camera's optical axis moves the pedestrian outside of the
camera's horizontal field of view. Because the target vehicle is directly in front of the camera, it
remains centered within the camera's image for the entire FCW test.

Some vision sensors can detect objects with smaller image sizes, enabling the sensors to detect
objects at longer ranges. In the previous scenario, the sensor's detection of the pedestrian is limited
by the pedestrian's width (0.45 m), which is much narrower than the width of the car (1.8 m). To
increase the sensor's detection range for pedestrians to 40 m, compute the width of the pedestrian in
the camera's image when it is at 40 m.

Find physical width modeled for a pedestrian

profiles = actorProfiles(scenario);
pedWidth = profiles(3).Width

% Compute width of pedestrian in camera's image in pixels at 40 meters from ego vehicle
cameraRange = 40-visionSensor.SensorLocation(1);
focalLength = visionSensor.Intrinsics.FocalLength(1);
pedImageWidth = focalLength*pedWidth/cameraRange

pedWidth =

 0.4500

pedImageWidth =

 9.4987

At 40 m, the pedestrian has a width of 9.5 pixels in the camera's image. Set the vision sensor's
minimum object width to match the pedestrian's width at 40 m.

% Configure sensor to detect pedestrians out to a range of 40 m.
release(visionSensor);
visionSensor.MinObjectImageSize(2) = pedImageWidth

visionSensor =

 visionDetectionGenerator with properties:

 SensorIndex: 1
 UpdateInterval: 0.1000

 SensorLocation: [2.1000 0]
 Height: 1.1000
 Yaw: 0
 Pitch: 1
 Roll: 0

 Model Vision Sensor Detections

8-609

 Intrinsics: [1x1 cameraIntrinsics]

 DetectorOutput: 'Objects only'
 FieldOfView: [43.6028 33.3985]
 MaxRange: 150
 MaxSpeed: 100
 MaxAllowedOcclusion: 0.6000
 MinObjectImageSize: [15 9.4987]

 DetectionProbability: 0.9000
 FalsePositivesPerImage: 0.1000

 Use get to show all properties

Run the scenario again and plot the position errors to show the revised detection ranges for the
vehicle and pedestrian.

% Run simulation and collect detections and ground truth for offline
% analysis.
metrics = helperRunSensorDemoScenario(scenario, egoCar, visionSensor);

% Plot position errors for the target vehicle and pedestrian.
helperPlotSensorDemoDetections(metrics, 'position', 'reverse range', [-6 6]);
legend('Car error','Car 2\sigma noise', 'Pedestrian error', 'Pedestrian 2\sigma noise');

The preceding plots show the longitudinal position errors (on the left) and lateral position errors (on
the right) for a vision sensor configured to support pedestrian detection out to a range of 40 m. The
vehicle (shown in red) is still detected out to the farthest test range, but now detections on the
pedestrian (shown in yellow) are generated out to 40 m from the sensor.

Lane Boundary Measurements and Lane Occlusion

The vision detection generator can also be configured to detect lanes. Recreate the two-lane driving
scenario with the lead car and passing car to illustrate the accuracy of a vision sensor's lane
boundary measurements. This same merging maneuver is used to occlusion of the lane markings.

% Create passing scenario
leadDist = 40; % m

8 Featured Examples

8-610

speed = 50; % kph
passSpeed = 70; % kph
mergeFract = 0.55; % Merge 55% into right lane
[scenario, egoCar] = helperCreateSensorDemoScenario('Passing', leadDist, speed, passSpeed, mergeFract);

Configuration of Vision Sensor Lane Boundary Measurements

Configure the vision sensor used in the previous section, and configure it to generate position and
velocity estimates from a smoothing filter with a process noise intensity of 5 m/s^2.

% Configure vision sensor to detect both lanes and objects
release(visionSensor);
visionSensor.DetectorOutput = 'lanes and objects';

% Use actor profiles for the passing car scenario
visionSensor.ActorProfiles = actorProfiles(scenario);

Use helperRunSensorDemoScenario to simulate the motion of the ego and target vehicles.

snapTime = 5.9; % Simulation time to take snapshot for publishing
helperRunSensorDemoScenario(scenario, egoCar, visionSensor, snapTime);

As can be seen above, the default detector can see lane boundaries out to 45 meters or so when
presented with an unoccluded view. You can change the intrinsics of the detector to observe its effect.

% show camera intrinsics.
visionSensor.Intrinsics

ans =

 Model Vision Sensor Detections

8-611

 cameraIntrinsics with properties:

 FocalLength: [800 800]
 PrincipalPoint: [320 240]
 ImageSize: [480 640]
 RadialDistortion: [0 0]
 TangentialDistortion: [0 0]
 Skew: 0
 IntrinsicMatrix: [3x3 double]

% increase the focal length and observe its effect.
release(visionSensor);
visionSensor.Intrinsics = cameraIntrinsics([1200 1200],[320 240],[480 640])

helperRunSensorDemoScenario(scenario, egoCar, visionSensor, snapTime);

visionSensor =

 visionDetectionGenerator with properties:

 SensorIndex: 1
 UpdateInterval: 0.1000

 SensorLocation: [2.1000 0]
 Height: 1.1000
 Yaw: 0
 Pitch: 1
 Roll: 0
 Intrinsics: [1x1 cameraIntrinsics]

 DetectorOutput: 'Lanes and objects'
 FieldOfView: [29.8628 22.6199]
 MaxRange: 150
 MaxSpeed: 100
 MaxAllowedOcclusion: 0.6000
 MinObjectImageSize: [15 9.4987]
 MinLaneImageSize: [20 3]

 DetectionProbability: 0.9000
 FalsePositivesPerImage: 0.1000

 Use get to show all properties

8 Featured Examples

8-612

Changing the focal length from 800 pixels to 1200 in both x- and y-directions zooms the camera,
enabling it to detect out to further ranges.

Summary

This example demonstrated how to model the output of automotive vision sensors using synthetic
detections. In particular, it presented how the visionDetectionGenerator model:

• Provides accurate lateral position and velocity measurements over long ranges, but has limited
longitudinal accuracy at long ranges

• Limits detection according to a target's physical dimensions and a target's occlusion by other
objects in the scenario

• Includes longitudinal biases for targets located at different elevations than the ego vehicle
• Adjusts object and lane detections due to monocular camera intrinsics.

See Also
Apps
Driving Scenario Designer

Objects
drivingScenario | visionDetectionGenerator | drivingRadarDataGenerator

 Model Vision Sensor Detections

8-613

More About
• “Sensor Fusion Using Synthetic Radar and Vision Data” on page 8-286
• “Model Radar Sensor Detections” on page 8-581

8 Featured Examples

8-614

Radar Signal Simulation and Processing for Automated Driving
This example shows how to model the hardware, signal processing, and propagation environment of
an automotive radar. First you model a highway scenario using Automated Driving Toolbox™. Then,
you develop a model of the radar transmit and receive hardware, signal processing and tracker using
Radar Toolbox™. Finally, you simulate multipath propagation effects on the radar model.

Introduction

You can model vehicle motion by using the drivingScenario object from Automated Driving
Toolbox. The vehicle ground truth can then be used as an input to the radar model to generate
synthetic sensor detections. For an example of this workflow, see “Simulate Radar Ghosts Due to
Multipath Return” (Radar Toolbox). The automotive radar used in this example uses a statistical
model that is parameterized according to high-level radar specifications. The generic radar
architecture modeled in this example does not include specific antenna configurations, waveforms, or
unique channel propagation characteristics. When designing an automotive radar, or when the
specific architecture of a radar is known, use a radar model that includes this additional information.

Radar Toolbox enables you to evaluate different radar architectures. You can explore different
transmit and receive array configurations, waveforms, and signal processing chains. You can also
evaluate your designs against different channel models to assess their robustness to different
environmental conditions. This modeling helps you to identify the specific design that best fits your
application requirements.

In this example, you learn how to define a radar model from a set of system requirements for a long-
range radar. You then simulate a driving scenario to generate detections from your radar model. A
tracker is used to process these detections to generate precise estimates of the position and velocity
of the vehicles detected by your automotive radar.

Calculate Radar Parameters from Long-Range Radar Requirements

The radar parameters are defined for the frequency-modulated continuous wave (FMCW) waveform,
as described in the example “Automotive Adaptive Cruise Control Using FMCW Technology” (Radar
Toolbox). The radar operates at a center frequency of 77 GHz. This frequency is commonly used by
automotive radars. For long-range operation, the radar must detect vehicles at a maximum range of
250-300 meters in front of the ego vehicle. The radar is required to resolve objects in range that are
at least 1 meter apart. Because this is a forward-facing radar application, the radar also needs to
handle targets with large closing speeds as high as 230 km/hr.

The radar is designed to use an FMCW waveform. These waveforms are common in automotive
applications because they enable range and Doppler estimation through computationally efficient FFT
operations. For illustration purpose, in this example, configure the radar to a maximum range of 100
meters.

% Set random number generator for repeatable results
rng(2017);

% Compute hardware parameters from specified long-range requirements
fc = 77e9; % Center frequency (Hz)
c = physconst('LightSpeed'); % Speed of light in air (m/s)
lambda = freq2wavelen(fc,c); % Wavelength (m)

% Set the chirp duration to be 5 times the max range requirement
rangeMax = 100; % Maximum range (m)

 Radar Signal Simulation and Processing for Automated Driving

8-615

tm = 5*range2time(rangeMax,c); % Chirp duration (s)

% Determine the waveform bandwidth from the required range resolution
rangeRes = 1; % Desired range resolution (m)
bw = rangeres2bw(rangeRes,c); % Corresponding bandwidth (Hz)

% Set the sampling rate to satisfy both the range and velocity requirements
% for the radar
sweepSlope = bw/tm; % FMCW sweep slope (Hz/s)
fbeatMax = range2beat(rangeMax,sweepSlope,c); % Maximum beat frequency (Hz)

vMax = 230*1000/3600; % Maximum Velocity of cars (m/s)
fdopMax = speed2dop(2*vMax,lambda); % Maximum Doppler shift (Hz)

fifMax = fbeatMax+fdopMax; % Maximum received IF (Hz)
fs = max(2*fifMax,bw); % Sampling rate (Hz)

% Configure the FMCW waveform using the waveform parameters derived from
% the long-range requirements
waveform = phased.FMCWWaveform('SweepTime',tm,'SweepBandwidth',bw,...
 'SampleRate',fs,'SweepDirection','Up');
if strcmp(waveform.SweepDirection,'Down')
 sweepSlope = -sweepSlope;
end
Nsweep = 192;
sig = waveform();

Model Automotive Radar Transceiver

The radar uses an isotropic element to transmit and a uniform linear array (ULA) to receive the radar
waveforms. Using a linear array enables the radar to estimate the azimuthal direction of the reflected
energy received from the target vehicles. The long-range radar needs to detect targets across a
coverage area that spans 15 degrees in front of the ego vehicle. A six-element receive array satisfies
this requirement by providing a 17-degree half-power beamwidth. On transmit, the radar uses only a
single array element, enabling it to cover a larger area than on receive.

% Model the antenna element
antElmnt = phased.IsotropicAntennaElement('BackBaffled',true);

% Construct the receive array
Ne = 6;
rxArray = phased.ULA('Element',antElmnt,'NumElements',Ne,...
 'ElementSpacing',lambda/2);

% Half-power beamwidth of the receive array
hpbw = beamwidth(rxArray,fc,'PropagationSpeed',c)

hpbw = 17.1800

Model the radar transmitter for a single transmit channel, and model a receiver preamplifier for each
receive channel, using the parameters defined in the example “Automotive Adaptive Cruise Control
Using FMCW Technology” (Radar Toolbox).

antAperture = 6.06e-4; % Antenna aperture (m^2)
antGain = aperture2gain(antAperture,lambda); % Antenna gain (dB)

txPkPower = db2pow(5)*1e-3; % Tx peak power (W)
txGain = antGain; % Tx antenna gain (dB)

8 Featured Examples

8-616

rxGain = antGain; % Rx antenna gain (dB)
rxNF = 4.5; % Receiver noise figure (dB)

% Waveform transmitter
transmitter = phased.Transmitter('PeakPower',txPkPower,'Gain',txGain);

% Radiator for single transmit element
radiator = phased.Radiator('Sensor',antElmnt,'OperatingFrequency',fc);

% Collector for receive array
collector = phased.Collector('Sensor',rxArray,'OperatingFrequency',fc);

% Receiver preamplifier
receiver = phased.ReceiverPreamp('Gain',rxGain,'NoiseFigure',rxNF,...
 'SampleRate',fs);

% Define radar
radar = radarTransceiver('Waveform',waveform,'Transmitter',transmitter,...
 'TransmitAntenna',radiator,'ReceiveAntenna',collector,'Receiver',receiver);

Define Radar Signal Processing Chain

The radar collects multiple sweeps of the waveform on each of the linear phased array antenna
elements. These collected sweeps form a data cube, which is defined in “Radar Data Cube” (Phased
Array System Toolbox). These sweeps are coherently processed along the fast- and slow-time
dimensions of the data cube to estimate the range and Doppler of the vehicles.

Estimate the direction-of-arrival of the received signals using a root MUSIC estimator. A beamscan is
also used for illustrative purposes to help visualize the spatial distribution of the received signal
energy.

% Direction-of-arrival estimator for linear phased array signals
doaest = phased.RootMUSICEstimator(...
 'SensorArray',rxArray,...
 'PropagationSpeed',c,'OperatingFrequency',fc,...
 'NumSignalsSource','Property','NumSignals',1);

% Scan beams in front of ego vehicle for range-angle image display
angscan = -80:80;
beamscan = phased.PhaseShiftBeamformer('Direction',[angscan;0*angscan],...
 'SensorArray',rxArray,'OperatingFrequency',fc);

% Form forward-facing beam to detect objects in front of the ego vehicle
beamformer = phased.PhaseShiftBeamformer('SensorArray',rxArray,...
 'PropagationSpeed',c,'OperatingFrequency',fc,'Direction',[0;0]);

Use the phased.RangeDopplerResponse object to perform the range and Doppler processing on
the radar data cubes. Use a Hanning window to suppress the large sidelobes produced by the
vehicles when they are close to the radar.

Nft = waveform.SweepTime*waveform.SampleRate; % Number of fast-time samples
Nst = Nsweep; % Number of slow-time samples
Nr = 2^nextpow2(Nft); % Number of range samples
Nd = 2^nextpow2(Nst); % Number of Doppler samples
rngdopresp = phased.RangeDopplerResponse('RangeMethod','FFT',...
 'DopplerOutput','Speed','SweepSlope',sweepSlope,...
 'RangeFFTLengthSource','Property','RangeFFTLength',Nr,...

 Radar Signal Simulation and Processing for Automated Driving

8-617

 'RangeWindow','Hann',...
 'DopplerFFTLengthSource','Property','DopplerFFTLength',Nd,...
 'DopplerWindow','Hann',...
 'PropagationSpeed',c,'OperatingFrequency',fc,'SampleRate',fs);

Identify detections in the processed range and Doppler data by using a constant false alarm rate
(CFAR) detector. CFAR detectors estimate the background noise level of the received radar data.
Detections are found at locations where the signal power exceeds the estimated noise floor by a
certain threshold. Low threshold values result in a higher number of reported false detections due to
environmental noise. Increasing the threshold produces fewer false detections, but also reduces the
probability of detection of an actual target in the scenario. For more information on CFAR detection,
see the example “Constant False Alarm Rate (CFAR) Detection” (Phased Array System Toolbox).

% Guard cell and training regions for range dimension
nGuardRng = 4;
nTrainRng = 4;
nCUTRng = 1+nGuardRng+nTrainRng;

% Guard cell and training regions for Doppler dimension
dopOver = round(Nd/Nsweep);
nGuardDop = 4*dopOver;
nTrainDop = 4*dopOver;
nCUTDop = 1+nGuardDop+nTrainDop;

cfar = phased.CFARDetector2D('GuardBandSize',[nGuardRng nGuardDop],...
 'TrainingBandSize',[nTrainRng nTrainDop],...
 'ThresholdFactor','Custom','CustomThresholdFactor',db2pow(13),...
 'NoisePowerOutputPort',true,'OutputFormat','Detection index');

% Perform CFAR processing over all of the range and Doppler cells
freqs = ((0:Nr-1)'/Nr-0.5)*fs;
rnggrid = beat2range(freqs,sweepSlope);
iRngCUT = find(rnggrid>0);
iRngCUT = iRngCUT((iRngCUT>=nCUTRng)&(iRngCUT<=Nr-nCUTRng+1));
iDopCUT = nCUTDop:(Nd-nCUTDop+1);
[iRng,iDop] = meshgrid(iRngCUT,iDopCUT);
idxCFAR = [iRng(:) iDop(:)]';

% Perform clustering algorithm to group detections
clusterer = clusterDBSCAN('Epsilon',2);

The phased.RangeEstimator and phased.DopplerEstimator objects convert the locations of
the detections found in the range-Doppler data into measurements and their corresponding
measurement variances. These estimators fit quadratic curves to the range-Doppler data to estimate
the peak location of each detection. The resulting measurement resolutions are a fraction of the
range and Doppler sampling of the data.

The root-mean-square (RMS) range resolution of the transmitted waveform is needed to compute the
variance of the range measurements. The Rayleigh range resolution for the long-range radar was
defined previously as 1 meter. The Rayleigh resolution is the minimum separation at which two
unique targets can be resolved. This value defines the distance between range resolution cells for the
radar. However, the variance of the target within a resolution cell is determined by the RMS
resolution of the waveform. For an LFM chirp waveform, the relationship between the Rayleigh
resolution and the RMS resolution is given by [1].

σRMS = 12ΔRayleigh

8 Featured Examples

8-618

where σRMS is the RMS range resolution and ΔRayleigh is the Rayleigh range resolution.

The variance of the Doppler measurements depends on the number of sweeps processed.

Now, create the range and Doppler estimation objects using the parameters previously defined.

rmsRng = sqrt(12)*rangeRes;
rngestimator = phased.RangeEstimator('ClusterInputPort',true,...
 'VarianceOutputPort',true,'NoisePowerSource','Input port',...
 'RMSResolution',rmsRng);

dopestimator = phased.DopplerEstimator('ClusterInputPort',true,...
 'VarianceOutputPort',true,'NoisePowerSource','Input port',...
 'NumPulses',Nsweep);

To further improve the precision of the estimated vehicle locations, pass the radar detections to a
tracker. Configure the tracker to use an extended Kalman filter (EKF), which converts the spherical
radar measurements into the Cartesian coordinate frame of the ego vehicle. Also configure the
tracker to use constant velocity dynamics for the detected vehicles. By comparing vehicle detections
over multiple measurement time intervals, the tracker further improves the accuracy of the vehicle
positions and provides vehicle velocity estimates.

tracker = radarTracker('FilterInitializationFcn',@initcvekf,...
 'AssignmentThreshold',50);

Model Free Space Propagation Channel

Use the free space channel to model the propagation of the transmitted and received radar signals.

In a free space model, the radar energy propagates along a direct line-of-sight between the radar and
the target vehicles, as shown in the following illustration.

Simulate the Driving Scenario

Create a highway driving scenario with three vehicles traveling in the vicinity of the ego vehicle. The
vehicles are modeled as cuboids and have different velocities and positions defined in the driving
scenario. The ego vehicle is moving with a velocity of 80 km/hr and the other three cars are moving at
110 km/hr, 100 km/hr, and 130 km/hr, respectively. For details on modeling a driving scenario see the
example “Create Actor and Vehicle Trajectories Programmatically” on page 8-663. The radar sensor
is mounted on the front of the ego vehicle.

To create the driving scenario, use the helperAutoDrivingRadarSigProc function. To examine
the contents of this function, use the edit('helperAutoDrivingRadarSigProc') command.

 Radar Signal Simulation and Processing for Automated Driving

8-619

% Create driving scenario
[scenario,egoCar,radarParams] = ...
 helperAutoDrivingRadarSigProc('Setup Scenario',c,fc);

The following loop uses the drivingScenario object to advance the vehicles in the scenario. At
every simulation time step, a radar data cube is assembled by collecting 192 sweeps of the radar
waveform. The assembled data cube is then processed in range and Doppler. The range and Doppler
processed data is then beamformed, and CFAR detection is performed on the beamformed data.
Range, radial speed, and direction of arrival measurements are estimated for the CFAR detections.
These detections are then assembled into objectDetection objects, which are then processed by
the radarTracker object.

% Initialize display for driving scenario example
helperAutoDrivingRadarSigProc('Initialize Display',egoCar,radarParams,...
 rxArray,fc,vMax,rangeMax);

tgtProfiles = actorProfiles(scenario);
tgtProfiles = tgtProfiles(2:end);
tgtHeight = [tgtProfiles.Height];

% Run the simulation loop
sweepTime = waveform.SweepTime;
while advance(scenario)

 % Get the current scenario time
 time = scenario.SimulationTime;

 % Get current target poses in ego vehicle's reference frame
 tgtPoses = targetPoses(egoCar);
 tgtPos = reshape([tgtPoses.Position],3,[]);
 % Position point targets at half of each target's height
 tgtPos(3,:) = tgtPos(3,:)+0.5*tgtHeight;
 tgtVel = reshape([tgtPoses.Velocity],3,[]);

 % Assemble data cube at current scenario time
 Xcube = zeros(Nft,Ne,Nsweep);
 for m = 1:Nsweep

 ntgt = size(tgtPos,2);
 tgtStruct = struct('Position',mat2cell(tgtPos(:).',1,repmat(3,1,ntgt)),...
 'Velocity',mat2cell(tgtVel(:).',1,repmat(3,1,ntgt)),...
 'Signature',{rcsSignature,rcsSignature,rcsSignature});
 rxsig = radar(tgtStruct,time+(m-1)*sweepTime);
 % Dechirp the received signal
 rxsig = dechirp(rxsig,sig);

 % Save sweep to data cube
 Xcube(:,:,m) = rxsig;

 % Move targets forward in time for next sweep
 tgtPos = tgtPos+tgtVel*sweepTime;
 end

 % Calculate the range-Doppler response
 [Xrngdop,rnggrid,dopgrid] = rngdopresp(Xcube);

 % Beamform received data

8 Featured Examples

8-620

 Xbf = permute(Xrngdop,[1 3 2]);
 Xbf = reshape(Xbf,Nr*Nd,Ne);
 Xbf = beamformer(Xbf);
 Xbf = reshape(Xbf,Nr,Nd);

 % Detect targets
 Xpow = abs(Xbf).^2;
 [detidx,noisepwr] = cfar(Xpow,idxCFAR);

 % Cluster detections
 [~,clusterIDs] = clusterer(detidx.');

 % Estimate azimuth, range, and radial speed measurements
 [azest,azvar,snrdB] = ...
 helperAutoDrivingRadarSigProc('Estimate Angle',doaest,...
 conj(Xrngdop),Xbf,detidx,noisepwr,clusterIDs);
 azvar = azvar+radarParams.RMSBias(1)^2;

 [rngest,rngvar] = rngestimator(Xbf,rnggrid,detidx,noisepwr,clusterIDs);
 rngvar = rngvar+radarParams.RMSBias(2)^2;

 [rsest,rsvar] = dopestimator(Xbf,dopgrid,detidx,noisepwr,clusterIDs);

 % Convert radial speed to range rate for use by the tracker
 rrest = -rsest;
 rrvar = rsvar;
 rrvar = rrvar+radarParams.RMSBias(3)^2;

 % Assemble object detections for use by tracker
 numDets = numel(rngest);
 dets = cell(numDets,1);
 for iDet = 1:numDets
 dets{iDet} = objectDetection(time,...
 [azest(iDet) rngest(iDet) rrest(iDet)]',...
 'MeasurementNoise',diag([azvar(iDet) rngvar(iDet) rrvar(iDet)]),...
 'MeasurementParameters',{radarParams},...
 'ObjectAttributes',{struct('SNR',snrdB(iDet))});
 end

 % Track detections
 tracks = tracker(dets,time);

 % Update displays
 helperAutoDrivingRadarSigProc('Update Display',egoCar,dets,tracks,...
 dopgrid,rnggrid,Xbf,beamscan,Xrngdop);

 % Collect free space channel metrics
 metricsFS = helperAutoDrivingRadarSigProc('Collect Metrics',...
 radarParams,tgtPos,tgtVel,dets);
end

 Radar Signal Simulation and Processing for Automated Driving

8-621

The previous figure shows the radar detections and tracks for the three target vehicles at 1.1 seconds
of simulation time. The plot on the upper-left side shows the chase camera view of the driving
scenario from the perspective of the ego vehicle (shown in blue). For reference, the ego vehicle is
traveling at 80 km/hr and the other three cars are traveling at 110 km/hr (orange car), 100 km/hr
(yellow car), and 130 km/hr (purple car).

The right side of the figure shows the bird's-eye plot, which presents a top down perspective of the
scenario. All of the vehicles, detections, and tracks are shown in the coordinate reference frame of
the ego vehicle. The estimated signal-to-noise ratio (SNR) for each radar measurement is printed next
to each detection. The vehicle location estimated by the tracker is shown in the plot using black
squares with text next to them indicating the ID of each track. The velocity for each vehicle estimated
by the tracker is shown as a black line pointing in the direction of the velocity of the vehicle. The
length of the line corresponds to the estimated speed, with longer lines denoting vehicles with higher
speeds relative to the ego vehicle. The track of the purple car (ID2) has the longest line while the
track of the yellow car (ID1) has the shortest line. The tracked speeds are consistent with the
modeled vehicle speeds previously listed.

The two plots on the lower-left side show the radar images generated by the signal processing. The
upper plot shows how the received radar echoes from the target vehicles are distributed in range and
radial speed. Here, all three vehicles are observed. The measured radial speeds correspond to the
velocities estimated by the tracker, as shown in the bird's-eye plot. The lower plot shows how the
received target echoes are spatially distributed in range and angle. Again, all three targets are
present, and their locations match what is shown in the bird's-eye plot.

Due to its close proximity to the radar, the orange car can still be detected despite the large
beamforming losses due to its position well outside of the 3 dB beamwidth of the beam. These
detections have generated a track (ID3) for the orange car.

8 Featured Examples

8-622

Model a Multipath Channel

The previous driving scenario simulation used free space propagation. This is a simple model that
models only direct line-of-sight propagation between the radar and each of the targets. In reality, the
radar signal propagation is much more complex, involving reflections from multiple obstacles before
reaching each target and returning back to the radar. This phenomenon is known as multipath
propagation. The following illustration shows one such case of multipath propagation, where the
signal impinging the target is coming from two directions: line-of-sight and a single bounce from the
road surface.

The overall effect of multipath propagation is that the received radar echoes can interfere
constructively and destructively. This constructive and destructive interference results from path
length differences between the various signal propagation paths. As the distance between the radar
and the vehicles changes, these path length differences also change. When the differences between
these paths result in echoes received by the radar that are almost 180 degrees out of phase, the
echoes destructively combine, and the radar makes no detection for that range.

Replace the free space channel model with a two-ray channel model to demonstrate the propagation
environment shown in the previous illustration. Reuse the remaining parameters in the driving
scenario and radar model, and run the simulation again.

% Reset the driving scenario
[scenario,egoCar,radarParams,pointTgts] = ...
 helperAutoDrivingRadarSigProc('Setup Scenario',c,fc);

% Run the simulation again, now using the two-ray channel model
metrics2Ray = helperAutoDrivingRadarSigProc('Two Ray Simulation',...
 c,fc,rangeMax,vMax,Nsweep,... % Waveform parameters
 rngdopresp,beamformer,cfar,idxCFAR,clusterer,... % Signal processing
 rngestimator,dopestimator,doaest,beamscan,tracker,... % Estimation
 radar,sig); % Hardware models

 Radar Signal Simulation and Processing for Automated Driving

8-623

The previous figure shows the chase plot, bird's-eye plot, and radar images at 1.1 seconds of
simulation time, just as was shown for the free space channel propagation scenario. Comparing these
two figures, observe that for the two-ray channel, no detection is present for the purple car at this
simulation time. This detection loss is because the path length differences for this car are
destructively interfering at this range, resulting in a total loss of detection.

Plot the SNR estimates generated from the CFAR processing against the range estimates of the
purple car from the free space and two-ray channel simulations.

helperAutoDrivingRadarSigProc('Plot Channels',metricsFS,metrics2Ray);

8 Featured Examples

8-624

As the car approaches a range of 72 meters from the radar, a large loss in the estimated SNR from
the two-ray channel is observed with respect to the free space channel. It is near this range that the
multipath interference combines destructively, resulting in a loss in signal detections. However,
observe that the tracker is able to coast the track during these times of signal loss and provide a
predicted position and velocity for the purple car.

Summary

This example shows how to model the hardware and signal processing of an automotive radar using
Radar Toolbox. You also learn how to integrate this radar model with the Automated Driving Toolbox
driving scenario simulation. First you generate synthetic radar detections. Then you process these
detections further by using a tracker to generate precise position and velocity estimates in the
coordinate frame of the ego vehicle. Finally, you learn how to simulate multipath propagation effects.

The workflow presented in this example enables you to understand how your radar architecture
design decisions impact higher-level system requirements. Using this workflow enables you select a
radar design that satisfies your unique application requirements.

 Radar Signal Simulation and Processing for Automated Driving

8-625

Reference

[1] Richards, Mark. Fundamentals of Radar Signal Processing. New York: McGraw Hill, 2005.

See Also
Objects
multiObjectTracker | phased.FMCWWaveform | phased.ULA | phased.DopplerEstimator |
phased.RootMUSICEstimator | phased.FreeSpace | twoRayChannel

More About
• “Sensor Fusion Using Synthetic Radar and Vision Data” on page 8-286
• “Automotive Adaptive Cruise Control Using FMCW Technology” (Radar Toolbox)
• “Constant False Alarm Rate (CFAR) Detection” (Phased Array System Toolbox)
• “Radar Data Cube” (Phased Array System Toolbox)
• “Create Actor and Vehicle Trajectories Programmatically” on page 8-663

8 Featured Examples

8-626

Simulate Radar Ghosts Due to Multipath Return
This example shows how to simulate ghost target detections and tracks due to multipath reflections,
where signal energy is reflected off another target before returning to the radar. In this example you
will simulate ghosts with both a statistical radar model and a transceiver model that generates IQ
signals.

Motivation

Many highway scenarios involve not only other cars, but also barriers and guardrails. Consider the
simple highway created using the Driving Scenario Designer app. For more information on how to
model barriers see the “Sensor Fusion Using Synthetic Radar and Vision Data” on page 8-286
example. Use the helperSimpleHighwayScenarioDSD function exported from the Driving
Scenario Designer to get the highway scenario and a handle to the ego vehicle.

% Set random seed for reproducible results
rndState = rng('default');

% Create scenario using helper
[scenario, egoVehicle] = helperSimpleHighwayScenarioDSD();

To model the detections generated by a forward-looking automotive radar, use the
radarDataGenerator System object™. Use a 77 GHz center frequency, which is typical for
automotive radar. Generate detections up to 100 meters in range and with a radial speed up to 100
m/s.

% Automotive radar system parameters
freq = 77e9; % Hz
rgMax = 150; % m
spMax = 100; % m/s
rcs = 10; % dBsm

azRes = 4; % deg
rgRes = 2.5; % m
rrRes = 0.5; % m/s

% Create a forward-looking automotive radar
rdg = radarDataGenerator(1, 'No scanning', ...
 'UpdateRate', 10, ...
 'MountingLocation', [3.4 0 0.2], ...
 'CenterFrequency', freq, ...
 'HasRangeRate', true, ...
 'FieldOfView', [70 5], ...
 'RangeLimits', [0 rgMax], ...
 'RangeRateLimits', [-spMax spMax], ...
 'HasRangeAmbiguities',true, ...
 'MaxUnambiguousRange', rgMax, ...
 'HasRangeRateAmbiguities',true, ...
 'MaxUnambiguousRadialSpeed', spMax, ...
 'ReferenceRange', rgMax, ...
 'ReferenceRCS',rcs, ...
 'AzimuthResolution',azRes, ...
 'RangeResolution',rgRes, ...
 'RangeRateResolution',rrRes, ...
 'TargetReportFormat', 'Detections', ...
 'Profiles',actorProfiles(scenario));

 Simulate Radar Ghosts Due to Multipath Return

8-627

% Create bird's eye plot and detection plotter function
[~,detPlotterFcn] = helperSetupBEP(egoVehicle,rdg);
title('Free Space (no multipath)');

% Generate raw detections
time = scenario.SimulationTime;
tposes = targetPoses(egoVehicle);
[dets,~,config] = rdg(tposes,time);

% Plot detections
detPlotterFcn(dets,config);

This figure shows the locations of the detections along the target vehicle as well as along the side of
the barrier. However, detections are not always so well-behaved. One phenomenon that can pose
considerable challenges to radar engineers is multipath. Multipath is when the signal not only
propagates directly to the intended target and back to the radar but also includes additional
reflections off objects in the environment.

Multipath Reflections

When a radar signal propagates to a target of interest it can arrive through various paths. In addition
to the direct path from the radar to the target and then back to the radar, there are other possible
propagation paths. The number of paths is unbounded, but with each reflection, the signal energy
decreases. Commonly, a propagation model considering three-bounce paths is used to model this
phenomenon.

8 Featured Examples

8-628

To understand the three-bounce model, first consider the simpler one-bounce and two-bounce paths,
as shown in these figures.

One-Bounce Path

The one-bounce path propagates from the radar (1) to the target (2) and then is reflected from the
target (2) back to the radar. This is often referred to as the direct or line-of-sight path.

Two-Bounce Paths

In this case, there are two unique propagation paths that consist of two bounces.

The first two-bounce path propagates from the radar (1) to a reflecting surface (3), then to the target
(2) before returning to the radar (1). Because the signal received at the radar arrives from the last
bounce from the true target, it generates ghost detections along the same direction as the true
target. Because the path length for this propagation is longer, it appears at a farther range than the
true target detections.

The second two-bounce path propagates from the radar (1) to the target (2), then to the reflecting
surface (3) before returning to the radar (1). In this case, the ghost detections appear on the other
side of the reflecting surface as the radar receives the reflected signal in that direction.

 Simulate Radar Ghosts Due to Multipath Return

8-629

Notice that the path length for both two-bounce paths is the same. As a result, the measured range
and range rate for these paths will be the same as well.

Three-Bounce Path

The three-bounce path reflects off the barrier twice. This path never propagates directly to the target
or directly back to the radar. The three-bounce ghost detections appear on the other side of the

8 Featured Examples

8-630

reflecting surface as the radar receives the reflected signal in that direction. Additionally, it has the
longest propagation path of the three-bounce paths and therefore has the longest measured range of
the three paths. This path corresponds to a mirror reflection of the true target on the other side of
the barrier.

Model Ghost Target Detections

Set the HasGhosts property on the radarDataGenerator to model the detections generated from
these three-bounce paths.

% Enable ghost target model
release(rdg);
rdg.HasGhosts = true;

% Generate raw detections
time = scenario.SimulationTime;
tposes = targetPoses(egoVehicle);
[dets,~,config] = rdg(tposes,time);

% Plot detections
detPlotterFcn(dets,config);
title('Simple Multipath Environment');

This figure reproduces the analysis of the three propagation paths. The first two-bounce ghosts lie in
the direction of the target at a slightly longer range than the direct-path detections. The second two-
bounce and three-bounce ghosts lie in the direction of the mirrored image of the target generated by
the reflection from the barrier.

 Simulate Radar Ghosts Due to Multipath Return

8-631

Ghost Tracks

Because the range and velocities of the ghost target detections are like the range and velocity of the
true targets, they have kinematics that are consistent for a tracker that is configured to track the true
target detections. This consistency between the kinematics of real and ghost targets results in tracks
being generated for the ghost target on the other side of the barrier.

Set the TargetReportFormat property on radarDataGenerator to Tracks to model the tracks
generated by a radar in the presence of multipath.

% Output tracks instead of detections
release(rdg);
rdg.TargetReportFormat = 'Tracks';
rdg.ConfirmationThreshold = [2 3];
rdg.DeletionThreshold = [5 5];
FilterInitializationFcn = 'initcvekf'; % constant-velocity EKF

% Create a new bird's eye plot to plot the tracks
[bep,trkPlotterFcn] = helperSetupBEP(egoVehicle,rdg);
title('Simple Multipath Environment');

% Run simulation
restart(scenario);
scenario.StopTime = 7.5;
while advance(scenario)
 time = scenario.SimulationTime;
 tposes = targetPoses(egoVehicle);

 % Generate tracks
 [trks,~,config] = rdg(tposes,time);

 % Filter out tracks corresponding to static objects (e.g. barrier)
 dyntrks = helperKeepDynamicObjects(trks, egoVehicle);

 % Visualize dynamic tracks
 helperPlotScenario(bep,egoVehicle);
 trkPlotterFcn(dyntrks,config);
end

8 Featured Examples

8-632

This figure shows the confirmed track positions using square markers. The tracks corresponding to
static objects (for example a barrier) are not plotted. Notice that there are multiple tracks associated
with the lead car. The tracks that overlay the lead car correspond to the true detection and the first
two-bounce ghost. The tracks that lie off of the road on the other side of the guardrail correspond to
the second two-bounce and three-bounce ghosts.

The track velocities are indicated by the length and direction of the vectors pointing away from the
track position (these are small because they are relative to the ego vehicle). Ghost detections may
fool a tracker because they have kinematics like the kinematics of the true targets. These ghost
tracks can be problematic as they add an additional processing load to the tracker and can confuse
control decisions using the target tracks.

Model IQ Signals

In the previous free-space and multipath simulations in this example, you used measurement-level
radar models to generate detections and tracks. Now, use the radarTransceiver System object to
generate time-domain IQ signals. Create an equivalent radarTransceiver directly from the
radarDataGenerator.

The statistical radar has the following range and range-rate (Doppler) parameters which determine
the constraints for the waveform used by the radarTransceiver.

rgMax = rdg.RangeLimits(2) % m

rgMax = 150

spMax = rdg.RangeRateLimits(2) % m/s

 Simulate Radar Ghosts Due to Multipath Return

8-633

spMax = 100

Compute the pulse repetition frequency (PRF) that will satisfy the range rate for the radar.

lambda = freq2wavelen(rdg.CenterFrequency);
prf = 2*speed2dop(2*spMax,lambda);

Compute the number of pulses needed to satisfy the range-rate resolution requirement.

rrRes = rdg.RangeRateResolution

rrRes = 0.5000

dopRes = 2*speed2dop(rrRes,lambda);
numPulses = 2^nextpow2(prf/dopRes)

numPulses = 512

prf = dopRes*numPulses

prf = 1.3150e+05

Confirm that the the unambiguous range that corresponds to this PRF is beyond the maximum range
limit.

rgUmb = time2range(1/prf)

rgUmb = 1.1399e+03

Construct the equivalent radarTransceiver directly from the radarDataGenerator.

release(rdg);

% Set the range and range-rate ambiguities according to desired PRF and
% number of pulses
rdg.MaxUnambiguousRange = rgUmb;
rdg.MaxUnambiguousRadialSpeed = spMax;

% Set the statistical radar to report clustered detections to compare to
% the IQ video from the radar transceiver.
rdg.TargetReportFormat = 'Clustered detections';
rdg.DetectionCoordinates = 'Body';

azRes = rdg.AzimuthResolution;
rdg.AzimuthResolution = rdg.FieldOfView(1);

% Construct the radar transceiver from the radar data generator
rtxrx = radarTransceiver(rdg)

rtxrx =
 radarTransceiver with properties:

 Waveform: [1x1 phased.RectangularWaveform]
 Transmitter: [1x1 phased.Transmitter]
 TransmitAntenna: [1x1 phased.Radiator]
 ReceiveAntenna: [1x1 phased.Collector]
 Receiver: [1x1 phased.ReceiverPreamp]
 MechanicalScanMode: 'None'
 ElectronicScanMode: 'None'
 MountingLocation: [3.4000 0 0.2000]

8 Featured Examples

8-634

 MountingAngles: [0 0 0]
 NumRepetitionsSource: 'Property'
 NumRepetitions: 512

rdg.AzimuthResolution = azRes;

The radarTransceiver has only one transmit and receive element, but the statistical radar uses a
uniform linear array (ULA) to form multiple beams. Attach a ULA array to the receive antenna of the
radarTransceiver. The number or elements in the ULA is determined by the radar's azimuth
resolution and wavelength.

numRxElmt = ceil(beamwidth2ap(rdg.AzimuthResolution,lambda,0.8859)/(lambda/2))

numRxElmt = 26

elmt = rtxrx.ReceiveAntenna.Sensor;
rxarray = phased.ULA(numRxElmt,lambda/2,'Element',elmt);
rtxrx.ReceiveAntenna.Sensor = rxarray;

Generate IQ Samples

Use the helper3BounceGhostPaths function to compute the three-bounce paths for the target
and sensor positions from the multipath scenario.

restart(scenario);
tposes = targetPoses(egoVehicle);

% Generate 3-bounce propagation paths for the targets in the scenario
paths = helper3BounceGhostPaths(tposes,rdg);

Use the radarTransceiver to generate the baseband sampled IQ data received by the radar.

time = scenario.SimulationTime; % Current simulation time
Xcube = rtxrx(paths,time); % Generate IQ data for transceiver from the 3-bounce path model

Range and Doppler Processing

The received data cube has the three-dimensions: fast-time samples, receive antenna element, and
slow-time samples.

size(Xcube)

ans = 1×3

 456 26 512

Use the phased.RangeDopplerResponse System object to perform range and Doppler processing
along the first and third dimensions of the data cube.

rngdopproc = phased.RangeDopplerResponse(...
 'RangeMethod','Matched filter', ...
 'DopplerOutput','Speed', ...
 'PropagationSpeed',rtxrx.ReceiveAntenna.PropagationSpeed, ...
 'OperatingFrequency',rtxrx.ReceiveAntenna.OperatingFrequency, ...
 'SampleRate',rtxrx.Receiver.SampleRate);
mfcoeff = getMatchedFilter(rtxrx.Waveform);
[Xrngdop,rggrid,rrgrid] = rngdopproc(Xcube,mfcoeff);

 Simulate Radar Ghosts Due to Multipath Return

8-635

Beamforming

Use the phased.PhaseShiftBeamformer System object to form beams from the receive antenna
array elements along the second dimension of the data cube.

azFov = rdg.FieldOfView(1);
anggrid = -azFov/2:azFov/2;
bmfwin = @(N)normmax(taylorwin(N,5,-60));
beamformer = phased.PhaseShiftBeamformer(...
 'Direction',[anggrid;0*anggrid],...
 'SensorArray',rtxrx.ReceiveAntenna.Sensor, ...
 'OperatingFrequency',rtxrx.ReceiveAntenna.OperatingFrequency);
Xbfmrngdop = Xrngdop;
[Nr,Ne,Nd] = size(Xbfmrngdop);
Xbfmrngdop = permute(Xbfmrngdop,[1 3 2]); % Nr x Nd x Ne
Xbfmrngdop = reshape(Xbfmrngdop,[],Ne);
Xbfmrngdop = beamformer(Xbfmrngdop.*bmfwin(Ne)');
Xbfmrngdop = reshape(Xbfmrngdop,Nr,Nd,[]); % Nr x Nd x Nb
Xbfmrngdop = permute(Xbfmrngdop,[1 3 2]); % Nr x Nb x Nd

Use the helperPlotBeamformedRangeDoppler function to plot the range-angle map from the
beamformed, range, and Doppler processed data cube.

helperPlotBeamformedRangeDoppler(Xbfmrngdop,rggrid,anggrid,rtxrx);

The local maxima of the received signals correspond to the location of the target vehicle, the
guardrail, and the ghost image of the target vehicle on the other side of the guardrail. Show that

8 Featured Examples

8-636

measurement-level detections generated by radarDataGenerator are consistent with the peaks in
the range-angle map generated by the equivalent radarTransceiver.

Use the helperPlayStatAndIQMovie function to compare the measurement-level detections and
IQ processed video for the duration of this scenario.

helperPlayStatAndIQMovie(scenario,egoVehicle,rtxrx,rdg,rngdopproc,beamformer,bmfwin);

Multipath Ground Bounce

Multipath ghost detections can be used at times to see objects in the road that would otherwise not
be detected by the radar due to occlusion. One example is the detection of an occluded vehicle due to
multipath off of the road surface. Use the helperGroundBounceScenarioDSD function to create a
scenario where a slower moving vehicle in the same lane as the ego vehicle is occluded by another
vehicle directly in front of the radar.

[scenario, egoVehicle] = helperGroundBounceScenarioDSD;
ax3d = helperRadarChasePlot(egoVehicle);

 Simulate Radar Ghosts Due to Multipath Return

8-637

The yellow car is occluded by the red car. A line of sight does not exist between the blue ego car's
forward looking-radar and the yellow car.

viewLoc = [scenario.Actors(2).Position(1)-10 -10];
chasePlot(egoVehicle,'ViewLocation',viewLoc,'ViewHeight',0,'ViewYaw',40,'Parent',ax3d);

8 Featured Examples

8-638

Multipath can pass through the space between the underside of a car and the surface of the road.

Reuse the radarDataGenerator to generate ghost target detections due to multipath between the
vehicles and the road surface. Use the helperRoadProfiles and helperRoadPoses functions to
include the road surface in the list of targets modeled in the scenario to enable multipath between
the road surface and the vehicles.

release(rdg);
rdg.RangeRateResolution = 0.5;
rdg.FieldOfView(2) = 10;
rdg.TargetReportFormat = 'Detections';

tprofiles = actorProfiles(scenario);
rdprofiles = helperRoadProfiles(scenario);
rdg.Profiles = [tprofiles;rdprofiles];

% Create bird's eye plot and detection plotter function
[bep,detPlotterFcn] = helperSetupBEP(egoVehicle,rdg);
[ax3d,detChasePlotterFcn] = helperRadarChasePlot(egoVehicle,rdg);
camup(ax3d,[0 0 1]);
pos = egoVehicle.Position+[-5 -5 0];
campos(ax3d,pos);
camtarget(ax3d,[15 0 0]);

% Generate clustered detections
time = scenario.SimulationTime;
tposes = targetPoses(egoVehicle);

 Simulate Radar Ghosts Due to Multipath Return

8-639

rdposes = helperRoadPoses(egoVehicle);
poses = [tposes rdposes];

[dets,~,config] = rdg(poses,time);

% Plot detections
dyndets = helperKeepDynamicObjects(dets,egoVehicle);
detPlotterFcn(dyndets,config);

The detection from the occluded car is possible due to the three-bounce path that exists between the
road surface and the underside of the red car.

% Find the 3-bounce detection from the occluded car
i3 = find(cellfun(@(d)d.ObjectAttributes{1}.BouncePathIndex,dyndets)==3);
det3 = dyndets{i3};

% Plot the 3-bounce path between the radar and the occluded car
iBncTgt = find([poses.ActorID]==det3.ObjectAttributes{1}.BounceTargetIndex);
iTgt = find([poses.ActorID]==det3.ObjectAttributes{1}.TargetIndex);
pos = [rdg.MountingLocation;poses(iBncTgt).Position;poses(iTgt).Position]+egoVehicle.Position;
hold(ax3d,'on');
plot3(ax3d,pos(:,1),pos(:,2),pos(:,3),'r-*','LineWidth',2);
campos([-6 -15 2]); camtarget([17 0 0]);

8 Featured Examples

8-640

This figure shows the three-bounce path as the red line. Observe that a bounce path between the
radar and the occluded yellow car exists by passing below the underside of the red car.

% Show bounce path arriving at the occluded yellow car
campos([55 -10 3]); camtarget([35 0 0]);

 Simulate Radar Ghosts Due to Multipath Return

8-641

This figure shows the three-bounce path arriving at the occluded yellow car after bouncing off of the
road surface.

Summary

In this example, you learned how ghost target detections arise from multiple reflections that can
occur between the radar and a target. An automotive radar scenario was used to highlight a common
case where ghost targets are generated by a guardrail in the field of view of the radar. As a result,
there are four unique bounce paths which can produce these ghost detections. The kinematics of the
ghost target detections are like the detections of true targets, and as a result, these ghost targets can
create ghost tracks which can add additional processing load to a tracker and may confuse control
algorithms using these tracks. The radarTransceiver can be used to generate higher-fidelity IQ
data that is appropriate as input to detection and tracking algorithms.

% Restore random state
rng(rndState);

Supporting Functions

helperKeepDynamicObjects

function dynrpts = helperKeepDynamicObjects(rpts,egoVehicle)
% Filter out target reports corresponding to static objects (e.g. guardrail)
%
% This is a helper function and may be removed or modified in a future
% release.

8 Featured Examples

8-642

dynrpts = rpts;
if ~isempty(rpts)
 if iscell(rpts)
 vel = cell2mat(cellfun(@(d)d.Measurement(4:end),rpts(:)','UniformOutput',false));
 else
 vel = cell2mat(arrayfun(@(t)t.State(2:2:end),rpts(:)','UniformOutput',false));
 end
 vel = sign(vel(1,:)).*sqrt(sum(abs(vel(1:2,:)).^2,1));
 egoVel = sign(egoVehicle.Velocity(1))*norm(egoVehicle.Velocity(1:2));
 gndvel = vel+egoVel; % detection speed relative to ground
 isStatic = gndvel > -4 & ... greater than 4 m/s departing and,
 gndvel < 8; % less than 8 m/s closing speed
 dynrpts = rpts(~isStatic);
end
end

normmax

function y = normmax(x)
if all(abs(x(:))==0)
 y = ones(size(x),'like',x);
else
 y = x(:)/max(abs(x(:)));
end
end

See Also

Related Examples
• “Model Radar Sensor Detections” on page 8-581
• “Sensor Fusion Using Synthetic Radar and Vision Data” on page 8-286
• “Highway Vehicle Tracking with Multipath Radar Reflections” on page 8-454

 Simulate Radar Ghosts Due to Multipath Return

8-643

Create Driving Scenario Programmatically
This example shows how to generate ground truth for synthetic sensor data and tracking algorithms.
It also shows how to update actor poses in open-loop and closed-loop simulations. Finally, it shows
how to use the driving scenario to perform coordinate conversion and incorporate them into the
bird's-eye plot.

In this example, you programmatically create the driving scenario from the MATLAB® command line.
Alternatively, you can create scenarios interactively by using the Driving Scenario Designer app. For
an example, see “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page
5-2.

Introduction

One of the goals of a driving scenario is to generate "ground truth" test cases for use with sensor
detection and tracking algorithms used on a specific vehicle.

This ground truth is typically defined in a global coordinate system; but, because sensors are typically
mounted on a moving vehicle, this data needs to be converted to a reference frame that moves along
with the vehicle. The driving scenario facilitates this conversion automatically, allowing you to specify
roads and trajectories of objects in global coordinates and provides tools to convert and visualize this
information in the reference frame of any actor in the scenario.

Convert Pose Information to an Actor's Reference Frame

A drivingScenario consists of a model of roads and movable objects, called actors. You can use
actors to model pedestrians, parking meters, fire hydrants, and other objects within the scenario.
Actors consist of cuboids with a length, width, height, and a radar cross-section (RCS). An actor is
positioned and oriented about a single point in the center of its bottom face.

A special kind of actor that moves on wheels is a vehicle, which is positioned and oriented on the
ground directly beneath the center of the rear axle, which is a more natural center of rotation.

All actors (including vehicles) may be placed anywhere within the scenario by specifying their
respective Position, Roll, Pitch, Yaw, Velocity, and AngularVelocity properties.

Here is an example of a scenario consisting of two vehicles 10 meters apart and driving towards the
origin at a speed of 3 and 4 meters per second, respectively:

scenario = drivingScenario;
v1 = vehicle(scenario,'ClassID',1','Position',[6 0 0],'Velocity',[-3 0 0],'Yaw',180)

v1 =

 Vehicle with properties:

 FrontOverhang: 0.9000
 RearOverhang: 1
 Wheelbase: 2.8000
 EntryTime: 0
 ExitTime: Inf
 ActorID: 1
 ClassID: 1
 Name: ""

8 Featured Examples

8-644

 PlotColor: [0 0.4470 0.7410]
 Position: [6 0 0]
 Velocity: [-3 0 0]
 Yaw: 180
 Pitch: 0
 Roll: 0
 AngularVelocity: [0 0 0]
 Length: 4.7000
 Width: 1.8000
 Height: 1.4000
 Mesh: [1x1 extendedObjectMesh]
 RCSPattern: [2x2 double]
 RCSAzimuthAngles: [-180 180]
 RCSElevationAngles: [-90 90]

v2 = vehicle(scenario,'ClassID',1,'Position',[0 10 0],'Velocity',[0 -4 0],'Yaw',-90)

v2 =

 Vehicle with properties:

 FrontOverhang: 0.9000
 RearOverhang: 1
 Wheelbase: 2.8000
 EntryTime: 0
 ExitTime: Inf
 ActorID: 2
 ClassID: 1
 Name: ""
 PlotColor: [0.8500 0.3250 0.0980]
 Position: [0 10 0]
 Velocity: [0 -4 0]
 Yaw: -90
 Pitch: 0
 Roll: 0
 AngularVelocity: [0 0 0]
 Length: 4.7000
 Width: 1.8000
 Height: 1.4000
 Mesh: [1x1 extendedObjectMesh]
 RCSPattern: [2x2 double]
 RCSAzimuthAngles: [-180 180]
 RCSElevationAngles: [-90 90]

To visualize a scenario, call the plot function on it:

plot(scenario);
set(gcf,'Name','Scenario Plot')
xlim([-20 20]);
ylim([-20 20]);

 Create Driving Scenario Programmatically

8-645

Once all the actors in a scenario have been created, you can inspect the pose information of all the
actors in the coordinates of the scenario by inspecting the Position, Roll, Pitch, Yaw, Velocity,
and AngularVelocity properties of each actor, or you may obtain all of them in a convenient
structure by calling the actorPoses function on the scenario:

ap = actorPoses(scenario)

ap =

 2x1 struct array with fields:

 ActorID
 Position
 Velocity
 Roll
 Pitch
 Yaw
 AngularVelocity

To obtain the pose information of all other objects (or targets) seen by a specific actor in its own
reference frame, you can call the targetPoses function on the actor itself:

v2TargetPoses = targetPoses(v2)

v2TargetPoses =

8 Featured Examples

8-646

 struct with fields:

 ActorID: 1
 ClassID: 1
 Position: [10 6.0000 0]
 Velocity: [-4 -3.0000 0]
 Roll: 0
 Pitch: 0
 Yaw: -90.0000
 AngularVelocity: [0 0 0]

We can qualitatively confirm the relative vehicle placement by adding a chase plot for a vehicle. By
default, a chase plot displays a projective-perspective view from a fixed distance behind the vehicle.

Here we show the perspective seen just behind the second vehicle (red). The target poses seen by the
second vehicle show that the location of the other vehicle (in blue) is 6 m forward and 10 m to the left
of the second vehicle. We can see this qualitatively in the chase plot:

chasePlot(v2)
set(gcf,'Name','Chase Plot')

Normally all plots associated with a driving scenario are updated in the course of simulation when
calling the advance function. If you update a position property of another actor manually, you can
call updatePlots to see the results immediately:

 Create Driving Scenario Programmatically

8-647

v1.Yaw = 135;
updatePlots(scenario);

8 Featured Examples

8-648

Convert Road Boundaries to an Actor's Reference Frame

The driving scenario can also be used to retrieve the boundaries of roads defined in the scenario.

Here we make use of the simple oval track described in “Define Road Layouts Programmatically” on
page 8-674, which covers an area roughly 200 meters long and 100 meters wide and whose curves
have a bank angle of nine degrees:

scenario = drivingScenario;
roadCenters = ...
 [0 40 49 50 100 50 49 40 -40 -49 -50 -100 -50 -49 -40 0
 -50 -50 -50 -50 0 50 50 50 50 50 50 0 -50 -50 -50 -50
 0 0 .45 .45 .45 .45 .45 0 0 .45 .45 .45 .45 .45 0 0]';
bankAngles = ...
 [0 0 9 9 9 9 9 0 0 9 9 9 9 9 0 0];

road(scenario, roadCenters, bankAngles, 'lanes', lanespec(2));
plot(scenario);

 Create Driving Scenario Programmatically

8-649

To obtain the lines that define the borders of the road, use the roadBoundaries function on the
driving scenario. It returns a cell array that contains the road borders (shown in the scenario plot
above as the solid black lines).

rb = roadBoundaries(scenario)

rb =

 1x2 cell array

 {258x3 double} {258x3 double}

In the example above, there are two road boundaries (an outer and an inner boundary). You can plot
them yourself as follows:

figure

outerBoundary = rb{1};
innerBoundary = rb{2};

plot3(innerBoundary(:,1),innerBoundary(:,2),innerBoundary(:,3),'r', ...
 outerBoundary(:,1),outerBoundary(:,2),outerBoundary(:,3),'g')
axis equal

8 Featured Examples

8-650

You can use the roadBoundaries function on an actor to obtain the road boundaries in the
coordinates of the actor. To do that, simply pass the actor as the first argument, instead of the
scenario.

To see this, add an "ego vehicle" and place it on the track:

egoCar = vehicle(scenario,'ClassID',1,'Position',[80 -40 0.45],'Yaw',30);

 Create Driving Scenario Programmatically

8-651

Next, call the roadBoundaries function on the vehicle and plot it as before. It will be rendered
relative to the vehicle's coordinates:

figure

rb = roadBoundaries(egoCar)
outerBoundary = rb{1};
innerBoundary = rb{2};

plot3(innerBoundary(:,1),innerBoundary(:,2),innerBoundary(:,3),'r', ...
 outerBoundary(:,1),outerBoundary(:,2),outerBoundary(:,3),'g')
axis equal

rb =

 1x2 cell array

 {258x3 double} {258x3 double}

8 Featured Examples

8-652

Specify Actor Trajectory

You can position and plot any specific actor along a predefined three-dimensional path.

Here is an example for two vehicles that follow the racetrack at 30 m/s and 50 m/s respectively, each
in its own respective lane. We offset the cars from the center of the road by setting the offset position
by half a lane width of 2.7 meters, and, for the banked angle sections of the track, half the vertical
height on each side:

chasePlot(egoCar);
fastCar = vehicle(scenario,'ClassID',1);

d = 2.7/2;
h = .45/2;
roadOffset = [0 0 0 0 d 0 0 0 0 0 0 -d 0 0 0 0
 -d -d -d -d 0 d d d d d d 0 -d -d -d -d
 0 0 h h h h h 0 0 h h h h h 0 0]';

rWayPoints = roadCenters + roadOffset;
lWayPoints = roadCenters - roadOffset;

% loop around the track four times
rWayPoints = [repmat(rWayPoints(1:end-1,:),5,1); rWayPoints(1,:)];
lWayPoints = [repmat(lWayPoints(1:end-1,:),5,1); lWayPoints(1,:)];

smoothTrajectory(egoCar,rWayPoints(:,:), 30);
smoothTrajectory(fastCar,lWayPoints(:,:), 50);

 Create Driving Scenario Programmatically

8-653

8 Featured Examples

8-654

Advance the Simulation

Actors that follow a trajectory are updated by calling advance on the driving scenario. When
advance is called, each actor that is following a trajectory will move forward, and the corresponding
plots will be updated. Only actors that have defined trajectories actually update. This is so you can
provide your own logic while the simulation is running.

The SampleTime property in the scenario governs the interval of time between updates. By default it
is 10 milliseconds, but you may specify it with arbitrary resolution:

scenario.SampleTime = 0.02

scenario =

 drivingScenario with properties:

 SampleTime: 0.0200
 StopTime: Inf
 SimulationTime: 0
 IsRunning: 1
 Actors: [1x2 driving.scenario.Vehicle]
 Barriers: [0x0 driving.scenario.Barrier]
 ParkingLots: [0x0 driving.scenario.ParkingLot]

You can run the simulation by calling advance in the conditional of a while loop and placing
commands to inspect or modify the scenario within the body of the loop.

 Create Driving Scenario Programmatically

8-655

The while loop will automatically terminate when the trajectory for any vehicle has finished or an
optional StopTime has been reached.

scenario.StopTime = 4;
while advance(scenario)
 pause(0.001)
end

8 Featured Examples

8-656

Record a Scenario

As a convenience when the trajectories of all actors are known in advance, you can call the record
function on the scenario to return a structure that contains the pose information of each actor at each
time-step.

For example, you can inspect the pose information of each actor for the first 100 milliseconds of the
simulation, and inspect the fifth recorded sample:

close all

scenario.StopTime = 0.100;
poseRecord = record(scenario)

r = poseRecord(5)
r.ActorPoses(1)
r.ActorPoses(2)

poseRecord =

 1x5 struct array with fields:

 SimulationTime
 ActorPoses

 Create Driving Scenario Programmatically

8-657

r =

 struct with fields:

 SimulationTime: 0.0800
 ActorPoses: [2x1 struct]

ans =

 struct with fields:

 ActorID: 1
 Position: [2.4000 -51.3502 0]
 Velocity: [30.0000 -0.0038 0]
 Roll: 0
 Pitch: 0
 Yaw: -0.0073
 AngularVelocity: [0 0 -0.0823]

ans =

 struct with fields:

 ActorID: 2
 Position: [4.0000 -48.6504 0]
 Velocity: [50.0000 -0.0105 0]
 Roll: 0
 Pitch: 0
 Yaw: -0.0120
 AngularVelocity: [0 0 -0.1235]

Incorporating Multiple Views with the Bird's Eye Plot

When debugging the simulation, you may wish to report the "ground truth" data in the bird's-eye plot
of a specific actor while simultaneously viewing the plots generated by the scenario. To do this, you
can first create a figure with axes placed in a custom arrangement:

close all;
hFigure = figure;
hFigure.Position(3) = 900;

hPanel1 = uipanel(hFigure,'Units','Normalized','Position',[0 1/4 1/2 3/4],'Title','Scenario Plot');
hPanel2 = uipanel(hFigure,'Units','Normalized','Position',[0 0 1/2 1/4],'Title','Chase Plot');
hPanel3 = uipanel(hFigure,'Units','Normalized','Position',[1/2 0 1/2 1],'Title','Bird''s-Eye Plot');

hAxes1 = axes('Parent',hPanel1);
hAxes2 = axes('Parent',hPanel2);
hAxes3 = axes('Parent',hPanel3);

8 Featured Examples

8-658

Once you have the axes defined, you specify them via the Parent property when creating the plots:

% assign scenario plot to first axes and add indicators for ActorIDs 1 and 2
plot(scenario, 'Parent', hAxes1,'ActorIndicators',[1 2]);

% assign chase plot to second axes
chasePlot(egoCar, 'Parent', hAxes2);

% assign bird's-eye plot to third axes
egoCarBEP = birdsEyePlot('Parent',hAxes3,'XLimits',[-200 200],'YLimits',[-240 240]);
fastTrackPlotter = trackPlotter(egoCarBEP,'MarkerEdgeColor','red','DisplayName','target','VelocityScaling',.5);
egoTrackPlotter = trackPlotter(egoCarBEP,'MarkerEdgeColor','blue','DisplayName','ego','VelocityScaling',.5);
egoLanePlotter = laneBoundaryPlotter(egoCarBEP);
plotTrack(egoTrackPlotter, [0 0]);
egoOutlinePlotter = outlinePlotter(egoCarBEP);

 Create Driving Scenario Programmatically

8-659

You now can restart the simulation and run it to completion, this time extracting the positional
information of the target car via targetPoses and display it in the bird's-eye plot. Similarly, you can
also call roadBoundaries and targetOutlines directly from the ego vehicle to extract the road
boundaries and the outlines of the actors. The bird's-eye plot is capable of displaying the results of
these functions directly:

restart(scenario)
scenario.StopTime = Inf;

while advance(scenario)
 t = targetPoses(egoCar);
 plotTrack(fastTrackPlotter, t.Position, t.Velocity);
 rbs = roadBoundaries(egoCar);
 plotLaneBoundary(egoLanePlotter, rbs);
 [position, yaw, length, width, originOffset, color] = targetOutlines(egoCar);
 plotOutline(egoOutlinePlotter, position, yaw, length, width, 'OriginOffset', originOffset, 'Color', color);
end

8 Featured Examples

8-660

Next Steps

This example showed how to generate and visualize ground truth for synthetic sensor data and
tracking algorithms using a drivingScenario object. To simulate, visualize, or modify this driving
scenario in an interactive environment, try importing the drivingScenario object into the Driving
Scenario Designer app:

drivingScenarioDesigner(scenario)

Further Information

For more information on how to define actors and roads, see “Create Actor and Vehicle Trajectories
Programmatically” on page 8-663 and “Define Road Layouts Programmatically” on page 8-674.

For a more in-depth example on how to use the bird's-eye plot with detections and tracks, see
“Visualize Sensor Coverage, Detections, and Tracks” on page 8-319.

For examples that use the driving scenario to assist in generating synthetic data, see “Model Radar
Sensor Detections” on page 8-581, “Model Vision Sensor Detections” on page 8-597, and “Sensor
Fusion Using Synthetic Radar and Vision Data” on page 8-286.

See Also
Apps
Driving Scenario Designer

Objects
drivingScenario | birdsEyePlot

Functions
vehicle | actorPoses | targetPoses | road | roadBoundaries | updatePlots | chasePlot |
record

 Create Driving Scenario Programmatically

8-661

More About
• “Create Driving Scenario Variations Programmatically” on page 5-125
• “Create Actor and Vehicle Trajectories Programmatically” on page 8-663
• “Define Road Layouts Programmatically” on page 8-674
• “Scenario Generation from Recorded Vehicle Data” on page 8-518
• “Automatic Scenario Generation” on page 8-997

8 Featured Examples

8-662

Create Actor and Vehicle Trajectories Programmatically
This example shows how to programmatically create actor and vehicle trajectories for a driving
scenario using Automated Driving Toolbox™ functions. To create actor and vehicle trajectories
interactively, use the Driving Scenario Designer app.

Actors and Vehicles

Actors in a driving scenario are defined as cuboid objects with a specific length, width, and height.
Actors also have a radar cross section (specified in dBsm) which you can refine by defining angular
coordinates (azimuth and elevation). Cuboid driving scenarios define the position of an actor as the
center of its bottom face. Driving scenarios use this point as the point of contact of the actor with the
ground. This point is also the rotational center of the actor.

A vehicle is a special kind of actor that moves on wheels. Vehicles possess three extra properties that
govern the placement of the front and rear axle.

• The wheelbase is the distance between the front and rear axles.
• The front overhang is the amount of distance between the front axle and the front of the vehicle.
• The rear overhang is the distance between the rear axle and the rear of the vehicle.

Unlike actors, the position of a vehicle is on the ground at the center of the rear axle. This position
corresponds to the natural center of rotation of the vehicle.

This table shows a typical list of actors and their corresponding dimensions:

 Create Actor and Vehicle Trajectories Programmatically

8-663

This code plots the position of an actor, with the dimensions of a typical human, and a vehicle in a
driving scenario. The actor and vehicle are located at positions (0, 2) and (0, –2), respectively.

scenario = drivingScenario;
a = actor(scenario,'ClassID',1,'Length',0.24,'Width',0.45,'Height',1.7);
passingCar = vehicle(scenario,'ClassID',1);
a.Position = [0 2 0]
passingCar.Position = [0 -2 0]
plot(scenario)
ylim([-4 4])

a =

 Actor with properties:

 EntryTime: 0
 ExitTime: Inf
 ActorID: 1
 ClassID: 1
 Name: ""
 PlotColor: [0 0.4470 0.7410]
 Position: [0 2 0]
 Velocity: [0 0 0]
 Yaw: 0
 Pitch: 0
 Roll: 0
 AngularVelocity: [0 0 0]
 Length: 0.2400
 Width: 0.4500
 Height: 1.7000
 Mesh: [1x1 extendedObjectMesh]
 RCSPattern: [2x2 double]
 RCSAzimuthAngles: [-180 180]
 RCSElevationAngles: [-90 90]

passingCar =

 Vehicle with properties:

 FrontOverhang: 0.9000
 RearOverhang: 1
 Wheelbase: 2.8000
 EntryTime: 0
 ExitTime: Inf
 ActorID: 2
 ClassID: 1
 Name: ""
 PlotColor: [0.8500 0.3250 0.0980]
 Position: [0 -2 0]
 Velocity: [0 0 0]
 Yaw: 0
 Pitch: 0
 Roll: 0
 AngularVelocity: [0 0 0]
 Length: 4.7000
 Width: 1.8000

8 Featured Examples

8-664

 Height: 1.4000
 Mesh: [1x1 extendedObjectMesh]
 RCSPattern: [2x2 double]
 RCSAzimuthAngles: [-180 180]
 RCSElevationAngles: [-90 90]

By default, the scenario plot shows an overhead view of the actors. To change this view, you can
manipulate the scenario plot interactively by selecting the Camera Toolbar available in the View
menu of the plot. Alternatively, you can programmatically manipulate the plot by using functions such
as xlim, ylim, zlim, and view. These functions enable you to compare the relative heights of the
actors.

zlim([0 4])
view(-60,30)

 Create Actor and Vehicle Trajectories Programmatically

8-665

Define Trajectories

By using the smoothTrajectory function, you can specify actors and vehicles to follow a path along
a set of waypoints at a set of given speeds. When you specify the waypoints, the smoothTrajectory
function fits a piecewise clothoid curve to each segment between waypoints, preserving curvature
between points. Clothoid curves have a curvature that varies linearly with distance traveled, which
creates a very simple trajectory for drivers to navigate when traveling at constant velocity.

By default, actor trajectories have no curvature at the endpoints. To complete a loop, specify identical
first and last waypoints.

To follow the entire trajectory at a constant speed, specify the speed as a scalar value.

Vehicles pass through the curve between waypoints at their rotational centers. Therefore, to
accommodate the length of the vehicle in front of and behind the rear axle during simulation, you can
offset the beginning and ending waypoints. Offsetting these waypoints fits the vehicle completely
within the road at its endpoints.

If the vehicle needs to turn quickly to avoid an obstacle, place two points close together in the
intended direction of travel. This example shows a vehicle turning quickly at two places, but
otherwise steering normally.

scenario = drivingScenario;
road(scenario, [0 0; 10 0; 53 -20],'lanes',lanespec(2));
plot(scenario,'Waypoints','on')
idleCar = vehicle(scenario,'ClassID',1,'Position',[25 -5.5 0],'Yaw',-22);

8 Featured Examples

8-666

passingCar = vehicle(scenario,'ClassID',1)

waypoints = [1 -1.5; 16.36 -2.5; 17.35 -2.765; 23.83 -2.01; 24.9 -2.4; 50.5 -16.7];
speed = 15;
smoothTrajectory(passingCar,waypoints,speed)

passingCar =

 Vehicle with properties:

 FrontOverhang: 0.9000
 RearOverhang: 1
 Wheelbase: 2.8000
 EntryTime: 0
 ExitTime: Inf
 ActorID: 2
 ClassID: 1
 Name: ""
 PlotColor: [0.8500 0.3250 0.0980]
 Position: [0 0 0]
 Velocity: [0 0 0]
 Yaw: 0
 Pitch: 0
 Roll: 0
 AngularVelocity: [0 0 0]
 Length: 4.7000
 Width: 1.8000
 Height: 1.4000
 Mesh: [1x1 extendedObjectMesh]
 RCSPattern: [2x2 double]
 RCSAzimuthAngles: [-180 180]
 RCSElevationAngles: [-90 90]

 Create Actor and Vehicle Trajectories Programmatically

8-667

Alternatively, you can use fewer waypoints at such turns by explicitly setting the yaw orientation
angle of the vehicle at each waypoint. Yaw is positive in the counterclockwise direction, and its units
are in degrees. In this variation of the previous example, the trajectory is constrained such that the
vehicle is at a –15 degree angle after moving into the left lane. By setting a waypoint to NaN, the
smoothTrajectory function defaults to fitting a clothoid curve to the segment leading up that
waypoint. In this case, that segment is the final one in the trajectory.

waypoints = [1 -1.5; 16.6 -2.1; 23.7 -0.9; 52.2 -17.6];
yaw = [0; 0; -15; NaN];
smoothTrajectory(passingCar,waypoints,speed,'Yaw',yaw)

8 Featured Examples

8-668

Turning and Braking at Intersections

For sharp turns, either define waypoints close together at the start and end of the turn or explicitly
set the yaw of the vehicle at each waypoint. This setting faithfully renders the sudden change in
steering.

In this example, a vehicle makes a sharp left turn at an intersection using explicitly set yaw values. At
the first waypoint and the waypoint before the turn, the vehicle has a yaw of 0 degrees. At the
waypoint after the turn and the final waypoint, the vehicle has a yaw of 90 degrees, which is the
orientation of the vehicle after completing the turn. By constraining the trajectory such that the
vehicle achieves these yaw orientations, the vehicle turn is much sharper than if you had used the
default yaw orientations.

The smoothTrajectory function generates a smooth, jerk-limited trajectory, with no discontinuities
in acceleration between waypoints. When varying vehicle speeds, such as by slowing down at a turn,
the distances between waypoints must be great enough for the vehicle to reach the desired speed
while maintaining smooth acceleration throughout. Alternatively, at shorter distances, the changes in
speeds must be relatively small. In this example, the vehicle decelerates from a speed of 6 m/s to 5
m/s as it enters the turn. After completing the turn, the vehicle accelerates back to its original speed.

scenario = drivingScenario;
road(scenario,[0 -25; 0 25],'lanes',lanespec([1 1]));
road(scenario,[-25 0; 25 0],'lanes',lanespec([1 1]));

turningCar = vehicle(scenario,'ClassID',1);

 Create Actor and Vehicle Trajectories Programmatically

8-669

waypoints = [-20 -2; -5 -2; 2 5; 2 20];
speed = [6 5 5 6];
yaw = [0 0 90 90];
smoothTrajectory(turningCar,waypoints,speed,'Yaw',yaw)

plot(scenario,'Waypoints','on')

Move Vehicles

After you define all the roads, actors, and actor trajectories, you can increment the position of each
actor by using the advance function on the driving scenario in a loop.

while advance(scenario)
 pause(0.01)
end

8 Featured Examples

8-670

Move Vehicles in Reverse

To specify reverse driving motions, specify a trajectory with negative speeds. When switching
between forward and reverse motions, you must specify a waypoint between these motions that has a
speed of 0. At this waypoint, the vehicle decelerates until it comes to a complete stop, and then
changes driving directions.

This example expands on the previous example. This time, after completing the left turn, the vehicle
backs up and reverses at the intersection. Then, the vehicle switches direction again and drives
forward until it stops in the opposite lane from where it started. Because the vehicle travels at slow
speeds, to speed up the simulation, specify a shorter pause between simulation updates.

scenario = drivingScenario;
road(scenario,[0 -25; 0 25],'lanes',lanespec([1 1]));
road(scenario,[-25 0; 25 0],'lanes',lanespec([1 1]));

turningCar = vehicle(scenario,'ClassID',1);

waypoints = [-20 -2; -5 -2; 2 5; 2 20; 2 5; 5 2; -20 2];
speed = [6 5 5 0 -2 0 5];
yaw = [0 0 90 90 -90 0 -180];
smoothTrajectory(turningCar,waypoints,speed,'Yaw',yaw)

plot(scenario,'Waypoints','on')

while advance(scenario)

 Create Actor and Vehicle Trajectories Programmatically

8-671

 pause(0.001)
end

Next Steps

This example showed how to create actor and vehicle trajectories for a driving scenario using a
drivingScenario object. To simulate, visualize, or modify this driving scenario in an interactive
environment, try importing the drivingScenario object into the Driving Scenario Designer app
by using this command:

drivingScenarioDesigner(scenario)

See Also
Apps
Driving Scenario Designer

Objects
drivingScenario | birdsEyePlot | lanespec

Functions
actor | vehicle | road | trajectory

8 Featured Examples

8-672

More About
• “Create Driving Scenario Programmatically” on page 8-644
• “Create Driving Scenario Variations Programmatically” on page 5-125
• “Scenario Generation from Recorded Vehicle Data” on page 8-518

 Create Actor and Vehicle Trajectories Programmatically

8-673

Define Road Layouts Programmatically
This example shows how to programmatically create a variety of road junctions with Automated
Driving Toolbox™ functions. You can combine these junctions with other junctions to create
complicated road networks. You can view the code for each plot and use it in your own project.

Alternatively, you can create road junctions interactively by using the Driving Scenario Designer app.

Straight Roads

Roads of a fixed width can be defined by a series of points that define the locations of the center of
the road. A straight road is very simple to describe by specifying its starting and stopping location.
Here is an example of a road which starts at (0,0) and ends at (50,0) and has a width of 6 (meters).

scenario = drivingScenario;

roadCenters = [0 0; 50 0];
roadWidth = 6;

road(scenario, roadCenters, roadWidth);
plot(scenario,'RoadCenters','on','Centerline','on');

Laned Roads

As an alternative to specifying road widths, you can specify lanes by providing a lane specification.
Here is an example of specifying a road with one lane on the left and two on the right.

8 Featured Examples

8-674

scenario = drivingScenario;

roadCenters = [0 0; 50 0];

road(scenario, roadCenters, 'lanes', lanespec([1 2]));
plot(scenario,'RoadCenters','on');

Intersections

Intersections are automatically generated wherever two roads meet. In this example, we add another
50 m section of road.

roadCenters = [25 -25; 25 25];
road(scenario, roadCenters, 'lanes', lanespec([1 1]));

 Define Road Layouts Programmatically

8-675

Multiple Lane Specifications

You can also create roads with multiple road segments that have different lane specifications. This
example creates a composite lane specification for a road to simulate lane drop.

scenario = drivingScenario;

roadCenters = [0 0; 50 0];

% Define an array of lane specifications for two one-way road segments.
% Notice that one lane drops in the second road segment.
lsArray = [lanespec(3) lanespec(2)];

% Define a road segment connector object. Specify position to drop a lane
% and taper length.
lc = laneSpecConnector('Position','Left','TaperLength',30);

% Combine lane specifications of road segments.
clspec = compositeLaneSpec(lsArray,'Connector',lc);

road(scenario,roadCenters,'lanes',clspec);
plot(scenario,'RoadCenters','on');

8 Featured Examples

8-676

Curved Roads

Curved roads can be described by using three or more points. The more points you use, the more
complex the curve you can create. In this example, we have a curve passing through three points:

scenario = drivingScenario;

roadCenters = [0 0; 10 0; 53 -20];
roadWidth = 6;

road(scenario, roadCenters, roadWidth,'lanes',lanespec(2));
plot(scenario,'RoadCenters','on');

 Define Road Layouts Programmatically

8-677

Roundabouts

When you specify the road centers, a piecewise clothoid curve is fit in between each segment, where
curvature is preserved in between points. Clothoid curves are used extensively when designing roads,
because they have a curvature that varies linearly with distance traveled along the road, which is
very simple for drivers to navigate.

By default, roads built by the scenario will have no curvature at the endpoints. To make a road loop,
repeat the first and last point.

In this example, we show a 4m wide circular road segment circumscribed about a 30 m square area.
Adding roads that feed into the roundabout is a matter of specifying other straight or curved road
segments:

scenario = drivingScenario;

roadCenters = [-15 -15
 15 -15
 15 15
 -15 15
 -15 -15];

road(scenario, roadCenters, 'lanes', lanespec(1));

% Define roundabout exits with two lanes each
road(scenario, [-35 0; -20 0],'lanes', lanespec([1 1]));
road(scenario, [20 0; 35 0],'lanes', lanespec([1 1]));

8 Featured Examples

8-678

road(scenario, [0 35; 0 20],'lanes', lanespec([1 1]));
road(scenario, [0 -20; 0 -35],'lanes', lanespec([1 1]));

plot(scenario,'RoadCenters','on');

Exit Lane

This example simulates a simple exit lane. We start with a simple straight road and then overlay a few
points of another road so that it overlaps the original straight road:

scenario = drivingScenario;

ls = lanespec(2);
laneWidth = ls.Width(1);

% add straight road segment
road(scenario, [0 0 0; 50 0 0], 'lanes', lanespec(2));

% define waypoints of lane exit
roadCenters = [3.0 -laneWidth/2
 3.1 -laneWidth/2
 15.0 -laneWidth
 45.0 -20];

% add the exit lane
road(scenario, roadCenters, laneWidth);

plot(scenario,'RoadCenters','on')

 Define Road Layouts Programmatically

8-679

Adding Elevation

Roads can optionally have elevation information. This can be accomplished by including a third
column in the waypoints.

scenario = drivingScenario;

roadCenters = [0 0 0
 25 0 3
 50 0 0];

road(scenario, roadCenters, 'lanes', lanespec(2));

plot(scenario,'RoadCenters','on');
view(30,24);

8 Featured Examples

8-680

Overpasses

Roads can cross each other without intersecting if they have differing elevation. The road surface of
an overpass is typically 6 to 8 meters above the road.

scenario = drivingScenario;
roadCenters = [0 0 0
 20 -20 0
 20 20 8
 -20 -20 8
 -20 20 0
 0 0 0];

 road(scenario, roadCenters, 'lanes',lanespec([1 2]));
plot(scenario,'RoadCenters','on');
view(30,24)

 Define Road Layouts Programmatically

8-681

Road Banking

Roads can be banked, where bank angles can be defined for each waypoint. The following is an oval
racetrack with 9 degree banked curves.

scenario = drivingScenario;

% transpose waypoints so they visually align with bank angles below
roadCenters = ...
 [0 40 49 50 100 50 49 40 -40 -49 -50 -100 -50 -49 -40 0
 -50 -50 -50 -50 0 50 50 50 50 50 50 0 -50 -50 -50 -50
 0 0 .45 .45 .45 .45 .45 0 0 .45 .45 .45 .45 .45 0 0]';
bankAngles = ...
 [0 0 9 9 9 9 9 0 0 9 9 9 9 9 0 0];

road(scenario, roadCenters, bankAngles, 'lanes', lanespec(2));
plot(scenario,'RoadCenters','on');
view(-60,20)

8 Featured Examples

8-682

Road Heading

Roads can have headings, where heading angles can be defined for each road center. The following is
a long loop road with two parallel tracks.

scenario = drivingScenario;

% Add a long loop road segment
roadCenters = [2023 2362; -2504 -2141; -2036 -2634; 2444 1870; 2023 2362];

% Specify the heading angles as a constraint to the road center points
slope = roadCenters(2,:) - roadCenters(1,:);
hdAngl = atand(slope(2)/slope(1));
roadHeadings = [hdAngl+180; hdAngl+180; hdAngl; hdAngl; hdAngl+180];

% Add the heading angles into the driving scenario
road(scenario,roadCenters,'Heading',roadHeadings);

plot(scenario,'RoadCenters','on')

 Define Road Layouts Programmatically

8-683

Diamond Interchange

Highways and expressways typically are comprised of two parallel roads, each going in the opposing
direction. An economical interchange between a highway and a local road is a diamond interchange,
which typically consists of a local road overpass and four ramps.

scenario = drivingScenario;

% Highways
road(scenario, [-200 -8 0; 200 -8 0], 'lanes',lanespec(3)); % north
road(scenario, [200 8 0;-200 8 0], 'lanes',lanespec(3)); % south

% Local Road
road(scenario, [-0 -200 8; 0 200 8], 'lanes',lanespec([1 1]));

% Access ramps
rampNE = [3 -20 8; 10 -20 7.8; 126 -20 .2; 130 -20 0; 200 -13.5 0];
road(scenario, [1 1 1] .* rampNE, 'lanes',lanespec(1));
road(scenario, [1 -1 1] .* flipud(rampNE), 'lanes',lanespec(1));
road(scenario, [-1 -1 1] .* rampNE, 'lanes',lanespec(1));
road(scenario, [-1 1 1] .* flipud(rampNE), 'lanes',lanespec(1));

plot(scenario);
view(-60,30)

8 Featured Examples

8-684

Cloverleaf Interchange

A popular interchange between two highways is the cloverleaf interchange. The cloverleaf
interchange consists of four inner and four outer ramps.

A limitation of the driving scenario is that road information is removed in the vicinity of a road
junction.

scenario = drivingScenario;

% Highways
road(scenario, [-300 -8 0; 300 -8 0], 15); % north
road(scenario, [-300 8 0; 300 8 0], 15); % south
road(scenario, [-8 -300 8; -8 300 8], 15); % east
road(scenario, [8 -300 8; 8 300 8], 15); % west

% Inner ramps
rampNE = [0 -18 0; 20 -18 0; 120 -120 4; 18 -20 8; 18 0 8];
rampNW = [1 -1 1] .* rampNE(end:-1:1,:);
rampSW = [-1 -1 1] .* rampNE;
rampSE = [1 -1 1] .* rampSW(end:-1:1,:);
innerRamps = [rampNE(1:end-1,:)
 rampNW(1:end-1,:)
 rampSW(1:end-1,:)
 rampSE];
road(scenario, innerRamps, 5.4);

 Define Road Layouts Programmatically

8-685

% Outer ramps
roadCenters = [13.5 -300 8; 15 -260 8; 125 -125 4; 260 -15 0; 300 -13.5 0];
road(scenario, [1 1 1] .* roadCenters, 5.4);
road(scenario, [1 -1 1] .* roadCenters, 5.4);
road(scenario, [-1 -1 1] .* roadCenters, 5.4);
road(scenario, [-1 1 1] .* roadCenters, 5.4);

plot(scenario,'RoadCenters','on');
view(-60,30);

Next Steps

This example showed how to create a variety of road junctions using a drivingScenario object. To
add actors and trajectories to these roads using Automated Driving Toolbox functions, see “Create
Actor and Vehicle Trajectories Programmatically” on page 8-663. Alternatively, you can add actors
and trajectories interactively by loading the drivingScenario object into the Driving Scenario
Designer app:

drivingScenarioDesigner(scenario)

See Also
Apps
Driving Scenario Designer

Objects
drivingScenario | lanespec

8 Featured Examples

8-686

Functions
road | roadBoundaries | laneBoundaries

More About
• “Create Driving Scenario Programmatically” on page 8-644
• “Create Driving Scenario Variations Programmatically” on page 5-125
• “Create Actor and Vehicle Trajectories Programmatically” on page 8-663

 Define Road Layouts Programmatically

8-687

Simulate Vehicle Parking Maneuver in Driving Scenario
This example shows how to simulate a parking maneuver and generate sensor detections in a large
parking lot using a cuboid driving scenario environment. This scenario and sensor simulation
environment enables you to generate rare and potentially dangerous events on which to test your
autonomous vehicle algorithms.

Create Scenario

The scenario used in this example contains a road, parking lot, moving vehicles, stationary vehicles,
and pedestrians. The ego vehicle in this scenario contains ultrasonic sensors, which generates
synthetic detections for other actors in the scene.

Define an empty scenario.

scenario = drivingScenario;
scenario.SampleTime = 0.2;

Add a two-lane, 70-meter road to the scenario.

roadCenters = [69.2 11.7 0;
 -1.1 11.5 0];
marking = [laneMarking("Solid")
 laneMarking("DoubleSolid",Color=[1 0.9 0])
 laneMarking("Solid")];
laneSpecification = lanespec(2,Width=5.925,Marking=marking);
road(scenario,roadCenters,Lanes=laneSpecification,Name="Road");

Add a second, shorter road to serve as an entrance to the parking lot.

roadCenters = [12.4 7.7 0;
 12.4 -15.8 0];
road(scenario,roadCenters,Name="Road1");

Use the parkingLot function to create a parking lot with four grids of parking spaces: one each
along the top and bottom edge of the lot, and two in the middle of the lot. The parking grids along the
edges contain regular parking spaces while the parking grids in the middle contain a combination of
regular and accessible parking spaces. The parking lot also contains a fire lane along the right edge.

lot = parkingLot(scenario,[3 -5; 60 -5; 60 -48; 3 -48]);

% Create the parking spaces.
cars = parkingSpace;
accessible = parkingSpace(Type="Accessible");
accessibleLane = parkingSpace(Type="NoParking",MarkingColor=[1 1 1],Width=1.5);
fireLane = parkingSpace(Type="NoParking",Length=2,Width=40);

% Insert the parking spaces.
insertParkingSpaces(lot,cars,Edge=2); % Top edge
insertParkingSpaces(lot,cars,Edge=4); % Bottom edge
insertParkingSpaces(lot, ...
 [cars accessibleLane accessible accessibleLane accessible], ...
 [7 1 1 1 1],Rows=2,Position=[42 -12]);
insertParkingSpaces(lot, ...
 [cars accessibleLane accessible accessibleLane accessible], ...
 [7 1 1 1 1],Rows=2,Position=[23 -12]);
insertParkingSpaces(lot,fireLane,1,Edge=3,Offset=8); % Right edge

8 Featured Examples

8-688

% Plot the scenario.
plot(scenario)

Add actors to the driving scenario. The positions and trajectories of the actors are defined in the
helperAddActors supporting file.

% Add actors.
scenario = helperAddActors(scenario);

% Define ego vehicle.
ego = scenario.Actors(1);

 Simulate Vehicle Parking Maneuver in Driving Scenario

8-689

Define Ultrasonic Sensors

In this example, you simulate an ego vehicle that has 12 ultrasonic sensors. The sensor has a
maximum range of 5.5 meters, an azimuth field of view of 60 degrees, and an elevation field of view
of 35 degrees. The figure in the next section displays the sensor coverage.

numUltrasonics = 12;
sensors = cell(1,numUltrasonics);
mountingLocations = [3.7 0.9 0.2; 3.7 -0.9 0.2; 3.7 0.4 0.2; 3.7 -0.4 0.2; 3.3 0.9 0.2; 3.3 -0.9 0.2; ...
 -1 0.9 0.2; -1 -0.9 0.2; -1 0.4 0.2; -1 -0.4 0.2; -0.6 0.9 0.2; -0.6 -0.9 0.2;];
mountingAngles = [45 0 0; -45 0 0; 10 0 0; -10 0 0; 80 0 0; -80 0 0; ...
 135 0 0; -135 0 0; 170 0 0; -170 0 0; 100 0 0; -100 0 0;];
% Create all the sensors
for sndx = 1:numUltrasonics
 sensors{sndx} = ultrasonicDetectionGenerator('SensorIndex', sndx, ...
 'MountingLocation', mountingLocations(sndx,:), ...
 'MountingAngles', mountingAngles(sndx,:), ...
 'FieldOfView', [60 35]);
end

% Register actor profiles with the sensors.
profiles = actorProfiles(scenario);
for m = 1:numel(sensors)
 sensors{m}.Profiles = profiles;
end
sensorColor = [39 99 25]/255;

8 Featured Examples

8-690

Visualize Scenario

Create a display for the scenario. This display visualizes the scenario from the perspective of the ego
vehicle from the top down and from behind the ego vehicle. It also displays the sensor coverage on a
bird's-eye plot and returns a handle to this plot to call during simulation.

BEP = createDemoDisplay(ego,sensors,sensorColor);

Simulate the Scenario

Use a loop to move the vehicles and call the sensor simulation.

Note that the scenario generation and sensor simulation can have different time steps. Specifying
different time steps for the scenario and sensors enables you to decouple the scenario simulation
from the sensor simulation. This technique is useful for modeling actor motion with high accuracy
independently from the measurement rate of the sensor.

In this example, the scenario has a time step of 0.01 seconds, while the sensor detects every 0.1
seconds. The sensor returns a logical flag, isValidTime, that is true if the sensor generates
detections.

while advance(scenario) && ishghandle(BEP.Parent)

 % Get scenario time
 time = scenario.SimulationTime;

 % Get position of other vehicle in ego vehicle coordinates
 poses = targetPoses(ego);

 % Simulate sensors
 detections = {};

 Simulate Vehicle Parking Maneuver in Driving Scenario

8-691

 fovs = [];
 locations = [];
 angles = [];
 isValidTime = false;

 for sndx = 1:length(sensors)
 [sensorDets,isValidTime(sndx)] = sensors{sndx}(poses,time);
 if ~isempty(sensorDets)
 detections = [detections; sensorDets]; %#ok<*AGROW>
 fovs = [fovs sensors{sndx}.FieldOfView(1)];
 locations = [locations; sensors{sndx}.MountingLocation];
 angles = [angles; sensors{sndx}.MountingAngles];
 end
 end

 % Update bird's-eye plot
 if any(isValidTime)
 updateBEP(BEP,ego,detections,fovs,locations,angles);
 end
end

8 Featured Examples

8-692

Summary

This example showed how to generate a scenario containing a parking lot, simulate sensor detections,
and use these detections to detect vehicles and pedestrians in the parking lot.

You can try to modify the parking lot or add or remove vehicles. You can also try to add, remove, or
modify the sensors on the ego vehicle.

Supporting Functions

createDemoDisplay

This function creates a three-pane display:

1 Top-left pane — A top view that follows the ego vehicle.
2 Bottom-left pane — A chase-camera view that follows the ego vehicle.
3 Right pane — A birdsEyePlot display.

function BEP = createDemoDisplay(egoCar,sensors,sensorColor)
 % Make a figure
 hFigure = figure(Position=[0 0 1200 640],Name="Parking Maneuver Scenario");
 movegui(hFigure,[0 -1]); % Moves figure left and a little down from the top

 % Add a car plot that follows the ego vehicle from behind
 hCarViewPanel = uipanel(hFigure,Position=[0 0 0.5 0.5],Title="Chase Camera View");
 hCarPlot = axes(hCarViewPanel);
 chasePlot(egoCar,Parent=hCarPlot,Meshes="on");

 % Add a car plot that follows the ego vehicle from a top view
 hTopViewPanel = uipanel(hFigure,Position=[0 0.5 0.5 0.5],Title="Top View");

 Simulate Vehicle Parking Maneuver in Driving Scenario

8-693

 hCarPlot = axes(hTopViewPanel);
 chasePlot(egoCar,Parent=hCarPlot,ViewHeight=130,ViewLocation=[0 0],ViewPitch=90);

 % Add pane for bird's-eye plot
 hBEVPanel = uipanel(hFigure,Position=[0.5 0 0.5 1],Title="Bird's-Eye Plot");

 % Create bird's-eye plot for the ego vehicle and sensor coverage
 hBEVPlot = axes(hBEVPanel);
 frontBackLim = 60;
 BEP = birdsEyePlot(Parent=hBEVPlot,Xlimits=[-frontBackLim frontBackLim],Ylimits=[-35 35]);

 % Plot the coverage area for ultrasonic
 for sndx = 1:length(sensors)
 cap = coverageAreaPlotter(BEP,FaceColor=sensorColor,EdgeColor=sensorColor);
 plotCoverageArea(cap,sensors{sndx}.MountingLocation(1:2), ...
 sensors{sndx}.DetectionRange(3),sensors{sndx}.MountingAngles(1),sensors{sndx}.FieldOfView(1));
 end

 % Combine all ultrasonic detections into one entry and store it for later update
 rangeDetectionPlotter(BEP,DisplayName="Ultrasonic Detection",LineStyle='--');

 % Add road borders to plot
 laneBoundaryPlotter(BEP,DisplayName="Road boundaries");

 % Add lane markings to plot
 laneMarkingPlotter(BEP,DisplayName="Lane markings");

 axis(BEP.Parent,"equal");
 xlim(BEP.Parent,[-frontBackLim frontBackLim]);
 ylim(BEP.Parent,[-40 40]);

 % Add an outline plotter for ground truth
 outlinePlotter(BEP,Tag="Ground truth");
end

updateBEP

This function updates the bird's-eye plot with road boundaries, ranges, and tracks.

function updateBEP(BEP,ego,detections,fovs,locations,angles)
 % Update road boundaries and their display
 [lmv,lmf] = laneMarkingVertices(ego);
 plotLaneMarking(findPlotter(BEP,DisplayName="Lane markings"),lmv,lmf);

 % Update parking lot boundaries and markings and their display
 [plmv,plmf] = parkingLaneMarkingVertices(ego);
 plotParkingLaneMarking(findPlotter(BEP,DisplayName="Lane markings"),plmv,plmf);

 % Update ground truth data
 [position,yaw,length,width,originOffset,color] = targetOutlines(ego);
 plotOutline(findPlotter(BEP,Tag="Ground truth"),position,yaw,length,width, ...
 OriginOffset=originOffset,Color=color);

 % Update road boundaries
 rbs = roadBoundaries(ego);
 plotLaneBoundary(findPlotter(BEP,DisplayName="Road boundaries"),rbs);

 % Prepare and update detections display

8 Featured Examples

8-694

 N = numel(detections);
 detRanges = zeros(N,1);
 for i = 1:N
 detRanges(i,:) = detections{i}.Measurement(1);
 end
 if ~isempty(detRanges)
 plotRangeDetection(findPlotter(BEP,DisplayName="Ultrasonic Detection"), detRanges, fovs, locations, angles);
 end
end

See Also
drivingScenario | parkingSpace | insertParkingSpaces | birdsEyePlot

 Simulate Vehicle Parking Maneuver in Driving Scenario

8-695

Automated Parking Valet
This example shows how to construct an automated parking valet system. In this example, you learn
about tools and techniques in support of path planning, trajectory generation, and vehicle control.
While this example focuses on a MATLAB®-oriented workflow, these tools are also available in
Simulink®. For a Simulink version of this example, see “Automated Parking Valet in Simulink” on
page 8-724.

Overview

Automatically parking a car that is left in front of a parking lot is a challenging problem. The vehicle's
automated systems are expected to take over control and steer the vehicle to an available parking
spot. Such a function makes use of multiple on-board sensors. For example:

• Front and side cameras for detecting lane markings, road signs (stop signs, exit markings, etc.),
other vehicles, and pedestrians

• Lidar and ultrasound sensors for detecting obstacles and calculating accurate distance
measurements

• Ultrasound sensors for obstacle detection
• IMU and wheel encoders for dead reckoning

On-board sensors are used to perceive the environment around the vehicle. The perceived
environment includes an understanding of road markings to interpret road rules and infer drivable
regions, recognition of obstacles, and detection of available parking spots.

As the vehicle sensors perceive the world, the vehicle must plan a path through the environment
towards a free parking spot and execute a sequence of control actions needed to drive to it. While
doing so, it must respond to dynamic changes in the environment, such as pedestrians crossing its
path, and readjust its plan.

This example implements a subset of features required to implement such a system. It focuses on
planning a feasible path through the environment, and executing the actions needed to traverse the
path. Map creation and dynamic obstacle avoidance are excluded from this example.

Environment Model

The environment model represents a map of the environment. For a parking valet system, this map
includes available and occupied parking spots, road markings, and obstacles such as pedestrians or
other vehicles. Occupancy maps are a common representation for this form of environment model.
Such a map is typically built using Simultaneous Localization and Mapping (SLAM) by integrating
observations from lidar and camera sensors. This example concentrates on a simpler scenario, where
a map is already provided, for example, by a vehicle-to-infrastructure (V2X) system or a camera
overlooking the entire parking space. It uses a static map of a parking lot and assumes that the self-
localization of the vehicle is accurate.

The parking lot example used in this example is composed of three occupancy grid layers.

• Stationary obstacles: This layer contains stationary obstacles like walls, barriers, and bounds of
the parking lot.

• Road markings: This layer contains occupancy information pertaining to road markings, including
road markings for parking spaces.

• Parked cars: This layer contains information about which parking spots are already occupied.

8 Featured Examples

8-696

Each map layer contains different kinds of obstacles that represent different levels of danger for a car
navigating through it. With this structure, each layer can be handled, updated, and maintained
independently.

Load and display the three map layers. In each layer, dark cells represent occupied cells, and light
cells represent free cells.

mapLayers = loadParkingLotMapLayers;
plotMapLayers(mapLayers)

For simplicity, combine the three layers into a single costmap.

costmap = combineMapLayers(mapLayers);

figure
plot(costmap, 'Inflation', 'off')
legend off

 Automated Parking Valet

8-697

The combined costmap is a vehicleCostmap object, which represents the vehicle environment as a
2-D occupancy grid. Each grid in the cell has values between 0 and 1, representing the cost of
navigating through the cell. Obstacles have a higher cost, while free space has a lower cost. A cell is
considered an obstacle if its cost is higher than the OccupiedThreshold property, and free if its
cost is lower than the FreeThreshold property.

The costmap covers the entire 75m-by-50m parking lot area, divided into 0.5m-by-0.5m square cells.

costmap.MapExtent % [x, width, y, height] in meters

costmap.CellSize % cell size in meters

ans =

 0 75 0 50

ans =

 0.5000

Create a vehicleDimensions object for storing the dimensions of the vehicle that will park
automatically. Also define the maximum steering angle of the vehicle. This value determines the limits
on the turning radius during motion planning and control.

8 Featured Examples

8-698

vehicleDims = vehicleDimensions;
maxSteeringAngle = 35; % in degrees

Update the VehicleDimensions property of the costmap collision checker with the dimensions of
the vehicle to park. This setting adjusts the extent of the inflation in the map around obstacles to
correspond to the size of the vehicle being parked, ensuring that collision-free paths can be found
through the parking lot.

costmap.CollisionChecker.VehicleDimensions = vehicleDims;

Define the starting pose of the vehicle. The pose is obtained through localization, which is left out of
this example for simplicity. The vehicle pose is specified as , in world coordinates.
represents the position of the center of the vehicle's rear axle in world coordinate system.
represents the orientation of the vehicle with respect to world X axis. For more details, see
“Coordinate Systems in Automated Driving Toolbox” on page 1-2.

currentPose = [4 12 0]; % [x, y, theta]

Behavioral Layer

Planning involves organizing all pertinent information into hierarchical layers. Each successive layer
is responsible for a more fine-grained task. The behavioral layer [1] sits at the top of this stack. It is
responsible for activating and managing the different parts of the mission by supplying a sequence of
navigation tasks. The behavioral layer assembles information from all relevant parts of the system,
including:

• Localization: The behavioral layer inspects the localization module for an estimate of the current
location of the vehicle.

• Environment model: Perception and sensor fusion systems report a map of the environment
around the vehicle.

• Determining a parking spot: The behavioral layer analyzes the map to determine the closest
available parking spot.

• Finding a global route: A routing module calculates a global route through the road network
obtained either from a mapping service or from a V2X infrastructure. Decomposing the global
route as a series of road links allows the trajectory for each link to be planned differently. For
example, the final parking maneuver requires a different speed profile than the approach to the
parking spot. In a more general setting, this becomes crucial for navigating through streets that
involve different speed limits, numbers of lanes, and road signs.

Rather than rely on vehicle sensors to build a map of the environment, this example uses a map that
comes from a smart parking lot via V2X communication. For simplicity, assume that the map is in the
form of an occupancy grid, with road links and locations of available parking spots provided by V2X.

The HelperBehavioralPlanner class mimics an interface of a behavioral planning layer. The
HelperBehavioralPlanner is created using the map and the global route plan. This example uses
a static global route plan stored in a MATLAB table, but typically a routing algorithm provided by the
local parking infrastructure or a mapping service determines this plan. The global route plan is
described as a sequence of lane segments to traverse to reach a parking spot.

Load the MAT-file containing a route plan that is stored in a table. The table has three variables:
StartPose, EndPose, and Attributes. StartPose and EndPose specify the start and end poses
of the segment, expressed as . Attributes specifies properties of the segment such as the
speed limit.

 Automated Parking Valet

8-699

data = load('routePlan.mat');
routePlan = data.routePlan %#ok<NOPTS>

routePlan =

 4×3 table

 StartPose EndPose Attributes
 ______________ ________________ __________

 4 12 0 56 11 0 1×1 struct
 56 11 0 70 19 90 1×1 struct
 70 19 90 70 32 90 1×1 struct
 70 32 90 53 39 180 1×1 struct

Plot a vehicle at the current pose, and along each goal in the route plan.

% Plot vehicle at current pose
hold on
helperPlotVehicle(currentPose, vehicleDims, 'DisplayName', 'Current Pose')
legend

for n = 1 : height(routePlan)
 % Extract the goal waypoint
 vehiclePose = routePlan{n, 'EndPose'};

 % Plot the pose
 legendEntry = sprintf('Goal %i', n);
 helperPlotVehicle(vehiclePose, vehicleDims, 'DisplayName', legendEntry);
end
hold off

8 Featured Examples

8-700

Create the behavioral planner helper object. The requestManeuver method requests a stream of
navigation tasks from the behavioral planner until the destination is reached.

behavioralPlanner = HelperBehavioralPlanner(routePlan, maxSteeringAngle);

The vehicle navigates each path segment using these steps:

1 Motion Planning: Plan a feasible path through the environment map using the optimal rapidly
exploring random tree (RRT*) algorithm (pathPlannerRRT).

2 Path Smoothing: Smooth the reference path by fitting splines to it using smoothPathSpline.
3 Trajectory Generation: Convert the smoothed path into a trajectory by generating a speed

profile using helperGenerateVelocityProfile.
4 Vehicle Control: Given the smoothed reference path, HelperPathAnalyzer calculates the

reference pose and velocity based on the current pose and velocity of the vehicle. Provided with
the reference values, lateralControllerStanley computes the steering angle to control the
heading of the vehicle. HelperLongitudinalController computes the acceleration and
deceleration commands to maintain the desired vehicle velocity.

5 Goal Checking: Check if the vehicle has reached the final pose of the segment using
helperGoalChecker.

The rest of this example describes these steps in detail, before assembling them into a complete
solution.

 Automated Parking Valet

8-701

Motion Planning

Given a global route, motion planning can be used to plan a path through the environment to reach
each intermediate waypoint, until the vehicle reaches the final destination. The planned path for each
link must be feasible and collision-free. A feasible path is one that can be realized by the vehicle given
the motion and dynamic constraints imposed on it. A parking valet system involves low velocities and
low accelerations. This allows us to safely ignore dynamic constraints arising from inertial effects.

Create a pathPlannerRRT object to configure a path planner using an optimal rapidly exploring
random tree (RRT*) approach. The RRT family of planning algorithms find a path by constructing a
tree of connected, collision-free vehicle poses. Poses are connected using Dubins or Reeds-Shepp
steering, ensuring that the generated path is kinematically feasible.

motionPlanner = pathPlannerRRT(costmap, 'MinIterations', 1000, ...
 'ConnectionDistance', 10, 'MinTurningRadius', 20);

Plan a path from the current pose to the first goal by using the plan function. The returned
driving.Path object, refPath, is a feasible and collision-free reference path.

goalPose = routePlan{1, 'EndPose'};
refPath = plan(motionPlanner, currentPose, goalPose);

The reference path consists of a sequence of path segments. Each path segment describes the set of
Dubins or Reeds-Shepp maneuvers used to connect to the next segment. Inspect the path segments.

refPath.PathSegments

ans =

 1×6 DubinsPathSegment array with properties:

 StartPose
 GoalPose
 MinTurningRadius
 MotionLengths
 MotionTypes
 Length

The reference path contains transition poses along the way, representing points along the path
corresponding to a transition from one maneuver to the next. They can also represent changes in
direction, for example, from forward to reverse motion along a Reeds-Shepp path.

Retrieve transition poses and directions from the planned path.

[transitionPoses, directions] = interpolate(refPath);

% Visualize the planned path.
plot(motionPlanner)

8 Featured Examples

8-702

In addition to the planned reference path, notice the red areas on the plot. These areas represent
areas of the costmap where the origin of the vehicle (center of the rear axle) must not cross in order
to avoid hitting any obstacles. pathPlannerRRT finds paths that avoid obstacles by checking to
ensure that vehicle poses generated do not lie on these areas.

Path Smoothing and Trajectory Generation

The reference path generated by the path planner is composed either of Dubins or Reeds-Shepp
segments. The curvature at the junctions of two such segments is not continuous and can result in
abrupt changes to the steering angle. To avoid such unnatural motion and to ensure passenger
comfort, the path needs to be continuously differentiable and therefore smooth [2]. One approach to
smoothing a path involves fitting a parametric cubic spline. Spline fitting enables you to generate a
smooth path that a controller can execute.

Use smoothPathSpline to fit a parametric cubic spline that passes through all the transition points
in the reference path. The spline approximately matches the starting and ending directions with the
starting and ending heading angle of the vehicle.

% Specify number of poses to return using a separation of approximately 0.1
% m.
approxSeparation = 0.1; % meters
numSmoothPoses = round(refPath.Length / approxSeparation);

% Return discretized poses along the smooth path.
[refPoses, directions, cumLengths, curvatures] = smoothPathSpline(transitionPoses, directions, numSmoothPoses);

 Automated Parking Valet

8-703

% Plot the smoothed path.
hold on
hSmoothPath = plot(refPoses(:, 1), refPoses(:, 2), 'r', 'LineWidth', 2, ...
 'DisplayName', 'Smoothed Path');
hold off

Next, convert the generated smooth path to a trajectory that can be executed using a speed profile.
Compute a speed profile for each path as a sequence of three phases: accelerating to a set maximum
speed, maintaining the maximum speed and decelerating to a terminal speed. The
helperGenerateVelocityProfile function generates such a speed profile.

Specify initial, maximum, and terminal speeds so that the vehicle starts stationary, accelerates to a
speed of 5 meters/second, and comes to a stop.

maxSpeed = 5; % in meters/second
startSpeed = 0; % in meters/second
endSpeed = 0; % in meters/second

Generate a velocity profile.

refVelocities = helperGenerateVelocityProfile(directions, cumLengths, curvatures, startSpeed, endSpeed, maxSpeed);

refVelocities contains reference velocities for each point along the smoothed path. Plot the
generated velocity profile.

plotVelocityProfile(cumLengths, refVelocities, maxSpeed)

8 Featured Examples

8-704

Vehicle Control and Simulation

The reference speeds, together with the smoothed path, comprise a feasible trajectory that the
vehicle can follow. A feedback controller is used to follow this trajectory. The controller corrects
errors in tracking the trajectory that arise from tire slippage and other sources of noise, such as
inaccuracies in localization. In particular, the controller consists of two components:

• Lateral control: Adjust the steering angle such that the vehicle follows the reference path.
• Longitudinal control: While following the reference path, maintain the desired speed by

controlling the throttle and the brake.

Since this scenario involves slow speeds, you can simplify the controller to take into account only a
kinematic model. In this example, lateral control is realized by the lateralControllerStanley
function. The longitudinal control is realized by a helper System object™
HelperLongitudinalController, that computes acceleration and deceleration commands based
on the Proportional-Integral law.

The feedback controller requires a simulator that can execute the desired controller commands using
a suitable vehicle model. The HelperVehicleSimulator class simulates such a vehicle using the
following kinematic bicycle model:

 Automated Parking Valet

8-705

In the above equations, represents the vehicle pose in world coordinates. , , , and
represent the rear-wheel speed, rear-wheel acceleration, wheelbase, and steering angle, respectively.
The position and speed of the front wheel can be obtained by:

% Close all the figures.
closeFigures;

% Create the vehicle simulator.
vehicleSim = HelperVehicleSimulator(costmap, vehicleDims);

% Set the vehicle pose and velocity.
vehicleSim.setVehiclePose(currentPose);
currentVel = 0;
vehicleSim.setVehicleVelocity(currentVel);

% Configure the simulator to show the trajectory.
vehicleSim.showTrajectory(true);

% Hide vehicle simulation figure.
hideFigure(vehicleSim);

Create a HelperPathAnalyzer object to compute reference pose, reference velocity and driving
direction for the controller.

pathAnalyzer = HelperPathAnalyzer(refPoses, refVelocities, directions, ...
 'Wheelbase', vehicleDims.Wheelbase);

Create a HelperLongitudinalController object to control the velocity of the vehicle and specify
the sample time.

sampleTime = 0.05;
lonController = HelperLongitudinalController('SampleTime', sampleTime);

Use the HelperFixedRate object to ensure fixed-rate execution of the feedback controller. Use a
control rate to be consistent with the longitudinal controller.

controlRate = HelperFixedRate(1/sampleTime); % in Hertz

Until the goal is reached, do the following:

• Compute steering and acceleration/deceleration commands required to track the planned
trajectory.

• Feed control commands to the simulator.

8 Featured Examples

8-706

• Record the returned vehicle pose and velocity to feed into the controller in the next iteration.

reachGoal = false;

while ~reachGoal
 % Find the reference pose on the path and the corresponding velocity.
 [refPose, refVel, direction] = pathAnalyzer(currentPose, currentVel);

 % Update driving direction for the simulator.
 updateDrivingDirection(vehicleSim, direction);

 % Compute steering command.
 steeringAngle = lateralControllerStanley(refPose, currentPose, currentVel, ...
 'Direction', direction, 'Wheelbase', vehicleDims.Wheelbase);

 % Compute acceleration and deceleration commands.
 lonController.Direction = direction;
 [accelCmd, decelCmd] = lonController(refVel, currentVel);

 % Simulate the vehicle using the controller outputs.
 drive(vehicleSim, accelCmd, decelCmd, steeringAngle);

 % Check if the vehicle reaches the goal.
 reachGoal = helperGoalChecker(goalPose, currentPose, currentVel, endSpeed, direction);

 % Wait for fixed-rate execution.
 waitfor(controlRate);

 % Get current pose and velocity of the vehicle.
 currentPose = getVehiclePose(vehicleSim);
 currentVel = getVehicleVelocity(vehicleSim);
end

% Show vehicle simulation figure.
showFigure(vehicleSim);

 Automated Parking Valet

8-707

This completes the first leg of the route plan and demonstrates each step of the process. The next
sections run the simulator for the entire route, which takes the vehicle close to the parking spot, and
finally executes a parking maneuver to place the vehicle into the parking spot.

Execute a Complete Plan

Now combine all the previous steps in the planning process and run the simulation for the complete
route plan. This process involves incorporating the behavioral planner.

% Set the vehicle pose back to the initial starting point.
currentPose = [4 12 0]; % [x, y, theta]
vehicleSim.setVehiclePose(currentPose);

% Reset velocity.
currentVel = 0; % meters/second
vehicleSim.setVehicleVelocity(currentVel);

while ~reachedDestination(behavioralPlanner)

 % Request next maneuver from behavioral layer.
 [nextGoal, plannerConfig, speedConfig] = requestManeuver(behavioralPlanner, ...
 currentPose, currentVel);

 % Configure the motion planner.
 configurePlanner(motionPlanner, plannerConfig);

 % Plan a reference path using RRT* planner to the next goal pose.

8 Featured Examples

8-708

 refPath = plan(motionPlanner, currentPose, nextGoal);

 % Check if the path is valid. If the planner fails to compute a path,
 % or the path is not collision-free because of updates to the map, the
 % system needs to re-plan. This scenario uses a static map, so the path
 % will always be collision-free.
 isReplanNeeded = ~checkPathValidity(refPath, costmap);
 if isReplanNeeded
 warning('Unable to find a valid path. Attempting to re-plan.')

 % Request behavioral planner to re-plan
 replanNeeded(behavioralPlanner);
 continue;
 end

 % Retrieve transition poses and directions from the planned path.
 [transitionPoses, directions] = interpolate(refPath);

 % Smooth the path.
 numSmoothPoses = round(refPath.Length / approxSeparation);
 [refPoses, directions, cumLengths, curvatures] = smoothPathSpline(transitionPoses, directions, numSmoothPoses);

 % Generate a velocity profile.
 refVelocities = helperGenerateVelocityProfile(directions, cumLengths, curvatures, startSpeed, endSpeed, maxSpeed);

 % Configure path analyzer.
 pathAnalyzer.RefPoses = refPoses;
 pathAnalyzer.Directions = directions;
 pathAnalyzer.VelocityProfile = refVelocities;

 % Reset longitudinal controller.
 reset(lonController);

 reachGoal = false;

 % Execute control loop.
 while ~reachGoal
 % Find the reference pose on the path and the corresponding
 % velocity.
 [refPose, refVel, direction] = pathAnalyzer(currentPose, currentVel);

 % Update driving direction for the simulator.
 updateDrivingDirection(vehicleSim, direction);

 % Compute steering command.
 steeringAngle = lateralControllerStanley(refPose, currentPose, currentVel, ...
 'Direction', direction, 'Wheelbase', vehicleDims.Wheelbase);

 % Compute acceleration and deceleration commands.
 lonController.Direction = direction;
 [accelCmd, decelCmd] = lonController(refVel, currentVel);

 % Simulate the vehicle using the controller outputs.
 drive(vehicleSim, accelCmd, decelCmd, steeringAngle);

 % Check if the vehicle reaches the goal.
 reachGoal = helperGoalChecker(nextGoal, currentPose, currentVel, speedConfig.EndSpeed, direction);

 Automated Parking Valet

8-709

 % Wait for fixed-rate execution.
 waitfor(controlRate);

 % Get current pose and velocity of the vehicle.
 currentPose = getVehiclePose(vehicleSim);
 currentVel = getVehicleVelocity(vehicleSim);
 end
end

% Show vehicle simulation figure.
showFigure(vehicleSim);

Parking Maneuver

Now that the vehicle is near the parking spot, a specialized parking maneuver is used to park the
vehicle in the final parking spot. This maneuver requires passing through a narrow corridor flanked
by the edges of the parking spot on both ends. Such a maneuver is typically accompanied with
ultrasound sensors or laser scanners continuously checking for obstacles.

% Hide vehicle simulation figure
hideFigure(vehicleSim);

The vehicleCostmap uses inflation-based collision checking. First, visually inspect the current
collision checker in use.

ccConfig = costmap.CollisionChecker;

8 Featured Examples

8-710

figure
plot(ccConfig)
title('Current Collision Checker')

Collision checking is performed by inflating obstacles in the costmap by the inflation radius, and
checking whether the center of the circle shown above lies on an inflated grid cell. The final parking
maneuver requires a more precise, less conservative collision-checking mechanism. This is commonly
solved by representing the shape of the vehicle using multiple (3-5) overlapping circles instead of a
single circle.

Use a larger number of circles in the collision checker and visually inspect the collision checker. This
allows planning through narrow passages.

ccConfig.NumCircles = 4;

figure
plot(ccConfig)
title('New Collision Checker')

 Automated Parking Valet

8-711

Update the costmap to use this collision checker.

costmap.CollisionChecker = ccConfig;

Notice that the inflation radius has reduced, allowing the planner to find an unobstructed path to the
parking spot.

figure
plot(costmap)
title('Costmap with updated collision checker')

% Set up the pathPlannerRRT to use the updated costmap.
parkMotionPlanner = pathPlannerRRT(costmap, 'MinIterations', 1000);

% Define desired pose for the parking spot, returned by the V2X system.
parkPose = [36 44 90];
preParkPose = currentPose;

% Compute the required parking maneuver.
refPath = plan(parkMotionPlanner, preParkPose, parkPose);

% Plot the resulting parking maneuver.
figure
plotParkingManeuver(costmap, refPath, preParkPose, parkPose)

8 Featured Examples

8-712

 Automated Parking Valet

8-713

Once the maneuver is found, repeat the previous process to determine a complete plan: smooth the
path, generate a speed profile and follow the trajectory using the feedback controller.

% Retrieve transition poses and directions from the planned path.
[transitionPoses, directions] = interpolate(refPath);

% Smooth the path.
numSmoothPoses = round(refPath.Length / approxSeparation);
[refPoses, directions, cumLengths, curvatures] = smoothPathSpline(transitionPoses, directions, numSmoothPoses);

% Set up the velocity profile generator to stop at the end of the trajectory,
% with a speed limit of 5 mph.
refVelocities = helperGenerateVelocityProfile(directions, cumLengths, curvatures, currentVel, 0, 2.2352);

pathAnalyzer.RefPoses = refPoses;
pathAnalyzer.Directions = directions;
pathAnalyzer.VelocityProfile = refVelocities;

% Reset longitudinal controller.
reset(lonController);

reachGoal = false;

while ~reachGoal
 % Find the reference pose on the path and the corresponding velocity.
 [refPose, refVel, direction] = pathAnalyzer(currentPose, currentVel);

8 Featured Examples

8-714

 % Update driving direction for the simulator.
 updateDrivingDirection(vehicleSim, direction);

 % Compute steering command.
 steeringAngle = lateralControllerStanley(refPose, currentPose, currentVel, ...
 'Direction', direction, 'Wheelbase', vehicleDims.Wheelbase);

 % Compute acceleration and deceleration commands.
 lonController.Direction = direction;
 [accelCmd, decelCmd] = lonController(refVel, currentVel);

 % Simulate the vehicle using the controller outputs.
 drive(vehicleSim, accelCmd, decelCmd, steeringAngle);

 % Check if the vehicle reaches the goal.
 reachGoal = helperGoalChecker(parkPose, currentPose, currentVel, 0, direction);

 % Wait for fixed-rate execution.
 waitfor(controlRate);

 % Get current pose and velocity of the vehicle.
 currentPose = getVehiclePose(vehicleSim);
 currentVel = getVehicleVelocity(vehicleSim);
end

% Show vehicle simulation figure.
closeFigures;
showFigure(vehicleSim);

 Automated Parking Valet

8-715

An alternative way to park the vehicle is to back into the parking spot. When the vehicle needs to
back up into a spot, the motion planner needs to use the Reeds-Shepp connection method to search
for a feasible path. The Reeds-Shepp connection allows for reverse motions during planning.

% Specify a parking pose corresponding to a back-in parking maneuver.
parkPose = [49 47.2 -90];

% Change the connection method to allow for reverse motions.
parkMotionPlanner.ConnectionMethod = 'Reeds-Shepp';

To find a feasible path, the motion planner needs to be adjusted. Use a larger turning radius and
connection distance to allow for a smooth back-in.

parkMotionPlanner.MinTurningRadius = 10; % meters
parkMotionPlanner.ConnectionDistance = 15;

% Reset vehicle pose and velocity.
currentVel = 0;
vehicleSim.setVehiclePose(preParkPose);
vehicleSim.setVehicleVelocity(currentVel);

% Compute the parking maneuver.
replan = true;
while replan
 refPath = plan(parkMotionPlanner, preParkPose, parkPose);

 % The path corresponding to the parking maneuver is small and requires

8 Featured Examples

8-716

 % precise maneuvering. Instead of interpolating only at transition poses,
 % interpolate more finely along the length of the path.

 numSamples = 10;
 stepSize = refPath.Length / numSamples;
 lengths = 0 : stepSize : refPath.Length;

 [transitionPoses, directions] = interpolate(refPath, lengths);

 % Replan if the path contains more than one direction switching poses
 % or if the path is too long.
 replan = sum(abs(diff(directions)))~=2 || refPath.Length > 20;
end

% Visualize the parking maneuver.
figure
plotParkingManeuver(costmap, refPath, preParkPose, parkPose)

 Automated Parking Valet

8-717

% Smooth the path.
numSmoothPoses = round(refPath.Length / approxSeparation);
[refPoses, directions, cumLengths, curvatures] = smoothPathSpline(transitionPoses, directions, numSmoothPoses, 0.5);

% Generate velocity profile.
refVelocities = helperGenerateVelocityProfile(directions, cumLengths, curvatures, currentVel, 0, 1);

pathAnalyzer.RefPoses = refPoses;
pathAnalyzer.Directions = directions;
pathAnalyzer.VelocityProfile = refVelocities;

% Reset longitudinal controller.
reset(lonController);

reachGoal = false;

while ~reachGoal
 % Get current driving direction.
 currentDir = getDrivingDirection(vehicleSim);

 % Find the reference pose on the path and the corresponding velocity.
 [refPose, refVel, direction] = pathAnalyzer(currentPose, currentVel);

 % If the vehicle changes driving direction, reset vehicle velocity in
 % the simulator and reset longitudinal controller.
 if currentDir ~= direction
 currentVel = 0;

8 Featured Examples

8-718

 setVehicleVelocity(vehicleSim, currentVel);
 reset(lonController);
 end

 % Update driving direction for the simulator. If the vehicle changes
 % driving direction, reset and return the current vehicle velocity as zero.
 currentVel = updateDrivingDirection(vehicleSim, direction, currentDir);

 % Compute steering command.
 steeringAngle = lateralControllerStanley(refPose, currentPose, currentVel, ...
 'Direction', direction, 'Wheelbase', vehicleDims.Wheelbase);

 % Compute acceleration and deceleration commands.
 lonController.Direction = direction;
 [accelCmd, decelCmd] = lonController(refVel, currentVel);

 % Simulate the vehicle using the controller outputs.
 drive(vehicleSim, accelCmd, decelCmd, steeringAngle);

 % Check if the vehicle reaches the goal.
 reachGoal = helperGoalChecker(parkPose, currentPose, currentVel, 0, direction);

 % Wait for fixed-rate execution.
 waitfor(controlRate);

 % Get current pose and velocity of the vehicle.
 currentPose = getVehiclePose(vehicleSim);
 currentVel = getVehicleVelocity(vehicleSim);
end

% Take a snapshot for the example.
closeFigures;
snapnow;

% Delete the simulator.
delete(vehicleSim);

 Automated Parking Valet

8-719

Conclusion

This example showed how to:

1 Plan a feasible path in a semi-structured environment, such as a parking lot, using an RRT* path
planning algorithm.

2 Smooth the path using splines and generate a speed profile along the smoothed path.
3 Control the vehicle to follow the reference path at the desired speed.
4 Realize different parking behaviors by using different motion planner settings.

References

[1] Buehler, Martin, Karl Iagnemma, and Sanjiv Singh. The DARPA Urban Challenge: Autonomous
Vehicles in City Traffic (1st ed.). Springer Publishing Company, Incorporated, 2009.

[2] Lepetic, Marko, Gregor Klancar, Igor Skrjanc, Drago Matko, Bostjan Potocnik, "Time Optimal Path
Planning Considering Acceleration Limits." Robotics and Autonomous Systems. Volume 45, Issues 3-4,
2003, pp. 199-210.

Supporting Functions

loadParkingLotMapLayers Load environment map layers for parking lot

function mapLayers = loadParkingLotMapLayers()
%loadParkingLotMapLayers
% Load occupancy maps corresponding to 3 layers - obstacles, road

8 Featured Examples

8-720

% markings, and used spots.

mapLayers.StationaryObstacles = imread('stationary.bmp');
mapLayers.RoadMarkings = imread('road_markings.bmp');
mapLayers.ParkedCars = imread('parked_cars.bmp');
end

plotMapLayers Plot struct containing map layers

function plotMapLayers(mapLayers)
%plotMapLayers
% Plot the multiple map layers on a figure window.

figure
cellOfMaps = cellfun(@imcomplement, struct2cell(mapLayers), 'UniformOutput', false);
montage(cellOfMaps, 'Size', [1 numel(cellOfMaps)], 'Border', [5 5], 'ThumbnailSize', [300 NaN])
title('Map Layers - Stationary Obstacles, Road markings, and Parked Cars')
end

combineMapLayers Combine map layers into a single costmap

function costmap = combineMapLayers(mapLayers)
%combineMapLayers
% Combine map layers struct into a single vehicleCostmap.

combinedMap = mapLayers.StationaryObstacles + mapLayers.RoadMarkings + ...
 mapLayers.ParkedCars;
combinedMap = im2single(combinedMap);

res = 0.5; % meters
costmap = vehicleCostmap(combinedMap, 'CellSize', res);
end

configurePlanner Configure path planner with specified settings

function configurePlanner(pathPlanner, config)
%configurePlanner
% Configure the path planner object, pathPlanner, with settings specified
% in struct config.

fieldNames = fields(config);
for n = 1 : numel(fieldNames)
 if ~strcmpi(fieldNames{n}, 'IsParkManeuver')
 pathPlanner.(fieldNames{n}) = config.(fieldNames{n});
 end
end
end

plotVelocityProfile Plot speed profile

function plotVelocityProfile(cumPathLength, refVelocities, maxSpeed)
%plotVelocityProfile
% Plot the generated velocity profile.

% Plot reference velocity along length of the path.
plot(cumPathLength, refVelocities, 'LineWidth', 2);

% Plot a line to display maximum speed.
hold on

 Automated Parking Valet

8-721

line([0;cumPathLength(end)], [maxSpeed;maxSpeed], 'Color', 'r')
hold off

% Set axes limits.
buffer = 2;
xlim([0 cumPathLength(end)]);
ylim([0 maxSpeed + buffer])

% Add labels.
xlabel('Cumulative Path Length (m)');
ylabel('Velocity (m/s)');

% Add legend and title.
legend('Velocity Profile', 'Max Speed')
title('Generated velocity profile')
end

closeFigures

function closeFigures()
% Close all the figures except the simulator visualization.

% Find all the figure objects.
figHandles = findobj('Type', 'figure');
for i = 1: length(figHandles)
 if ~strcmp(figHandles(i).Name, 'Automated Valet Parking')
 close(figHandles(i));
 end
end
end

plotParkingManeuver Display the generated parking maneuver on a costmap.

function plotParkingManeuver(costmap, refPath, currentPose, parkPose)
%plotParkingManeuver
% Plot the generated parking maneuver on a costmap.

% Plot the costmap, without inflated areas.
plot(costmap, 'Inflation', 'off')

% Plot reference parking maneuver on the costmap.
hold on
plot(refPath, 'DisplayName', 'Parking Maneuver')

title('Parking Maneuver')

% Zoom into parking maneuver by setting axes limits.
lo = min([currentPose(1:2); parkPose(1:2)]);
hi = max([currentPose(1:2); parkPose(1:2)]);

buffer = 6; % meters

xlim([lo(1)-buffer hi(1)+buffer])

8 Featured Examples

8-722

ylim([lo(2)-buffer hi(2)+buffer])
end

See Also
Functions
lateralControllerStanley | inflationCollisionChecker | interpolate |
smoothPathSpline

Objects
pathPlannerRRT | vehicleCostmap | vehicleDimensions | driving.Path

More About
• “Automated Parking Valet in Simulink” on page 8-724
• “Automated Parking Valet with ROS in MATLAB” (ROS Toolbox)
• “Automated Parking Valet with ROS 2 in MATLAB” (ROS Toolbox)
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2

 Automated Parking Valet

8-723

Automated Parking Valet in Simulink
This example shows how to construct an automated parking valet system in Simulink® with
Automated Driving Toolbox™. It closely follows the “Automated Parking Valet” on page 8-696
MATLAB® example.

Introduction

Automatically parking a car that is left in front of a parking lot is a challenging problem. The vehicle's
automated systems are expected to take over and steer the vehicle to an available parking spot. This
example focuses on planning a feasible path through the environment, generating a trajectory from
this path, and using a feasible controller to execute the trajectory. Map creation and dynamic obstacle
avoidance are excluded from this example.

Before simulation, the helperSLCreateCostmap function is called within the PreLoadFcn callback
function of the model. For details on using callback functions, see “Model Callbacks” (Simulink). The
helperSLCreateCostmap function creates a static map of the parking lot that contains information
about stationary obstacles, road markings, and parked cars. The map is represented as a
vehicleCostmap object.

To use the vehicleCostmap object in Simulink®, the helperSLCreateUtilityStruct function
converts the vehicleCostmap into a struct array in the block's mask initialization. For more details,
see “Initialize Mask” (Simulink).

The global route plan is described as a sequence of lane segments to traverse to reach a parking spot.
Before simulation, the PreLoadFcn callback function of the model loads a route plan, which is stored

8 Featured Examples

8-724

as a table. The table specifies the start and end poses of the segment, as well as properties of the
segment, such as the speed limit.

routePlan =

 5×3 table

 StartPose EndPose Attributes
 ________________ ____________________ __________

 4 12 0 56 11 0 1×1 struct
 56 11 0 70 19 90 1×1 struct
 70 19 90 70 32 90 1×1 struct
 70 32 90 52 38 180 1×1 struct
 53 38 180 36.3 44 90 1×1 struct

The inputs and outputs of many blocks in this example are Simulink buses (Simulink.Bus
(Simulink) classes). In the PreLoadFcn callback function of the model, the
helperSLCreateUtilityBus function creates these buses.

 Automated Parking Valet in Simulink

8-725

Planning is a hierarchical process, with each successive layer responsible for a more fine-grained
task. The behavior layer [1] sits at the top of this stack. The Behavior Planner block triggers a
sequence of navigation tasks based on the global route plan by providing an intermediate goal and
configuration for the Motion Planning and Trajectory Generation blocks. Each path segment is
navigated using these steps:

1 Motion Planning: Plan a feasible path through the environment map using the optimal rapidly
exploring random tree (RRT*) algorithm (pathPlannerRRT).

2 Trajectory Generation: Smooth the reference path by fitting splines [2] to it using the Path
Smoother Spline block. Then convert the smoothed path into a trajectory by generating a speed
profile using the Velocity Profiler block.

3 Vehicle Control: The HelperPathAnalyzer provides the reference signal for the Vehicle
Controller subsystem that controls the steering and the velocity of the vehicle.

4 Goal Checking: Check if the vehicle has reached the final pose of the segment using
helperGoalChecker.

Explore the Subsystems

The Vehicle Controller subsystem contains a Lateral Controller Stanley block and a Longitudinal
Controller Stanley block to regulate the pose and the velocity of the vehicle, respectively. To handle
realistic vehicle dynamics [3], the Vehicle model parameter in the Lateral Controller Stanley block is
set to Dynamic bicycle model. With this configuration, additional inputs, such as the path
curvature, the current yaw rate of the vehicle, and the current steering angle are required to
compute the steering command. The Longitudinal Controller Stanley block uses a switching
Proportional-Integral controller to calculate the acceleration and the deceleration commands that
actuate the brake and throttle in the vehicle.

8 Featured Examples

8-726

To demonstrate the performance, the vehicle controller is applied to the Vehicle Model block, which
contains a simplified steering system [3] that is modeled as a first-order system and a Vehicle Body
3DOF (Vehicle Dynamics Blockset) block shared between Automated Driving Toolbox™ and Vehicle
Dynamics Blockset™. Compared with the kinematic bicycle model used in the “Automated Parking
Valet” on page 8-696 MATLAB® example, this Vehicle Model block is more accurate because it
considers the inertial effects, such as tire slip and steering servo actuation.

 Automated Parking Valet in Simulink

8-727

Simulation Results

The Visualization block shows how the vehicle tracks the reference path. It also displays vehicle
speed and steering command in a scope. The following images are the simulation results for this
example:

Simulation stops at about 45 seconds, which is when the vehicle reaches the destination.

8 Featured Examples

8-728

Conclusions

This example shows how to implement an automated parking valet in Simulink.

References

[1] Buehler, Martin, Karl Iagnemma, and Sanjiv Singh. The DARPA Urban Challenge: Autonomous
Vehicles in City Traffic (1st ed.). Springer Publishing Company, Incorporated, 2009.

[2] Lepetic, Marko, Gregor Klancar, Igor Skrjanc, Drago Matko, and Bostjan Potocnik, "Time Optimal
Path Planning Considering Acceleration Limits." Robotics and Autonomous Systems, Volume 45,
Issues 3-4, 2003, pp. 199-210.

 Automated Parking Valet in Simulink

8-729

[3] Hoffmann, Gabriel M., Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun. "Autonomous
Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and
Racing." American Control Conference, 2007, pp. 2296-2301.

See Also
Blocks
Vehicle Body 3DOF | Lateral Controller Stanley | Path Smoother Spline | Longitudinal Controller
Stanley | Velocity Profiler

Objects
vehicleDimensions | pathPlannerRRT | vehicleCostmap

More About
• “Automated Parking Valet” on page 8-696
• “Automated Parking Valet with ROS in Simulink” (ROS Toolbox)
• “Automated Parking Valet with ROS 2 in Simulink” (ROS Toolbox)
• “Visualize Automated Parking Valet Using Cuboid Simulation” on page 8-731
• “Lateral Control Tutorial” on page 8-858
• “Code Generation for Path Planning and Vehicle Control” on page 8-772

8 Featured Examples

8-730

Visualize Automated Parking Valet Using Cuboid Simulation
This example shows how to visualize the motion of a vehicle as it navigates a parking lot in a cuboid
driving scenario environment. It closely follows the “Visualize Automated Parking Valet Using Unreal
Engine Simulation” on page 8-904 example.

Visualization Workflow

Automated Driving Toolbox™ provides a cuboid driving scenario environment that enables you to
rapidly author scenarios, generate detections using low-fidelity radar and camera sensors, and test
controllers and tracking and sensor fusion algorithms in both MATLAB® and Simulink®. The
“Automated Parking Valet in Simulink” on page 8-724 example shows how to design a path planning
and vehicle control algorithm for an automated parking valet system in Simulink. This example shows
how to augment that algorithm to visualize vehicle motion in a scenario using a drivingScenario
object. The steps in this workflow are:

1 Create a driving scenario containing a parking lot.
2 Create a vehicleCostmap from the driving scenario.
3 Create a route plan for the ego vehicle in the scenario.
4 Simulate the scenario in Simulink and visualize the motion of the vehicle in the driving scenario.

Create Driving Scenario

The drivingScenario object enables you to author low-fidelity scenes. Create a
drivingScenario object and add the elements necessary to model a parking maneuver:

• Create a parking lot that contains grids of parking spaces.
• Add the ego vehicle.
• Insert static vehicles at various locations on the parking lot to serve as obstacles.

% Create drivingScenario object
scenario = drivingScenario;

% Create parking lot
lot = parkingLot(scenario,[3 -5; 60 -5; 60 -48; 3 -48]);

% Create parking spaces
cars = parkingSpace(Width=3.3);
accessible = parkingSpace(Type="Accessible",Width=3.3);
accessLane = parkingSpace(Type="NoParking",MarkingColor=[1 1 1],Width=1.5);
fireLane = parkingSpace(Type="NoParking",Length=2,Width=40);

% Insert parking spaces
insertParkingSpaces(lot,cars,Edge=2);
insertParkingSpaces(lot,cars,Edge=4);
insertParkingSpaces(lot,[cars accessLane accessible accessLane accessible], ...
 [5 1 1 1 1],Rows=2,Position=[42 -12]);
insertParkingSpaces(lot,[cars accessLane accessible accessLane accessible], ...
 [5 1 1 1 1],Rows=2,Position=[23 -12]);
insertParkingSpaces(lot,fireLane,1,Edge=3,Offset=8);

% Add the ego vehicle
egoVehicle = vehicle(scenario, ...
 ClassID=1, ...

 Visualize Automated Parking Valet Using Cuboid Simulation

8-731

 Position=[13 8 0].*[1 -1 1], ...
 Yaw=270, ...
 Mesh=driving.scenario.carMesh, ...
 Name="Ego");

% Add stationary vehicles
car1 = vehicle(scenario, ...
 ClassID=1, ...
 Position=[7.5 -42.7 0.01], ...
 Yaw=180, ...
 Mesh=driving.scenario.carMesh);

car2 = vehicle(scenario, ...
 ClassID=1, ...
 Position=[19 -17.5 0.01], ...
 Mesh=driving.scenario.carMesh);

car3 = vehicle(scenario, ...
 ClassID=1, ...
 Position=[27.5 -38.3 0.01], ...
 Yaw=180, ...
 Mesh=driving.scenario.carMesh);

car4 = vehicle(scenario, ...
 ClassID=1, ...
 Position=[55.5 -13.8 0.01], ...
 Mesh=driving.scenario.carMesh);

car5 = vehicle(scenario, ...
 ClassID=1, ...
 Position=[38 -20.8 0.01], ...
 Mesh=driving.scenario.carMesh);

% Plot drivingScenario
plot(scenario)

8 Featured Examples

8-732

Create Costmap from Driving Scenario

To create a costmap from the driving scenario, follow these steps:

1 Capture a screenshot of the plot of the driving scenario using the saveas function or a tool of
your choice. Save the screenshot as a PNG file in the working directory.

2 Create a spatial referencing object using the imref2d function. Use the dimensions of the
parking lot to specify the X and Y limits.

3 Read the PNG image into a variable in the base workspace using the imread function.

You can then display the image using imshow. This example provides a previously captured high-
resolution screenshot of the scenario and a spatial referencing object.

% Load the image data
load("SceneImageData.mat","sceneImage","sceneRef")

% Visualize the scene image
figure
imshow(sceneImage, sceneRef);
xlabel('X (m)');
ylabel('Y (m)');

 Visualize Automated Parking Valet Using Cuboid Simulation

8-733

The screenshot is an accurate depiction of the environment up to some resolution. You can use this
image to create a vehicleCostmap for path planning and navigation.

First, estimate free space by using the image. Free space is the area where a vehicle can drive
without collision with static objects, such as parked cars, cones, and road boundaries, and without
crossing marked lines. In this example, you can estimate the free space based on the color of the
image. Use the Color Thresholder app to perform segmentation and generate a binary image from the

8 Featured Examples

8-734

image. You can also use the helperCreateCostmapFromImage helper function, detailed at the end
of this example, to generate the binary image:

sceneImageBinary = helperCreateCostmapFromImage(sceneImage);

Next, create a costmap from the binary image. Use the binary image to specify the cost value at each
cell.

% Get the left-bottom corner location of the map
mapLocation = [sceneRef.XWorldLimits(1) sceneRef.YWorldLimits(1)]; % [meters meters]

% Compute resolution
mapWidth = sceneRef.XWorldLimits(2) - sceneRef.XWorldLimits(1); % meters
cellSize = mapWidth/size(sceneImageBinary,2);

% Create the costmap
costmap = vehicleCostmap(im2single(sceneImageBinary),CellSize=cellSize,MapLocation=mapLocation);

figure
plot(costmap,Inflation='off')
legend off

You must also specify the dimensions of the vehicle that parks in the driving scenario. This example
uses the vehicle dimensions described in the “Create Actor and Vehicle Trajectories
Programmatically” on page 8-663 example.

frontOverhang = egoVehicle.FrontOverhang;
rearOverhang = egoVehicle.RearOverhang;

 Visualize Automated Parking Valet Using Cuboid Simulation

8-735

vehicleWidth = egoVehicle.Width;
vehicleHeight = egoVehicle.Height;
vehicleLength = egoVehicle.Length;
centerToFront = (vehicleLength/2) - frontOverhang;
centerToRear = (vehicleLength/2) - rearOverhang;

vehicleDims = vehicleDimensions(vehicleLength,vehicleWidth,vehicleHeight, ...
 FrontOverhang=frontOverhang,RearOverhang=rearOverhang);
costmap.CollisionChecker.VehicleDimensions = vehicleDims;

Set the inflation radius by specifying the number of circles enclosing the vehicle.

costmap.CollisionChecker.NumCircles = 5;

Create Route Plan for Ego Vehicle

The global route plan is a sequence of lane segments that the vehicle must traverse to reach a
parking spot. In this example, the route plan has been created and stored in a table. For more
information on creating a route plan, review the “Automated Parking Valet in Simulink” on page 8-724
example. Before simulation, the PreLoadFcn callback function of the model loads the route plan.

data = load("routePlanDrivingScenario.mat");
routePlan = data.routePlan %#ok<NOPTS>

% Plot vehicle at the starting pose
egoVehicle.Position = [routePlan.StartPose(1,2) routePlan.StartPose(1,1) 0].*[1 -1 1];
egoVehicle.Yaw = routePlan.StartPose(1,3) - 90;

startPose = routePlan.StartPose(1,:);
hold on
helperPlotVehicle(startPose,vehicleDims,DisplayName="Current Pose")
legend

for n = 1:height(routePlan)
 % Extract the goal waypoint
 vehiclePose = routePlan{n, 'EndPose'};

 % Plot the pose
 legendEntry = sprintf("Goal %i",n);
 helperPlotVehicle(vehiclePose,vehicleDims,DisplayName=legendEntry);
 hold on
end
hold off

routePlan =

 4x3 table

 StartPose EndPose Attributes
 ____________________ ____________________ __________

 8 13 0 37.5 13 0 1x1 struct
 37.5 13 0 43 22 90 1x1 struct
 43 22 90 35 34 180 1x1 struct
 35 34 180 24.3 29 270 1x1 struct

8 Featured Examples

8-736

Explore Model

The APVWithDrivingScenario model extends the one used in the Automated Parking Valet in
Simulink example by adding a plot to visualize the vehicle in a driving scenario. Open the model.

helperCloseFigures

modelName = "APVWithDrivingScenario";
open_system(modelName)

 Visualize Automated Parking Valet Using Cuboid Simulation

8-737

The Path Planner block of the Simulink model computes an optimal trajectory for the ego vehicle
using the route plan created earlier. The model generates a pose for the ego vehicle at each time
step. The model feeds this pose to the Visualization block, which updates the drivingScenario
object and the costmap visualization. Plot the driving scenario from the perspective of the ego
vehicle.

chasePlot(egoVehicle,ViewHeight=3,ViewPitch=5,Meshes="on");
movegui("east");

8 Featured Examples

8-738

Visualize Vehicle Motion

Simulate the model to see how the vehicle drives into the desired parking spot.

sim(modelName)

 Visualize Automated Parking Valet Using Cuboid Simulation

8-739

8 Featured Examples

8-740

As the simulation runs, the Simulink environment updates the position and orientation of the vehicle
in the driving scenario using the Visualization block. The Automated Parking Valet figure displays
the planned path in blue and the actual path of the vehicle in red. The Parking Maneuver figure
shows a local costmap used in searching for the final parking maneuver.

Close the model and the figures.

bdclose all
helperCloseFigures

Supporting Functions

helperCreateCostmapFromImage

function BW = helperCreateCostmapFromImage(sceneImage)
%helperCreateCostmapFromImage Create a costmap from an RGB image.

% Call the autogenerated code from the Color Thresholder app.
BW = helperCreateMask(sceneImage);

% Smooth the image.
BW = im2uint8(medfilt2(BW));

% Resize.
BW = imresize(BW,0.5);

% Compute complement.

 Visualize Automated Parking Valet Using Cuboid Simulation

8-741

BW = imcomplement(BW);
end

helperCreateMask

function [BW,maskedRGBImage] = helperCreateMask(RGB)
%helperCreateMask Threshold RGB image using auto-generated code from
%Color Thresholder app.
% [BW,maskedRGBImage] = createMask(RGB) thresholds image RGB using
% autogenerated code from the Color Thresholder app. The colorspace
% and range for each channel of the colorspace have been set within the
% app. The segmentation mask is returned in BW, and a composite of the
% mask and original RGB image is returned in maskedRGBImage.

% Convert RGB image to chosen color space.
I = RGB;

% Define thresholds for channel 1 based on histogram settings.
channel1Min = 115.000;
channel1Max = 246.000;

% Define thresholds for channel 2 based on histogram settings.
channel2Min = 155.000;
channel2Max = 225.000;

% Define thresholds for channel 3 based on histogram settings.
channel3Min = 193.000;
channel3Max = 209.000;

% Create mask based on chosen histogram thresholds.
sliderBW = (I(:,:,1) >= channel1Min) & (I(:,:,1) <= channel1Max) & ...
 (I(:,:,2) >= channel2Min) & (I(:,:,2) <= channel2Max) & ...
 (I(:,:,3) >= channel3Min) & (I(:,:,3) <= channel3Max);
BW = sliderBW;

% Initialize output masked image based on input image.
maskedRGBImage = RGB;

% Set background pixels where BW is false to zero.
maskedRGBImage(repmat(~BW,[1 1 3])) = 0;
end

helperCloseFigures

function helperCloseFigures()
%helperCloseFigures Close all the figures except the simulation
%visualization

% Find all the figure objects
figHandles = findobj("Type","figure");

% Close the figures
for i = 1:length(figHandles)
 close(figHandles(i));

8 Featured Examples

8-742

end
end

See Also
parkingLot | drivingScenario | vehicleCostmap

Related Examples
• “Automated Parking Valet” on page 8-696
• “Automated Parking Valet in Simulink” on page 8-724
• “Visualize Automated Parking Valet Using Unreal Engine Simulation” on page 8-904
• “Simulate Vehicle Parking Maneuver in Driving Scenario” on page 8-688

 Visualize Automated Parking Valet Using Cuboid Simulation

8-743

Highway Trajectory Planning Using Frenet Reference Path
This example demonstrates how to plan a local trajectory in a highway driving scenario. This example
uses a reference path and dynamic list of obstacles to generate alternative trajectories for an ego
vehicle. The ego vehicle navigates through traffic defined in a provided driving scenario from a
drivingScenario object. The vehicle alternates between adaptive cruise control, lane changing,
and vehicle following maneuvers based on cost, feasibility, and collision-free motion.

Load Driving Scenario

Begin by loading the provided drivingScenario object, which defines the vehicle and road
properties in the current workspace. This scenario was generated using the Driving Scenario
Designer app and exported to a MATLAB® function, drivingScenarioTrafficExample. For more
information, see “Create Driving Scenario Variations Programmatically” on page 5-125.

scenario = drivingScenarioTrafficExample;
% Default car properties
carLen = 4.7; % in meters
carWidth = 1.8; % in meters
rearAxleRatio = .25;

% Define road dimensions
laneWidth = carWidth*2; % in meters

plot(scenario);

8 Featured Examples

8-744

Construct Reference Path

All of the local planning in this example is performed with respect to a reference path, represented by
a referencePathFrenet (Navigation Toolbox) object. This object can return the state of the curve
at given lengths along the path, find the closest point along the path to some global xy-location, and
facilitates the coordinate transformations between global and Frenet reference frames.

For this example, the reference path is treated as the center of a four-lane highway, and the
waypoints match the road defined in the provided drivingScenario object.

waypoints = [0 50; 150 50; 300 75; 310 75; 400 0; 300 -50; 290 -50; 0 -50]; % in meters
refPath = referencePathFrenet(waypoints);
ax = show(refPath);
axis(ax,'equal'); xlabel('X'); ylabel('Y');

 Highway Trajectory Planning Using Frenet Reference Path

8-745

Construct Trajectory Generator

For a local planner, the goal is typically to sample a variety of possible motions that move towards a
final objective while satisfying the current kinematic and dynamic conditions. The
trajectoryGeneratorFrenet (Navigation Toolbox) object accomplishes this by connecting the
initial state with a set of terminal states using 4th- or 5th-order polynomial trajectories. Initial and
terminal states are defined in the Frenet coordinate system, and each polynomial solution satisfies
the lateral and longitudinal position, velocity, and acceleration boundary conditions while minimizing
jerk.

Terminal states are often calculated using custom behaviors. These behaviors leverage information
found in the local environment, such as the lane information, speed limit, and current or future
predictions of actors in the ego vehicle's vicinity.

Construct a trajectoryGeneratorFrenet object using the reference path

connector = trajectoryGeneratorFrenet(refPath);

Construct Dynamic Collision Checker

The dynamicCapsuleList (Navigation Toolbox) object is a data structure that represents the state
of a dynamic environment over a discrete set of timesteps. This environment can then be used to
efficiently validate multiple potential trajectories for the ego vehicle. Each object in the scene is
represented by:

• Unique integer-valued identifier

8 Featured Examples

8-746

• Properties for a capsule geometry used for efficient collision checking
• Sequence of SE2 states, where each state represents a discrete snapshot in time.

In this example, the trajectories generated by the trajectoryGeneratorFrenet object occur over
some span of time, known as the time horizon. To ensure that collision checking covers all possible
trajectories, the dynamicCapsuleList object should contain predicted trajectories of all actors
spanning the maximum expected time horizon.

capList = dynamicCapsuleList;

Create a geometry structure for the ego vehicle with the given parameters.

egoID = 1;
[egoID, egoGeom] = egoGeometry(capList,egoID);

egoGeom.Geometry.Length = carLen; % in meters
egoGeom.Geometry.Radius = carWidth/2; % in meters
egoGeom.Geometry.FixedTransform(1,end) = -carLen*rearAxleRatio; % in meters

Add the ego vehicle to the dynamic capsule list.

updateEgoGeometry(capList,egoID,egoGeom);

Add the drivingScenario actors to the dynamicCapsuleList object. The geometry is set here,
and the states are defined during the planning loop. You can see that the dynamicCapsuleList now
contains one ego vehicle and five obstacles.

actorID = (1:5)';
actorGeom = repelem(egoGeom,5,1);
updateObstacleGeometry(capList,actorID,actorGeom)

ans =
 dynamicCapsuleList with properties:

 MaxNumSteps: 31
 EgoIDs: 1
 ObstacleIDs: [5x1 double]
 NumObstacles: 5
 NumEgos: 1

Planning Adaptive Routes Through Traffic

The planning utilities support a local planning strategy that samples a set of local trajectories based
on the current and foreseen state of the environment before choosing the most optimal trajectory.
The simulation loop has been organized into the following sections:

1 Advance the Ground Truth Scenario on page 8-0
2 Generate Terminal States on page 8-0
3 Evaluate Cost of Terminal States on page 8-0
4 Generate Trajectories and Check for Kinematic Feasibility on page 8-0
5 Check Trajectories for Collision and Select the Optimal Trajectory on page 8-0
6 Display the Sampled Trajectories and Animate Scene on page 8-0

Click the titles of each section to navigate to the relevant code in the simulation loop.

 Highway Trajectory Planning Using Frenet Reference Path

8-747

Advance Ground Truth Scenario on page 8-0

When planning in a dynamic environment, it is often necessary to estimate the state of the
environment or predict its state in the near future. For simplicity, this example uses the
drivingScenario as a ground truth source of trajectories for each actor over the planning horizon.
To test a custom prediction algorithm, you can replace or modify the
exampleHelperRetrieveActorGroundTruth function with custom code.

Generate Terminal States on page 8-0

A common goal in automated driving is to ensure that planned trajectories are not just feasible but
also natural. Typical highway driving involves elements of lane keeping, maintaining the speed limit,
changing lanes, adapting speed to traffic, and so on. Each custom behavior might require different
environment information. This example demonstrates how to generate terminal states that implement
three such behaviors: cruise control, lane changes, and follow lead vehicle.

Cruise control

The exampleHelperBasicCruiseControl function generates terminal states that carry out a
cruise control behavior. This function uses the ego vehicle's lateral velocity and a time horizon to
predict the ego vehicle's expected lane N-seconds in the future. The lane-center is calculated and
becomes the terminal state's lateral deviation, and the lateral velocity and acceleration are set to
zero.

For longitudinal boundary conditions, the terminal velocity is set to the road speed limit and the
terminal acceleration is set to zero. The longitudinal position is unrestricted, which is specified as
NaN. By dropping the longitude constraint, trajectoryGeneratorFrenet can use a lower 4th-
order polynomial to solve the longitudinal boundary-value problem, resulting in a trajectory that
smoothly matches the road speed over the given time horizon:

cruiseControlState = NaN ṡdes 0 lexpLane 0 0

Lane change

The exampleHelperBasicLaneChange function generates terminal states that transition the
vehicle from the current lane to either adjacent lane. The function first determines the ego vehicle's
current lane, and then checks whether the left and right lanes exist. For each existing lane, the
terminal state is defined in the same manner as the cruise control behavior, with the exception that
the terminal velocity is set to the current velocity rather than the road's speed limit:

laneChangeState = NaN ṡcur 0 ldesLane 0 0

Follow lead vehicle

The exampleHelperBasicLeadVehicleFollow function generates terminal states that attempt to
trail a vehicle found ahead of the ego vehicle. The function first determines the ego vehicle's current
lane. For each provided timeHorizon, the function predicts the future state of each actor, finds all
actors that occupy the same lane as the ego vehicle, and determines which is the closest lead vehicle
(if no lead vehicles are found, the function does not return anything).

The ego vehicle's terminal state is calculated by taking the lead vehicle's position and velocity and
reducing the terminal longitudinal position by some safety distance:

closestLeadVehicleState = slead ṡlead 0 llead l̇ lead 0

8 Featured Examples

8-748

followState = slead− dsafety ṡlead 0 llead l̇ lead 0

Evaluate Cost of Terminal States on page 8-0

After the terminal states have been generated, their cost can be evaluated. Trajectory evaluation and
the ways to prioritize potential solutions is highly subjective. For the sake of simplicity, the
exampleHelperEvaluateTSCost function defines cost as the combination of three weighted sums.

• Lateral Deviation Cost (ClatDev) — A positive weight that penalizes states that deviate from the
center of a lane.

ClatDev = wΔL*ΔL

ΔL = argmini LtermState − Llanei

• Time Cost (Ctime) — A negative weight that prioritizes motions that occur over a longer interval,
resulting in smoother trajectories.

Ctime = wΔt*Δt

• Terminal Velocity Cost (Cspeed) — A positive weight that prioritizes motions that maintain the
speed limit, resulting in less dynamic maneuvers.

Cspeed = wΔv*Δv

Generate Trajectories and Check for Kinematic Feasibility on page 8-0

In addition to having terminal states with minimal cost, an optimal trajectory must often satisfy
additional constraints related to kinematic feasibility and ride comfort. Trajectory constraints are one
way of enforcing a desired ride quality, but they do so at the expense of a reduced driving envelope.

In this example, the exampleHelperEvaluateTrajectory function verifies that each trajectory
satisfies the following constraints:

• MaxAcceleration: The absolute acceleration throughout the trajectory must be below a
specified value. Smaller values reduce driving aggressiveness and eliminate kinematically
infeasible trajectories. This restriction may eliminate maneuvers that could otherwise be
performed by the vehicle.

• MaxCurvature: The minimum turning radius that is allowed throughout a trajectory. As with
MaxAcceleration, reducing this value results in a smoother driving experience but may
eliminate otherwise feasible trajectories.

• MinVelocity: This example constrains the ego vehicle to forward-only motion by setting a
minimum velocity. This restriction is desired in highway driving scenarios and eliminates
trajectories that fit overconstrained or poorly conditioned boundary values.

Check Trajectories for Collision and Select Optimal Trajectory on page 8-0

The final step in the planning process is choosing the best trajectory that also results in a collision-
free path. Collision checking is often deferred until the end because it is an expensive operation, so
by evaluating cost and analyzing constraints first, invalid trajectories can be removed from
consideration. Remaining trajectories can then be checked for collision in optimal order until a
collision free path has been found or all trajectories have been evaluated.

 Highway Trajectory Planning Using Frenet Reference Path

8-749

Define Simulator and Planning Parameters

This section defines the properties required to run the simulator and parameters that are used by the
planner and behavior utilities. Properties such as scenario.SampleTime and
connector.TimeResolution are synced so that states in the ground truth actor trajectories and
planned ego trajectories occur at the same timesteps. Similarly, replanRate, timeHorizons, and
maxHorizon are chosen such that they are integer multiples of the simulation rate.

As mentioned in the previous section, weights and constraints are selected to promote smooth driving
trajectories while adhering to the rules of the road.

Lastly, define the speedLimit and safetyGap parameters, which are used to generate terminal
states for the planner.

% Synchronize the simulator's update rate to match the trajectory generator's
% discretization interval.
scenario.SampleTime = connector.TimeResolution; % in seconds

% Define planning parameters.
replanRate = 10; % Hz

% Define the time intervals between current and planned states.
timeHorizons = 1:3; % in seconds
maxHorizon = max(timeHorizons); % in seconds

% Define cost parameters.
latDevWeight = 1;
timeWeight = -1;
speedWeight = 1;

% Reject trajectories that violate the following constraints.
maxAcceleration = 15; % in meters/second^2
maxCurvature = 1; % 1/meters, or radians/meter
minVelocity = 0; % in meters/second

% Desired velocity setpoint, used by the cruise control behavior and when
% evaluating the cost of trajectories.
speedLimit = 11; % in meters/second

% Minimum distance the planner should target for following behavior.
safetyGap = 10; % in meters

Initialize Simulator

Initialize the simulator and create a chasePlot viewer.

[scenarioViewer,futureTrajectory,actorID,actorPoses,egoID,egoPoses,stepPerUpdate,egoState,isRunning,lineHandles] = ...
 exampleHelperInitializeSimulator(scenario,capList,refPath,laneWidth,replanRate,carLen);

8 Featured Examples

8-750

Run Driving Simulation

tic
while isRunning
 % Retrieve the current state of actor vehicles and their trajectory over
 % the planning horizon.
 [curActorState,futureTrajectory,isRunning] = ...
 exampleHelperRetrieveActorGroundTruth(scenario,futureTrajectory,replanRate,maxHorizon);

 % Generate cruise control states.
 [termStatesCC,timesCC] = exampleHelperBasicCruiseControl(...
 refPath,laneWidth,egoState,speedLimit,timeHorizons);

 % Generate lane change states.
 [termStatesLC,timesLC] = exampleHelperBasicLaneChange(...
 refPath,laneWidth,egoState,timeHorizons);

 % Generate vehicle following states.
 [termStatesF,timesF] = exampleHelperBasicLeadVehicleFollow(...
 refPath,laneWidth,safetyGap,egoState,curActorState,timeHorizons);

 % Combine the terminal states and times.
 allTS = [termStatesCC; termStatesLC; termStatesF];
 allDT = [timesCC; timesLC; timesF];
 numTS = [numel(timesCC); numel(timesLC); numel(timesF)];

 % Evaluate cost of all terminal states.

 Highway Trajectory Planning Using Frenet Reference Path

8-751

 costTS = exampleHelperEvaluateTSCost(allTS,allDT,laneWidth,speedLimit,...
 speedWeight, latDevWeight, timeWeight);

 % Generate trajectories.
 egoFrenetState = global2frenet(refPath,egoState);
 [frenetTraj,globalTraj] = connect(connector,egoFrenetState,allTS,allDT);

 % Eliminate trajectories that violate constraints.
 isValid = exampleHelperEvaluateTrajectory(globalTraj,maxAcceleration,maxCurvature,minVelocity);

 % Update the collision checker with the predicted trajectories
 % of all actors in the scene.
 for i = 1:numel(actorPoses)
 actorPoses(i).States = futureTrajectory(i).Trajectory(:,1:3);
 end
 updateObstaclePose(capList,actorID,actorPoses);

 % Determine evaluation order.
 [cost, idx] = sort(costTS);
 optimalTrajectory = [];

 trajectoryEvaluation = nan(numel(isValid),1);

 % Check each trajectory for collisions starting with least cost.
 for i = 1:numel(idx)
 if isValid(idx(i))
 % Update capsule list with the ego object's candidate trajectory.
 egoPoses.States = globalTraj(idx(i)).Trajectory(:,1:3);
 updateEgoPose(capList,egoID,egoPoses);

 % Check for collisions.
 isColliding = checkCollision(capList);

 if all(~isColliding)
 % If no collisions are found, this is the optimal.
 % trajectory.
 trajectoryEvaluation(idx(i)) = 1;
 optimalTrajectory = globalTraj(idx(i)).Trajectory;
 break;
 else
 trajectoryEvaluation(idx(i)) = 0;
 end
 end
 end

 % Display the sampled trajectories.
 lineHandles = exampleHelperVisualizeScene(lineHandles,globalTraj,isValid,trajectoryEvaluation);

8 Featured Examples

8-752

 hold on;
 show(capList,'TimeStep',1:capList.MaxNumSteps,'FastUpdate',1);
 hold off;

 if isempty(optimalTrajectory)
 % All trajectories either violated a constraint or resulted in collision.
 %
 % If planning failed immediately, revisit the simulator, planner,
 % and behavior properties.
 %
 % If the planner failed midway through a simulation, additional
 % behaviors can be introduced to handle more complicated planning conditions.
 error('No valid trajectory has been found.');
 else
 % Visualize the scene between replanning.
 for i = (2+(0:(stepPerUpdate-1)))
 % Approximate realtime visualization.
 dt = toc;
 if scenario.SampleTime-dt > 0
 pause(scenario.SampleTime-dt);
 end

 egoState = optimalTrajectory(i,:);
 scenarioViewer.Actors(1).Position(1:2) = egoState(1:2);
 scenarioViewer.Actors(1).Velocity(1:2) = [cos(egoState(3)) sin(egoState(3))]*egoState(5);
 scenarioViewer.Actors(1).Yaw = egoState(3)*180/pi;

 Highway Trajectory Planning Using Frenet Reference Path

8-753

 scenarioViewer.Actors(1).AngularVelocity(3) = egoState(4)*egoState(5);

 % Update capsule visualization.
 hold on;
 show(capList,'TimeStep',i:capList.MaxNumSteps,'FastUpdate',1);
 hold off;

 % Update driving scenario.
 advance(scenarioViewer);
 tic;
 end
 end
end

Planner Customizations and Additional Considerations

Custom solutions often involve many tunable parameters, each capable of changing the final behavior
in ways that are difficult to predict. This section highlights some of the feature-specific properties and
their effect on the above planner. Then, suggestions provide ways to tune or augment the custom
logic.

Dynamic Capsule List

As mentioned previously, the dynamicCapsuleList object acts as a temporal database, which
caches predicted trajectories of obstacles. You can perform collision checking with one or more ego
bodies over some span of time. The MaxNumSteps property determines the total number of time-
steps that are checked by the object. In the above simulation loop, the property was set to 31. This
value means the planner checks the entire 1-3 second span of any trajectories (sampled at every 0.1
second). Now, increase the maximum value in timeHorizons:

timeHorizons = 1:5; % in seconds
maxTimeHorizon = max(timeHorizons); % in seconds

There are now two options:

1 The MaxNumSteps property is left unchanged.
2 The MaxNumSteps property is updated to accommodate the new max timespan.

If the property is left unchanged, then the capsule list only validates the first 3 seconds of any
trajectory, which may be preferable if computational efficiency is paramount or the prediction
certainty drops off quickly.

Alternatively, one may be working with ground truth data (as is shown above), or the future state of
the environment is well known (e.g. a fully automated environment with centralized control). Since
this example uses ground truth data for the actors, update the property.

capList.MaxNumSteps = 1+floor(maxTimeHorizon/scenario.SampleTime);

Another, indirectly tunable, property of the list is the capsule geometry. The geometry of the ego
vehicle or actors can be inflated by increasing the Radius, and buffer regions can be added to
vehicles by modifying the Length and FixedTransform properties.

Inflate the ego vehicle's entire footprint by increasing the radius.

egoGeom.Geometry.Radius = laneWidth/2; % in meters
updateEgoGeometry(capList,egoID,egoGeom);

8 Featured Examples

8-754

Add a front and rear buffer region to all actors.

actorGeom(1).Geometry.Length = carLen*1.5; % in meters
actorGeom(1).Geometry.FixedTransform(1,end) = -actorGeom(1).Geometry.Length*rearAxleRatio; % in meters
actorGeom = repmat(actorGeom(1),5,1);
updateObstacleGeometry(capList,actorID,actorGeom);

Rerun Simulation With Updated Properties

Rerun the simulation. The resulting simulation has a few interesting developments:

• The longer five-second time horizon results in a much smoother driving experience. The planner
still prioritizes the longer trajectories due to the negative timeWeight.

• The updated MaxNumSteps property has enabled collision checking over the full trajectory. When
paired with the longer planning horizon, the planner identifies and discards the previously optimal
left-lane change and returns to the original lane.

• The inflated capsules find a collision earlier and reject a trajectory, which results in more
conservative driving behavior. One potential drawback to this is a reduced planning envelope,
which runs the risk of the planner not being able to find a valid trajectory.

% Initialize the simulator and create a chasePlot viewer.
[scenarioViewer,futureTrajectory,actorID,actorPoses,egoID,egoPoses,stepPerUpdate,egoState,isRunning,lineHandles] = ...
 exampleHelperInitializeSimulator(scenario,capList,refPath,laneWidth,replanRate,carLen);
tic;
while isRunning
 % Retrieve the current state of actor vehicles and their trajectory over
 % the planning horizon.
 [curActorState,futureTrajectory,isRunning] = exampleHelperRetrieveActorGroundTruth(...
 scenario,futureTrajectory,replanRate,maxHorizon);

 % Generate cruise control states.
 [termStatesCC,timesCC] = exampleHelperBasicCruiseControl(...
 refPath,laneWidth,egoState,speedLimit,timeHorizons);

 % Generate lane change states.
 [termStatesLC,timesLC] = exampleHelperBasicLaneChange(...
 refPath,laneWidth,egoState,timeHorizons);

 % Generate vehicle following states.
 [termStatesF,timesF] = exampleHelperBasicLeadVehicleFollow(...
 refPath,laneWidth,safetyGap,egoState,curActorState,timeHorizons);

 % Combine the terminal states and times.
 allTS = [termStatesCC; termStatesLC; termStatesF];
 allDT = [timesCC; timesLC; timesF];
 numTS = [numel(timesCC); numel(timesLC); numel(timesF)];

 % Evaluate cost of all terminal states.
 costTS = exampleHelperEvaluateTSCost(allTS,allDT,laneWidth,speedLimit, ...
 speedWeight,latDevWeight,timeWeight);

 % Generate trajectories.
 egoFrenetState = global2frenet(refPath,egoState);
 [frenetTraj,globalTraj] = connect(connector,egoFrenetState,allTS,allDT);

 % Eliminate trajectories that violate constraints.
 isValid = exampleHelperEvaluateTrajectory(...

 Highway Trajectory Planning Using Frenet Reference Path

8-755

 globalTraj, maxAcceleration, maxCurvature, minVelocity);

 % Update the collision checker with the predicted trajectories
 % of all actors in the scene.
 for i = 1:numel(actorPoses)
 actorPoses(i).States = futureTrajectory(i).Trajectory(:,1:3);
 end
 updateObstaclePose(capList, actorID, actorPoses);

 % Determine evaluation order.
 [cost, idx] = sort(costTS);
 optimalTrajectory = [];

 trajectoryEvaluation = nan(numel(isValid),1);

 % Check each trajectory for collisions starting with least cost.
 for i = 1:numel(idx)
 if isValid(idx(i))
 % Update capsule list with the ego object's candidate trajectory.
 egoPoses.States = globalTraj(idx(i)).Trajectory(:,1:3);
 updateEgoPose(capList, egoID, egoPoses);

 % Check for collisions.
 isColliding = checkCollision(capList);

 if all(~isColliding)
 % If no collisions are found, this is the optimal
 % trajectory.
 trajectoryEvaluation(idx(i)) = 1;
 optimalTrajectory = globalTraj(idx(i)).Trajectory;
 break;
 else
 trajectoryEvaluation(idx(i)) = 0;
 end
 end
 end

 % Display the sampled trajectories.
 lineHandles = exampleHelperVisualizeScene(lineHandles, globalTraj, isValid, trajectoryEvaluation);

 if isempty(optimalTrajectory)
 % All trajectories either violated a constraint or resulted in collision.
 %
 % If planning failed immediately, revisit the simulator, planner,
 % and behavior properties.
 %
 % If the planner failed midway through a simulation, additional
 % behaviors can be introduced to handle more complicated planning conditions.
 error('No valid trajectory has been found.');
 else
 % Visualize the scene between replanning.
 for i = (2+(0:(stepPerUpdate-1)))
 % Approximate realtime visualization.
 dt = toc;
 if scenario.SampleTime-dt > 0
 pause(scenario.SampleTime-dt);
 end

8 Featured Examples

8-756

 egoState = optimalTrajectory(i,:);
 scenarioViewer.Actors(1).Position(1:2) = egoState(1:2);
 scenarioViewer.Actors(1).Velocity(1:2) = [cos(egoState(3)) sin(egoState(3))]*egoState(5);
 scenarioViewer.Actors(1).Yaw = egoState(3)*180/pi;
 scenarioViewer.Actors(1).AngularVelocity(3) = egoState(4)*egoState(5);

 % Update capsule visualization.
 hold on;
 show(capList,'TimeStep',i:capList.MaxNumSteps,'FastUpdate',1);
 hold off;

 % Update driving scenario.
 advance(scenarioViewer);
 tic;
 end
 end
end

See Also
referencePathFrenet | trajectoryGeneratorFrenet | drivingScenario

More About
• “Optimal Trajectory Generation for Urban Driving” (Navigation Toolbox)
• “Highway Lane Change” on page 8-867

 Highway Trajectory Planning Using Frenet Reference Path

8-757

Motion Planning in Urban Environments Using Dynamic
Occupancy Grid Map

This example shows you how to perform dynamic replanning in an urban driving scene using a Frenet
reference path. In this example, you use a dynamic occupancy grid map estimate of the local
environment to find optimal local trajectories.

Introduction

Dynamic replanning for autonomous vehicles is typically done with a local motion planner. The local
motion planner is responsible for generating an optimal trajectory based on the global plan and
information about the surrounding environment. Information about the surrounding environment can
be described mainly in two ways:

1 Discrete set of objects in the surrounding environment with defined geometries.
2 Discretized grid with estimate about free and occupied regions in the surrounding environment.

In the presence of dynamic obstacles in the environment, a local motion planner requires short-term
predictions of the information about the surroundings to assess the validity of the planned
trajectories. The choice of environment representation is typically governed by the upstream
perception algorithm. For planning algorithms, the object-based representation offers a memory-
efficient description of the environment. It also allows for an easier way to define inter-object
relations for behavior prediction. On the other hand, a grid-based approach allows for an object-
model-free representation, which assists in efficient collision-checking in complex scenarios with
large number of objects. The grid-based representation is also less sensitive to imperfections of
object extraction such as false and missed targets. A hybrid of these two approaches is also possible
by extracting object hypothesis from the grid-based representation.

In this example, you represent the surrounding environment as a dynamic occupancy grid map. For
an example using the discrete set of objects, refer to the “Highway Trajectory Planning Using Frenet
Reference Path” (Navigation Toolbox) example. A dynamic occupancy grid map is a grid-based
estimate of the local environment around the ego vehicle. In addition to estimating the probability of
occupancy, the dynamic occupancy grid also estimates the kinematic attributes of each cell, such as
velocity, turn-rate, and acceleration. Further, the estimates from the dynamic grid can be predicted
for a short-time in the future to assess the occupancy of the local environment in the near future. In
this example, you obtain the grid-based estimate of the environment by fusing point clouds from six
lidars mounted on the ego vehicle.

Set Up Scenario and Grid-Based Tracker

The scenario used in this example represents an urban intersection scene and contains a variety of
objects, including pedestrians, bicyclists, cars, and trucks. The ego vehicle is equipped with six
homogenous lidar sensors, each with a field of view of 90 degrees, providing 360-degree coverage
around the ego vehicle. For more details on the scenario and sensor models, refer to the “Grid-Based
Tracking in Urban Environments Using Multiple Lidars” (Sensor Fusion and Tracking Toolbox)
example. The definition of scenario and sensors is wrapped in the helper function
helperGridBasedPlanningScenario.

% For reproducible results
rng(2020);

% Create scenario, ego vehicle and simulated lidar sensors
[scenario, egoVehicle, lidars] = helperGridBasedPlanningScenario;

8 Featured Examples

8-758

Now, define a grid-based tracker using the trackerGridRFS (Sensor Fusion and Tracking Toolbox)
System object™. The tracker outputs both object-level and grid-level estimate of the environment.
The grid-level estimate describes the occupancy and state of the local environment and can be
obtained as the fourth output from the tracker. For more details on how to set up a grid-based
tracker, refer to the “Grid-Based Tracking in Urban Environments Using Multiple Lidars” (Sensor
Fusion and Tracking Toolbox) example.

% Set up sensor configurations for each lidar
sensorConfigs = cell(numel(lidars),1);

% Fill in sensor configurations
for i = 1:numel(sensorConfigs)
 sensorConfigs{i} = helperGetLidarConfig(lidars{i},egoVehicle);
end

% Set up tracker
tracker = trackerGridRFS('SensorConfigurations',sensorConfigs,...
 'HasSensorConfigurationsInput',true,...
 'GridLength',120,...
 'GridWidth',120,...
 'GridResolution',2,...
 'GridOriginInLocal',[-60 -60],...
 'NumParticles',1e5,...
 'NumBirthParticles',2e4,...
 'VelocityLimits',[-15 15;-15 15],...
 'BirthProbability',0.025,...
 'ProcessNoise',5*eye(2),...
 'DeathRate',1e-3,...
 'FreeSpaceDiscountFactor',1e-2,...
 'AssignmentThreshold',8,...
 'MinNumCellsPerCluster',4,...
 'ClusteringThreshold',4,...
 'ConfirmationThreshold',[3 4],...
 'DeletionThreshold',[4 4]);

Set Up Motion Planner

Set up a local motion planning algorithm to plan optimal trajectories in Frenet coordinates along a
global reference path.

Define the global reference path using the referencePathFrenet (Navigation Toolbox) object by
providing the waypoints in the Cartesian coordinate frame of the driving scenario. The reference path
used in this example defines a path that turns right at the intersection.

waypoints = [-110.6 -4.5 0;
 49 -4.5 0;
 55.5 -17.7 -pi/2;
 55.5 -130.6 -pi/2]; % [x y theta]

% Create a reference path using waypoints
refPath = referencePathFrenet(waypoints);

% Visualize the reference path
fig = figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]);
ax = axes(fig);
hold(ax,'on');
plot(scenario,'Parent',ax);

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

8-759

show(refPath,'Parent',ax);
xlim(ax,[-120 80]);
ylim(ax,[-160 40]);

snapnow;

The local motion planning algorithm in this example consists of three main steps:

1 Sample local trajectories
2 Find feasible and collision-free trajectories
3 Choose optimality criterion and select optimal trajectory

The following sections discuss each step of the local planning algorithm and the helper functions used
to execute each step.

Sample Local Trajectories

At each step of the simulation, the planning algorithm generates a list of sample trajectories that the
ego vehicle can choose. The local trajectories are sampled by connecting the current state of the ego
vehicle to desired terminal states. Use the trajectoryGeneratorFrenet (Navigation Toolbox)
object to connect current and terminal states for generating local trajectories. Define the object by
providing the reference path and the desired resolution in time for the trajectory. The object connects
initial and final states in Frenet coordinates using fifth-order polynomials.

connector = trajectoryGeneratorFrenet(refPath,'TimeResolution',0.1);

8 Featured Examples

8-760

The strategy for sampling terminal states in Frenet coordinates often depends on the road network
and the desired behavior of the ego vehicle during different phases of the global path. For more
detailed examples of using different ego behavior, such as cruise-control and car-following, refer to
the "Planning Adaptive Routes Through Traffic" section of the “Highway Trajectory Planning Using
Frenet Reference Path” (Navigation Toolbox) example. In this example, you sample the terminal
states using two different strategies, depending on the location of vehicle on the reference path,
shown as blue and green regions in the following figure.

% Visualize path regions for sampling strategy visualization
pathPoints = closestPoint(refPath, refPath.Waypoints(:,1:2));
roadS = pathPoints(:,end);
intersectionS = roadS(2,end);
intersectionBuffer = 20;
pathGreen = [interpolate(refPath,linspace(0,intersectionS-intersectionBuffer,20));...
 nan(1,6);...
 interpolate(refPath,linspace(intersectionS,roadS(end),100))];
pathBlue = interpolate(refPath,linspace(intersectionS-intersectionBuffer,roadS(2,end),20));
hold(ax,'on');
plot(ax,pathGreen(:,1),pathGreen(:,2),'Color',[0 1 0],'LineWidth',5);
plot(ax,pathBlue(:,1),pathBlue(:,2),'Color',[0 0 1],'LineWidth',5);

snapnow;

When the ego vehicle is in the green region, the following strategy is used to sample local
trajectories. The terminal state of the ego vehicle after ΔT time is defined as:

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

8-761

xEgo ΔT = NaN ṡ 0 d 0 0 ;

where discrete samples for variables are obtained using the following predefined sets:

ΔT ∈ linspace 2, 4, 6 , ṡ ∈ linspace 0, ṡmax, 10 , d ∈ 0 wlane

The use of NaN in the terminal state enables the trajectoryGeneratorFrenet object to
automatically compute the longitudinal distance traveled over a minimum-jerk trajectory. This
strategy produces a set of trajectories that enable the ego vehicle to accelerate up to the maximum
speed limit (ṡmax) rates or decelerate to a full stop at different rates. In addition, the sampled choices
of lateral offset (ddes) allow the ego vehicle to change lanes during these maneuvers.

% Define smax and wlane
speedLimit = 15;
laneWidth = 2.975;

When the ego vehicle is in the blue region of the trajectory, the following strategy is used to sample
local trajectories:

xEgo ΔT = sstop 0 0 0 0 0 ;

where ΔT is chosen to minimize jerk during the trajectory. This strategy enables the vehicle to stop at
the desired distance (sstop) in the right lane with a minimum-jerk trajectory. The trajectory sampling
algorithm is wrapped inside the helper function, helperGenerateTrajectory, attached with this
example.

Finding Feasible and Collision-Free Trajectories

The sampling process described in the previous section can produce trajectories that are
kinematically infeasible and exceed thresholds of kinematic attributes such as acceleration and
curvature. Therefore, you limit the maximum acceleration and speed of the ego vehicle using the
helper function helperKinematicFeasibility on page 8-0 , which checks the feasibility of each
trajectory against these kinematic constraints.

% Define kinematic constraints
accMax = 15;

Further, you set up a collision-validator to assess if the ego vehicle can maneuver on a kinematically
feasible trajectory without colliding with any other obstacles in the environment. To define the
validator, use the helper class HelperDynamicMapValidator. This class uses the
predictMapToTime (Sensor Fusion and Tracking Toolbox) function of the trackerGridRFS object
to get short-term predictions of the occupancy of the surrounding environment. Since the uncertainty
in the estimate increases with time, configure the validator with a maximum time horizon of 2
seconds.

The predicted occupancy of the environment is converted to an inflated costmap at each step to
account for the size of the ego vehicle. The path planner uses a timestep of 0.1 seconds with a
prediction time horizon of 2 seconds. To reduce computational complexity, the occupancy of the
surrounding environment is assumed to be valid for 5 time steps, or 0.5 seconds. As a result, only 4
predictions are required in the 2-second planning horizon. In addition to making binary decisions
about collision or no collision, the validator also provides a measure of collision probability of the ego
vehicle. This probability can be incorporated into the cost function for optimality criteria to account
for uncertainty in the system and to make better decisions without increasing the time horizon of the
planner.

8 Featured Examples

8-762

vehDims = vehicleDimensions(egoVehicle.Length,egoVehicle.Width);
collisionValidator = HelperDynamicMapValidator('MaxTimeHorizon',2, ... % Maximum horizon for validation
 'TimeResolution',connector.TimeResolution, ... % Time steps between trajectory samples
 'Tracker',tracker, ... % Provide tracker for prediction
 'ValidPredictionSpan',5, ... % Prediction valid for 5 steps
 'VehicleDimensions',vehDims); % Provide dimensions of ego

Choose Optimality Criterion

After validating the feasible trajectories against obstacles or occupied regions of the environment,
choose an optimality criterion for each valid trajectory by defining a cost function for the trajectories.
Different cost functions are expected to produce different behaviors from the ego vehicle. In this
example, you define the cost of each trajectory as

C = Js + Jd + 1000Pc + 100 ṡ ΔT − ṡLimit
2

where:

Js is the jerk in the longitudinal direction of the reference path

Jd is the jerk in the lateral direction of the reference path

Pc is the collision probability obtained by the validator

The cost calculation for each trajectory is defined using the helper function
helperCalculateTrajectoryCosts on page 8-0 . From the list of valid trajectories, the trajectory with
the minimum cost is considered as the optimal trajectory.

Run Scenario, Estimate Dynamic Map, and Plan Local Trajectories

Run the scenario, generate point clouds from all the lidar sensors, and estimate the dynamic
occupancy grid map. Use the dynamic map estimate and its predictions to plan a local trajectory for
the ego vehicle.

% Close original figure and initialize a new display
close(fig);
display = helperGridBasedPlanningDisplay;

% Initial ego state
currentEgoState = [-110.6 -1.5 0 0 15 0];
helperMoveEgoVehicleToState(egoVehicle, currentEgoState);

% Initialize pointCloud outputs from each sensor
ptClouds = cell(numel(lidars),1);
sensorConfigs = cell(numel(lidars),1);

% Simulation Loop
while advance(scenario)
 % Current simulation time
 time = scenario.SimulationTime;

 % Poses of objects with respect to ego vehicle
 tgtPoses = targetPoses(egoVehicle);

 % Simulate point cloud from each sensor
 for i = 1:numel(lidars)

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

8-763

 [ptClouds{i}, isValidTime] = step(lidars{i},tgtPoses,time);
 sensorConfigs{i} = helperGetLidarConfig(lidars{i},egoVehicle);
 end

 % Pack point clouds as sensor data format required by the tracker
 sensorData = packAsSensorData(ptClouds,sensorConfigs,time);

 % Call the tracker
 [tracks, ~, ~, map] = tracker(sensorData,sensorConfigs,time);

 % Update validator's future predictions using current estimate
 step(collisionValidator, currentEgoState, map, time);

 % Sample trajectories using current ego state and some kinematic
 % parameters
 [frenetTrajectories, globalTrajectories] = helperGenerateTrajectory(connector, refPath, currentEgoState, speedLimit, laneWidth, intersectionS, intersectionBuffer);

 % Calculate kinematic feasibility of generated trajectories
 isKinematicsFeasible = helperKinematicFeasibility(frenetTrajectories,speedLimit,accMax);

 % Calculate collision validity of feasible trajectories
 feasibleGlobalTrajectories = globalTrajectories(isKinematicsFeasible);
 feasibleFrenetTrajectories = frenetTrajectories(isKinematicsFeasible);
 [isCollisionFree, collisionProb] = isTrajectoryValid(collisionValidator, feasibleGlobalTrajectories);

 % Calculate costs and final optimal trajectory
 nonCollidingGlobalTrajectories = feasibleGlobalTrajectories(isCollisionFree);
 nonCollidingFrenetTrajectories = feasibleFrenetTrajectories(isCollisionFree);
 nonCollodingCollisionProb = collisionProb(isCollisionFree);
 costs = helperCalculateTrajectoryCosts(nonCollidingFrenetTrajectories, nonCollodingCollisionProb, speedLimit);

 % Find optimal trajectory
 [~,idx] = min(costs);
 optimalTrajectory = nonCollidingGlobalTrajectories(idx);

 % Assemble for plotting
 trajectories = helperAssembleTrajectoryForPlotting(globalTrajectories, ...
 isKinematicsFeasible, isCollisionFree, idx);

 % Update display
 display(scenario, egoVehicle, lidars, ptClouds, tracker, tracks, trajectories, collisionValidator);

 % Move ego with optimal trajectory
 if ~isempty(optimalTrajectory)
 currentEgoState = optimalTrajectory.Trajectory(2,:);
 helperMoveEgoVehicleToState(egoVehicle, currentEgoState);
 else
 % All trajectories either violated kinematic feasibility
 % constraints or resulted in a collision. More behaviors on
 % trajectory sampling may be needed.
 error('Unable to compute optimal trajectory');
 end
end

Results

Analyze the results from the local path planning algorithm and how the predictions from the map
assisted the planner. This animation shows the result of the planning algorithm during the entire

8 Featured Examples

8-764

scenario. Notice that the ego vehicle successfully reached its desired destination and maneuvered
around different dynamic objects, whenever necessary. The ego vehicle also came to a stop at the
intersection due to the regional changes added to the sampling policy.

Next, analyze the local planning algorithm during the first lane change. The snapshots in this section
are captured at time = 4.3 seconds during the simulation.

In this snapshot, the ego vehicle has just started to perform a lane change maneuver into the right
lane.

showSnaps(display, 3, 1);

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

8-765

The snapshot that follows shows the estimate of the dynamic grid at the same time step. The color of
the grid cell denotes the direction of motion of the object occupying that grid cell. Notice that the
cells representing the car in front of the ego vehicle are colored red, denoting that the cells are
occupied with a dynamic object. Also, the car is moving in the positive X direction of the scenario, so
based on the color wheel, the color of the corresponding grid cells is red.

f = showSnaps(display, 2, 1);
if ~isempty(f)
 ax = findall(f,'Type','Axes');
 ax.XLim = [0 40];
 ax.YLim = [-20 20];
 s = findall(ax,'Type','Surf');
 s.XData = 36 + 1/3*(s.XData - mean(s.XData(:)));
 s.YData = 16 + 1/3*(s.YData - mean(s.YData(:)));
end

8 Featured Examples

8-766

Based on the previous image, the planned trajectory of the ego vehicle passes through the occupied
regions of space, representing a collision if you performed a traditional static occupancy validation.
The dynamic occupancy map and the validator, however, account for the dynamic nature of the grid
by validating the state of the trajectory against the predicted occupancy at each time step. The next
snapshot shows the predicted costmap at different prediction steps (ΔT), along with the planned
position of the ego vehicle on the trajectory. The predicted costmap is inflated to account for size of
the ego vehicle. Therefore, if a point object representing the origin of the ego vehicle can be placed
on the occupancy map without any collision, it can be interpreted that the ego vehicle does not collide
with any obstacle. The yellow regions on the costmap denote areas with guaranteed collisions with an
obstacle. The collision probability decays outside the yellow regions exponentially until the end of
inflation region. The blue regions indicate areas with zero probability of collision according to the
current prediction.

Notice that the yellow region representing the car in front of the ego vehicle moves forward on the
costmap as the map is predicted in the future. This reflects that the prediction of occupancy
considers the velocity of objects in the surrounding environment. Also, notice that the cells classified
as static objects remained relatively static on the grid during the prediction. Lastly, notice that the
planned position of the ego vehicle origin does not collide with any occupied regions in the cost map.
This shows that the ego vehicle can successfully maneuver on this trajectory.

f = showSnaps(display, 1, 1);
if ~isempty(f)
ax = findall(f,'Type','Axes');
for i = 1:numel(ax)
 ax(i).XLim = [0 40];

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

8-767

 ax(i).YLim = [-20 20];
end
end

Summary

In this example, you learned how to use the dynamic map predictions from the grid-based tracker,
trackerGridRFS, and how to integrate the dynamic map with a local path planning algorithm to
generate trajectories for the ego vehicle in dynamic complex environments. You also learned how the
dynamic nature of the occupancy can be used to plan trajectories more efficiently in the environment.

Supporting Functions
function sensorData = packAsSensorData(ptCloud, configs, time)
% Pack the sensor data as format required by the tracker
%
% ptCloud - cell array of pointCloud object
% configs - cell array of sensor configurations
% time - Current simulation time

%The lidar simulation returns outputs as pointCloud objects. The Location
%property of the point cloud is used to extract x,y, and z locations of
%returns and pack them as structures with information required by a tracker.
sensorData = struct('SensorIndex',{},...
 'Time', {},...
 'Measurement', {},...
 'MeasurementParameters', {});

8 Featured Examples

8-768

for i = 1:numel(ptCloud)
 % This sensor's point cloud
 thisPtCloud = ptCloud{i};

 % Allows mapping between data and configurations without forcing an
 % ordered input and requiring configuration input for static sensors.
 sensorData(i).SensorIndex = configs{i}.SensorIndex;

 % Current time
 sensorData(i).Time = time;

 % Exctract Measurement as a 3-by-N defining locations of points
 sensorData(i).Measurement = reshape(thisPtCloud.Location,[],3)';

 % Data is reported in the sensor coordinate frame and hence measurement
 % parameters are same as sensor transform parameters.
 sensorData(i).MeasurementParameters = configs{i}.SensorTransformParameters;
end

end

function config = helperGetLidarConfig(lidar, ego)
% Get configuration of the lidar sensor for tracker
%
% config - Configuration of the lidar sensor in the world frame
% lidar - lidarPointCloudGeneration object
% ego - driving.scenario.Actor in the scenario

% Define transformation from sensor to ego
senToEgo = struct('Frame',fusionCoordinateFrameType(1),...
 'OriginPosition',[lidar.SensorLocation(:);lidar.Height],...
 'Orientation',rotmat(quaternion([lidar.Yaw lidar.Pitch lidar.Roll],'eulerd','ZYX','frame'),'frame'),...
 'IsParentToChild',true);

% Define transformation from ego to tracking coordinates
egoToScenario = struct('Frame',fusionCoordinateFrameType(1),...
 'OriginPosition',ego.Position(:),...
 'Orientation',rotmat(quaternion([ego.Yaw ego.Pitch ego.Roll],'eulerd','ZYX','frame'),'frame'),...
 'IsParentToChild',true);

% Assemble using trackingSensorConfiguration.
config = trackingSensorConfiguration(...
 'SensorIndex',lidar.SensorIndex,...
 'IsValidTime', true,...
 'SensorLimits',[lidar.AzimuthLimits;0 lidar.MaxRange],...
 'SensorTransformParameters',[senToEgo;egoToScenario],...
 'DetectionProbability',0.95);

end

function helperMoveEgoVehicleToState(egoVehicle, currentEgoState)
% Move ego vehicle in scenario to a state calculated by the planner
%
% egoVehicle - driving.scenario.Actor in the scenario
% currentEgoState - [x y theta kappa speed acc]

% Set 2-D Position

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

8-769

egoVehicle.Position(1:2) = currentEgoState(1:2);

% Set 2-D Velocity (s*cos(yaw) s*sin(yaw))
egoVehicle.Velocity(1:2) = [cos(currentEgoState(3)) sin(currentEgoState(3))]*currentEgoState(5);

% Set Yaw in degrees
egoVehicle.Yaw = currentEgoState(3)*180/pi;

% Set angular velocity in Z (yaw rate) as v/r
egoVehicle.AngularVelocity(3) = currentEgoState(4)*currentEgoState(5);

end

function isFeasible = helperKinematicFeasibility(frenetTrajectories, speedLimit, aMax)
% Check kinematic feasibility of trajectories
%
% frenetTrajectories - Array of trajectories in Frenet coordinates
% speedLimit - Speed limit (m/s)
% aMax - Maximum acceleration (m/s^2)

isFeasible = false(numel(frenetTrajectories),1);
for i = 1:numel(frenetTrajectories)
 % Speed of the trajectory
 speed = frenetTrajectories(i).Trajectory(:,2);

 % Acceleration of the trajectory
 acc = frenetTrajectories(i).Trajectory(:,3);

 % Is speed valid?
 isSpeedValid = ~any(speed < -0.1 | speed > speedLimit + 1);

 % Is acceleration valid?
 isAccelerationValid = ~any(abs(acc) > aMax);

 % Trajectory feasible if both speed and acc valid
 isFeasible(i) = isSpeedValid & isAccelerationValid;
end

end

function cost = helperCalculateTrajectoryCosts(frenetTrajectories, Pc, smax)
% Calculate cost for each trajectory.
%
% frenetTrajectories - Array of trajectories in Frenet coordinates
% Pc - Probability of collision for each trajectory calculated by validator

n = numel(frenetTrajectories);
Jd = zeros(n,1);
Js = zeros(n,1);
s = zeros(n,1);

for i = 1:n
 % Time
 time = frenetTrajectories(i).Times;

 % resolution
 dT = time(2) - time(1);

8 Featured Examples

8-770

 % Jerk along the path
 dds = frenetTrajectories(i).Trajectory(:,3);
 Js(i) = sum(gradient(dds,time).^2)*dT;

 % Jerk perpendicular to path
 % d2L/dt2 = d/dt(dL/ds*ds/dt)
 ds = frenetTrajectories(i).Trajectory(:,2);
 ddL = frenetTrajectories(i).Trajectory(:,6).*(ds.^2) + frenetTrajectories(i).Trajectory(:,5).*dds;
 Jd(i) = sum(gradient(ddL,time).^2)*dT;

 s(i) = frenetTrajectories(i).Trajectory(end,2);
end

cost = Js + Jd + 1000*Pc(:) + 100*(s - smax).^2;

end

See Also

Related Examples
• “Grid-Based Tracking in Urban Environments Using Multiple Lidars” on page 8-422
• “Highway Trajectory Planning Using Frenet Reference Path” on page 8-744

 Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map

8-771

Code Generation for Path Planning and Vehicle Control
This example shows how to modify a Simulink® model of a path planning and vehicle control
algorithm, generate C++ code, and verify the generated code using software-in-the-loop (SIL)
simulation.

Introduction

Developing a path planning and vehicle control algorithm often involves designing and simulating an
algorithm model in Simulink, implementing the algorithm in C++ code, and integrating the algorithm
code into an external software environment for deployment into a vehicle. Automatically generating
and verifying code from the algorithm model ensures functional equivalence between the simulation
and implementation.

The “Automated Parking Valet in Simulink” on page 8-724 example showed how to design a path
planning and vehicle control algorithm. This example shows how to modify the design for
implementation in C++. This steps in this workflow are:

1 Partition the design into algorithm and test bench models.
2 Modify the algorithm model to support code generation.
3 Generate C++ code from the algorithm model.
4 Verify the behavior of the generated code using SIL simulation.

You can then integrate the generated code into an external software project for further testing in a
vehicle.

Partition the Algorithm and Test Bench

The original model from the “Automated Parking Valet in Simulink” on page 8-724 example has
already been partitioned into separate algorithm and test bench models.

• Algorithm Model: AutomatedParkingValetAlgorithm specifies the path planning and
vehicle control functionality to be implemented in C++.

• Test Bench Model: AutomatedParkingValetTestBench specifies the stimulus and
environment to test the algorithm model.

Simulate Test Bench Model

The AutomatedParkingValetTestBench model specifies the stimulus and environment to test the
AutomatedParkingValetAlgorithm model. The main components of the
AutomatedParkingValetTestBench include:

• Algorithm Model Reference: The AutomatedParkingValetAlgorithm model block is
referenced by a Model block. The Model block and supports simulating the referenced model in
different modes of simulation including normal and SIL modes. To learn more about the Model
block, refer to “Reference Existing Models” (Simulink).

• Costmap: The Costmap Creator block creates the costmap of the environment and outputs it as a
bus signal.

• Behavior Planner: The Behavior Planner block triggers a sequence of navigation tasks based on
the global route plan by providing an intermediate goal and configuration.

• Vehicle Model: To demonstrate the performance of the algorithm, the parking valet controller is
applied to the Vehicle Model block, which contains a Vehicle Body 3DOF block.

8 Featured Examples

8-772

The AutomatedParkingValetTestBench model is also configured to log the pose(CurrPose) and
longitudinal velocity (CurrVelocity) of the vehicle and the status of whether the goal from the
behavioral planner was reached (GoalReached). These signals are logged to the workspace variable
logsout.

Simulate the test bench model with the algorithm in normal mode.

open_system('AutomatedParkingValetTestBench')
snapnow
set_param('AutomatedParkingValetTestBench/AutomatedParkingValetAlgorithm','SimulationMode','Normal');
sim('AutomatedParkingValetTestBench')
helperPlotSimulationSignals(logsout)
snapnow

The first figure displays the path that the vehicle traversed from the parking lot input to the final
parking space. The second figure plots the velocity and goal-reached signals. Notice that the vehicle
velocity is smooth and continuous when transitioning between goals.

Modify Algorithm Model to Support Code Generation

The AutomatedParkingValetAlgorithm model specifies the functionality to be implemented in C
++. The main components of the AutomatedParkingValetAlgorithm model are:

• Path Planner: Plans a feasible path through the environment map using a pathPlannerRRT
object.

• Trajectory Generator: Smooths the reference path by fitting splines and converts the smoothed
path into a trajectory by generating a speed profile.

• Vehicle Controller: Controls the steering and velocity of the vehicle to follow the generated path
and speed profile.

Open and update the algorithm model.

open_system('AutomatedParkingValetAlgorithm')
set_param('AutomatedParkingValetAlgorithm','SimulationCommand','Update');

 Code Generation for Path Planning and Vehicle Control

8-773

The AutomatedValetParking model includes several modifications from the “Automated Parking
Valet in Simulink” on page 8-724 example to support code generation. The most significant
modifications are specifying fixed-size component interfaces and explicit rate transitions.

Variable-size component interfaces have been replaced with fixed-size interface to enable generating
and verifying C++ code with SIL simulation.

• The variable-size Poses signal has been split into a fixed-size outport (RefPosesArray) with an
additional outport specifying the size (RefPosesSize).

• The costmapBus bus associated with the Costmap input port contains only fixed-size elements,
since the costmap does not change size in this example.

The AutomatedValetParking model contains multiple rates. The color of the blocks represents
different sample times. Path planning and trajectory generation is performed at a 0.1s sample time
and is colored green. Vehicle control is performed at a 0.05s sample time and is colored red. To learn
more about displaying sample time colors, refer to “View Sample Time Information” (Simulink).

Explicit rate transition blocks have been inserted into the model to treat each rate as a separate task.

• A Rate Transition block has been inserted to the fixed-size CurrPose signal.
• A helper Varsize Rows Rate Transition block (named RT) has been inserted to variable-size signals

that connect blocks of different rates.

Treating each rate as a specific task enables generating a C++ class with separate method entry
points for each rate. Generating separate methods for each rate simplifies integration into multi-
tasking software schedulers or operating systems in the vehicle. To learn more about treating rates as
separate tasks, refer to “Modeling for Multitasking Execution” (Embedded Coder).

Configure and Generate Code from Algorithm Model

Configuring the AutomatedParkingValetAlgorithm model to generate code includes setting
parameters to:

• Generate C++ code with entry points for each rate.
• Apply common optimizations.
• Generate a report to facilitate exploring the generated code.

Set and view model parameters to enable C++ code generation.

helperSetModelParametersForCodeGeneration('AutomatedParkingValetAlgorithm')

Set AutomatedParkingValetAlgorithm configuration parameters:

 Parameter Value Description
 _______________________________ _______________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C' } {'Code Generation>Language' }
 {'SolverType' } {'Fixed-step' } {'Solver>Type' }
 {'FixedStep' } {'auto' } {'Solver>Fixed-step size (fundamental sample time)' }
 {'EnableMultiTasking' } {'on' } {'Solver>Treat each discrete rate as a separate task' }
 {'ProdLongLongMode' } {'on' } {'Hardware Implementation>Support long long' }
 {'BlockReduction' } {'on' } {'Simulation Target>Block reduction' }
 {'MATLABDynamicMemAlloc' } {'on' } {'Simulation Target>Simulation Target>Dynamic memory allocation in MATLAB functions' }

8 Featured Examples

8-774

 {'OptimizeBlockIOStorage' } {'on' } {'Simulation Target>Signal storage reuse' }
 {'InlineInvariantSignals' } {'on' } {'Simulation Target>Inline invariant signals' }
 {'BuildConfiguration' } {'Faster Runs'} {'Code Generation>Build configuration' }
 {'RTWVerbose' } {'of' } {'Code Generation>Verbose build' }
 {'CombineSignalStateStructs' } {'on' } {'Code Generation>Interface>Combine signal/state structures' }
 {'SupportVariableSizeSignals' } {'on' } {'Code Generation>Interface>Support variable-size signals' }
 {'EfficientFloat2IntCast' } {'on' } {'Code Generation>Optimization>Remove code from floating-point to integer conversions that wraps out-of-range values'}
 {'ZeroExternalMemoryAtStartup'} {'off' } {'Code Generation>Optimization>Remove root level I/O zero initialization (inverse logic)' }
 {'CustomSymbolStrGlobalVar' } {'NM' } {'Code Generation>Symbols>Global variables' }
 {'CustomSymbolStrType' } {'NM_T' } {'Code Generation>Symbols>Global types' }
 {'CustomSymbolStrField' } {'NM' } {'Code Generation>Symbols>Field name of global types' }
 {'CustomSymbolStrFcn' } {'APV_NM$F' } {'Code Generation>Symbols>Subsystem methods' }
 {'CustomSymbolStrTmpVar' } {'NM' } {'Code Generation>Symbols>Local temporary variables' }
 {'CustomSymbolStrMacro' } {'NM' } {'Code Generation>Symbols>Constant macros' }

Generate code and the code generation report from the algorithm model.

slbuild('AutomatedParkingValetAlgorithm');

Starting build procedure for: AutomatedParkingValetAlgorithm

Use the Code Generation Report to explore the generated code. To learn more about the Code
Generation Report, refer to “Reports for Code Generation” (Simulink Coder). Use the Code Interface
Report link in the Code Generation Report to explore these generated methods:

• initialize: Call once on initialization.
• step0: Call periodically every 0.05s to execute trajectory generation and vehicle control.
• step1: Call periodically every 0.1s seconds to execute path planning.
• terminate: Call once on termination.

Additional get and set methods for signal interface are declared in
AutomatedParkingValetAlgorithm.h and defined in AutomatedParkingValetAlgorithm.c.

Verify Implementation with SIL Simulation

Software-in-the-loop (SIL) simulation provides early insight into the behavior of a deployed
application. To learn more about SIL simulation, refer to “SIL and PIL Simulations” (Embedded
Coder).

SIL simulation enables you to: * Verify that the compiled generated code on the host is functionally
equivalent to the normal mode. * Log execution times of generated code on the host computer. These
times can be an early indicator of performance of the generated code. For accurate execution time
measurements, profile the generated code when it is integrated into the external environment or
when using with processor-in-the-loop(PIL) simulation. To learn more about SIL profiling, refer to
“Code Execution Profiling with SIL and PIL” (Embedded Coder).

Configure algorithm and test bench model parameters to support SIL simulation and log execution
profiling information.

helperSetModelParametersForSIL('AutomatedParkingValetAlgorithm');
helperSetModelParametersForSIL('AutomatedParkingValetTestBench');

Set AutomatedParkingValetAlgorithm configuration parameters:

 Code Generation for Path Planning and Vehicle Control

8-775

 Parameter Value Description
 ________________________________ ____________________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C' } {'Code Generation>Language' }
 {'CodeExecutionProfiling' } {'on' } {'Code Generation>Verification>Measure task execution time'}
 {'CodeProfilingSaveOptions' } {'AllData' } {'Code Generation>Verification>Save options' }
 {'CodeExecutionProfileVariable'} {'executionProfile'} {'Code Generation>Verification>Workspace variable' }

Set AutomatedParkingValetTestBench configuration parameters:

 Parameter Value Description
 ________________________________ ____________________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C' } {'Code Generation>Language' }
 {'CodeExecutionProfiling' } {'on' } {'Code Generation>Verification>Measure task execution time'}
 {'CodeProfilingSaveOptions' } {'AllData' } {'Code Generation>Verification>Save options' }
 {'CodeExecutionProfileVariable'} {'executionProfile'} {'Code Generation>Verification>Workspace variable' }

Simulate the test bench model with the algorithm in SIL mode and plot the results.

open_system('AutomatedParkingValetTestBench')
set_param('AutomatedParkingValetTestBench/AutomatedParkingValetAlgorithm','SimulationMode','Software-in-the-loop (SIL)');
save_system('AutomatedParkingValetAlgorithm');
sim('AutomatedParkingValetTestBench');

Starting build procedure for: AutomatedParkingValetAlgorithm

helperPlotSimulationSignals(logsout, executionProfile)
snapnow

8 Featured Examples

8-776

 Code Generation for Path Planning and Vehicle Control

8-777

Successful completion of build procedure for: AutomatedParkingValetAlgorithm

Build Summary

Top model targets built:

Model Action Rebuild Reason
===
AutomatedParkingValetAlgorithm Code generated and compiled Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 2m 19.629s
Generated code for 'AutomatedParkingValetAlgorithm' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of build procedure for: AutomatedParkingValetAlgorithm

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: 0h 0m 4.78s
Preparing to start SIL simulation ...
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Updating code generation report with SIL files ...
Starting SIL simulation for component: AutomatedParkingValetAlgorithm
Application stopped
Stopping SIL simulation for component: AutomatedParkingValetAlgorithm

8 Featured Examples

8-778

 Code Generation for Path Planning and Vehicle Control

8-779

The execution time for the step0 and step1 methods are shown in the lower plot. The plots indicate
that the maximum execution time is required at the lower rate (step1) after a goal pose is achieved.
This lower rate is expected because it corresponds to the time when a new path is planned.

Conclusion

This example demonstrated a workflow to generate and verify C++ code for a path planner and
vehicle control algorithm. Compiling and verifying the code with SIL simulation established
confidence that the generated code is functionally correct before integrating into an external
software environment. The workflow was demonstrated as an extension of the “Automated Parking
Valet in Simulink” on page 8-724 example and is generally applicable to designing and implementing
path planning applications.

See Also

More About
• “Automated Parking Valet in Simulink” on page 8-724

8 Featured Examples

8-780

Use HERE HD Live Map Data to Verify Lane Configurations
This example shows how to read and visualize lane configurations for a recorded driving route from
the HERE HD Live Map (HERE HDLM) service. This visualization can be used to verify the lane
configurations detected by the perception system of an onboard sensor, such as a monocular camera.

In this example, you learn how to access the tiled layers from the HDLM service and identify relevant
road-level and lane-level topology, geometry, and attributes.

To read the data, you use a hereHDLMReader object. Use of the HERE HD Live Map service requires
valid HERE HDLM credentials. You need to enter into a separate agreement with HERE in order to
gain access to the HDLM services and to get the required credentials (access_key_id and
access_key_secret) for using the HERE Service.

Overview

High-definition (HD) maps refer to mapping services developed specifically for automated driving
applications. The precise geometry of these maps (with up to 1 cm resolution near the equator) make
them suitable for automated driving workflows beyond the route planning applications of traditional
road maps. Such workflows include lane-level verification, localization, and path planning. This
example shows you how to verify the performance of a lane detection system using lane-level
information from HD mapping data.

The accuracy of HD mapping data enables its use as a source of ground truth data for verification of
onboard sensor perception systems. This high accuracy enables faster and more accurate verification
of existing deployed algorithms.

HERE HD Live Map (HERE HDLM) is a cloud-based HD map service developed by HERE
Technologies to support highly automated driving. The data is composed of tiled mapping layers that
provide access to accurate geometry and robust attributes of a road network. The layers are grouped
into the following models:

• Road Centerline Model: Provides road topology (specified as nodes and links in a graph), shape
geometry, and other road-level attributes.

• HD Lane Model: Provides lane topology (as lane groups and lane group connectors), highly
accurate geometry, and lane-level attributes.

• HD Localization Model: Provides features to support vehicle localization strategies.

For an overview of HERE HDLM layers, see “HERE HD Live Map Layers” on page 4-15.

Cameras are used in automated driving to gather semantic information about the road topology
around the vehicle. Lane boundary detection, lane type classification, and road sign detection
algorithms form the core of such a camera processing pipeline. You can use the HERE HDLM service,
along with a high-precision GPS mounted on the vehicle, to evaluate the accuracy of such algorithms
and verify their performance.

In this example, you learn how to:

1 Read road and lane information from the HERE HDLM service for a recorded GPS sequence.
2 Apply a heuristic route matching approach to the recorded GPS data. Because GPS data is often

imprecise, it is necessary to solve the problem of matching recorded geographic coordinates to a
representation of the road network.

 Use HERE HD Live Map Data to Verify Lane Configurations

8-781

3 Identify environmental attributes relevant to the vehicle. Once a vehicle is successfully located
within the context of the map, you can use road and lane attributes relevant to the vehicle to
verify data recorded by the vehicle's onboard camera sensor.

Load and Display Camera and GPS Data

Start by loading data from the recorded drive. The recorded data in this example is from a driving
dataset collected by the Udacity® Self-Driving Car team. This data includes a video captured by a
front-facing monocular camera and vehicle positions and velocities logged by a GPS.

Load the centerCamera.avi camera video data and corresponding video timestamps.

recordedData = fullfile(toolboxdir('driving'), 'drivingdata', ...
 'udacity', 'drive_segment_09_29_16');
[videoReader, videoTime] = helperLoadCameraData(fullfile(recordedData));

% Show the first frame of the camera data
imageFrame = readFrame(videoReader);
imshow(imageFrame, 'Border', 'tight');

Load the GPS data from the gpsSequence.mat MAT-file.

data = load(fullfile(recordedData, 'gpsSequence.mat'));
gpsData = data.gpsTT;

8 Featured Examples

8-782

% Plot the full route and the first position recorded from the GPS
gpsPlayer = geoplayer(gpsData.Latitude(1), gpsData.Longitude(1), 18);
plotRoute(gpsPlayer, gpsData.Latitude, gpsData.Longitude);
plotPosition(gpsPlayer, gpsData.Latitude(1), gpsData.Longitude(1));

Match Recorded Vehicle Position to a Road

Create a reader for reading the HERE HD Live Map tiles that cover all recorded GPS locations in the
drive. If you have not previously set up HERE HDLM credentials, a dialog box prompts you to enter
them. Enter the Access Key ID and Access Key Secret that you obtained from HERE Technologies,
and click OK.

reader = hereHDLMReader(gpsData.Latitude, gpsData.Longitude);

Read and plot road topology data from the TopologyGeometry layer. This layer represents the
configuration of the road network. Nodes of the network correspond to intersections and dead-ends.
Links between nodes represent the shape of the connecting streets as polylines. The connectivity and
geometry for these features are contained in the LinksStartingInTile and NodesInTile fields.

topologyLayer = read(reader, 'TopologyGeometry')

figure('Name', 'TopologyGeometry');
topologyAxes = plot(topologyLayer);
hold(topologyAxes, 'on');

 Use HERE HD Live Map Data to Verify Lane Configurations

8-783

geoplot(topologyAxes, gpsData.Latitude, gpsData.Longitude, ...
 'bo-', 'DisplayName', 'Route');

topologyLayer =
 TopologyGeometry with properties:

 Data:
 HereTileId: 309106790
 IntersectingLinkRefs: [44×1 struct]
 LinksStartingInTile: [895×1 struct]
 NodesInTile: [651×1 struct]
 TileCenterHere2dCoordinate: [37.3865 -122.1130]
 Metadata:
 Catalog: 'hrn:here:data::olp-here-had:here-hdlm-protobuf-na-2'
 CatalogVersion: 4601
 Use plot to visualize TopologyGeometry data.

The plotting functionality is captured within the helperPlotLayer function, which visualizes
available data from a HD Live Map layer with the recorded drive on the same geographic axes. This
function, defined at the end of the example, will be used to plot subsequent layers.

Given a GPS location recorded along a drive, you can use a route matching algorithm to determine
which road on the network the recorded position corresponds to. This example uses a heuristic route
matching algorithm that considers the nearest links spatially to the recorded geographic point. The
algorithm applies the vehicle's direction of travel to determine the most probable link. This route
matching approach does not consider road connectivity, vehicle access, or GPS data with high
positional error. Therefore, this approach might not apply to all scenarios.

8 Featured Examples

8-784

The helperGetGeometry function extracts geometry information from the given topology layer and
returns this information in a table with the corresponding links.

topologyTable = helperGetGeometry(topologyLayer.LinksStartingInTile, ...
 {'LinkId', 'Geometry.Here2dCoordinateDiffs'});
topologyTable.Properties.VariableNames = {'LinkId', 'Geometry'};

The HelperLinkMatcher class creates a link matcher, which contains the shape geometry for each
link in the desired map tile. This class uses a basic spatial analysis to match the recorded position to
the shape coordinates of the road links.

linkMatcher = HelperLinkMatcher(topologyTable);

% Match first point of the recorded route to the most probable link
[linkId, linkLat, linkLon] = match(linkMatcher, gpsData.Latitude(1), ...
 gpsData.Longitude(1), gpsData.Velocity(1,1:2));

% Plot the shape geometry of the link
geoplot(gpsPlayer.Axes, linkLat, linkLon, 'r.-');

Retrieve Speed Limit Along a Matched Road

Characteristics common to all lanes along a given road are attributed to the link element that
describes that road. One such attribute, speed limit, describes the maximum legal speed for vehicles
traveling on the link. Once a given geographic coordinate is matched to a link, you can identify the

 Use HERE HD Live Map Data to Verify Lane Configurations

8-785

speed limit along that link. Because features like speed limits often change along the length of a link,
these attributes are identified for specific ranges of the link.

The SpeedAttributes layer contains information about the expected vehicle speed on a link,
including the posted speed limit.

speedLayer = read(reader, 'SpeedAttributes');

The helperGetSpeedLimits function extracts speed limit data for the relevant length and direction
of a link. As with extracting the geometry information for a link, specifically capturing the speed limit
data requires specialized code.

speedTable = helperGetSpeedLimits(speedLayer);

% Find the speed limit entry for the matched link
speed = speedTable(speedTable.LinkId == linkId, :);

Match Recorded Position to a Lane Group

The HD Lane Model contains the lane-level geometry and attributes of the road, providing the detail
necessary to support automated driving applications. Much like the Road Centerline Model, the HD
Lane Model also follows a pattern of using topology to describe the road network at the lane level.
Then features of the lane groups are attributed to the elements of this topology. In the HD Lane
Model, the primary topological element is the lane group.

Read and plot lane topology data from the LaneTopology layer. This layer represents lane topology
as lane groups and lane group connectors. Lane groups represent a group of lanes within a link (road
segment). Lane group connectors connect individual lane groups to each other. The connectivity and
geometry for these features are contained in the LaneGroupsStartingInTile and
LaneGroupConnectorsInTile fields, for lane groups and lane group connectors, respectively.

laneTopologyLayer = read(reader, 'LaneTopology')
laneAxes = helperPlotLayer(laneTopologyLayer, ...
 gpsData.Latitude, gpsData.Longitude);
geolimits(laneAxes, [37.3823, 37.3838], [-122.1151, -122.1128]);

laneTopologyLayer =
 LaneTopology with properties:

 Data:
 HereTileId: 309106790
 IntersectingLaneGroupRefs: [56×1 struct]
 LaneGroupConnectorsInTile: [1174×1 struct]
 LaneGroupsStartingInTile: [1783×1 struct]
 TileCenterHere2dCoordinate: [37.3865 -122.1130]
 Metadata:
 Catalog: 'hrn:here:data::olp-here-had:here-hdlm-protobuf-na-2'
 CatalogVersion: 4601
 Use plot to visualize LaneTopology data.

8 Featured Examples

8-786

The lane group represents multiple lanes. Therefore, the geometry of this element is given by the
polygonal shape the group takes, as expressed by the left and right boundaries of the lane group.
Obtain this lane geometry from the lane boundaries by using the helperGetGeometry function.

laneGroupFields = {'LaneGroupId', ...
 'BoundaryGeometry.LeftBoundary.Here2dCoordinateDiffs', ...
 'BoundaryGeometry.RightBoundary.Here2dCoordinateDiffs'};
laneTopologyTable = helperGetGeometry(laneTopologyLayer.LaneGroupsStartingInTile, ...
 laneGroupFields);
laneTopologyTable.Properties.VariableNames = {'LaneGroupId', ...
 'LeftGeometry', 'RightGeometry'};

As with developing a matching algorithm to identify the most probable travel link, matching the given
GPS data to the most probable lane group can follow multiple approaches. The approach described
here uses two layers: LaneRoadReferences and LaneTopology.

• The LaneRoadReferences layer enables you to translate a position on the Road Centerline
Model (given by a link) to a corresponding position on the HD Lane Model (given by a lane group).
Since the link was previously identified, you can filter the candidates for a lane group match to a
smaller subset of all the lane groups available in the tile.

• The LaneTopology layer gives geometry data, which can be used to consider data that exists
spatially within the boundaries of each candidate lane group. As with spatially matching GPS data
to links, such an approach is prone to error and subject to the accuracy of the recorded GPS data.
In addition to matching the lane group, you also need to match the direction vector of the vehicle
relative to the orientation of the lane group. This step is necessary because the attributes of the
lanes are defined with respect to the topology orientation.

 Use HERE HD Live Map Data to Verify Lane Configurations

8-787

Use the helperGetReferences function to generate a table of all lane groups that exist for at least
some length of a link.

referenceLayer = read(reader, 'LaneRoadReferences');
referenceTable = helperGetReferences(referenceLayer);

Create a lane group matcher that contains the boundary geometry for each lane group in the desired
map tile. The HelperLaneGroupMatcher class creates a lane group matcher that contains the
boundary shape geometry for each lane group in the desired map tile. It also contains a reference
table of links to lane groups. As with the HelperLinkMatcher class, this class uses a simple spatial
analysis approach to determine if a given recorded coordinate exists within the boundaries of a lane
group.

laneGroupMatcher = HelperLaneGroupMatcher(referenceTable, laneTopologyTable);

% Match the lane group and relative direction
[laneGroupId, isForward, boundGeometry] = match(laneGroupMatcher, linkId, ...
 gpsData.Latitude(1), gpsData.Longitude(1), gpsData.Velocity(1,1:2));

% Plot the boundary geometry of the lane group
geoplot(gpsPlayer.Axes, boundGeometry(:,1), boundGeometry(:,2), 'm.-');

8 Featured Examples

8-788

Retrieve Lane Configurations for a Matched Lane Group

As with the speed attributes that are mapped to links by an identifier, lane attributes also assign
features to lane groups by using a lane group ID. The LaneAttributes layer contains information
about the lane groups, including the types of each lane in the group and the characteristics of the
lane boundaries.

Use the helperGetLaneAttributes function to extract the different lane types and lane boundary
markings for each lane group in the tile.

laneAttributesLayer = read(reader, 'LaneAttributes');
laneAttributesTable = helperGetLaneAttributes(laneAttributesLayer);

% Find the lane attribute entry for the matched lane group
laneAttribute = laneAttributesTable.LaneGroupId == laneGroupId;

Visualize and Verify Recorded Drive with HERE HDLM Data

The matching algorithms and tables generated to identify the road and lane properties can be
extended to a sequence of recorded GPS coordinates. For each time step, the vehicle's position is
matched to a link and lane group on the road. In addition, the speed limit and lane configurations are
displayed along with the corresponding camera images.

The HelperHDLMUI class creates a tool for streaming video and GPS data from a recorded drive and
displaying relevant information from selected HERE HD Live Map layers at each recorded vehicle
position.

hdlmUI = HelperHDLMUI(gpsData.Latitude(1), gpsData.Longitude(1));

% Synchronize the camera and GPS data into a common timetable
synchronizedData = synchronize(videoTime, gpsData);
videoReader.CurrentTime = 0;
maxDisplayRate = videoReader.FrameRate * 5;

% Initialize some variables to maintain history
prevLinkId = 0;
prevLaneGroupId = 0;

for idx = 1 : height(synchronizedData)

 timeStamp = synchronizedData.Time(idx);

 % Check if the current timestamp has GPS data
 hasGPSFrame = ~(ismissing(synchronizedData.Latitude(idx)) || ...
 ismissing(synchronizedData.Longitude(idx)));

 if hasGPSFrame
 latitude = synchronizedData.Latitude(idx);
 longitude = synchronizedData.Longitude(idx);
 velocity = synchronizedData.Velocity(idx, 1:2);

 % Match GPS position to link
 [linkId, linkLat, linkLon] = match(linkMatcher, ...
 latitude, longitude, velocity);

 if linkId ~= prevLinkId
 % Update link

 Use HERE HD Live Map Data to Verify Lane Configurations

8-789

 updateLink(hdlmUI, linkLat, linkLon);
 prevLinkId = linkId;

 % Update speed limit
 speed = speedTable(speedTable.LinkId == linkId, :);
 updateSpeed(hdlmUI, speed.Value);
 end

 % Match GPS position to lane group
 [laneGroupId, isForward, boundGeometry] = match(laneGroupMatcher, linkId, ...
 latitude, longitude, velocity);

 if laneGroupId ~= prevLaneGroupId
 % Update lane group
 updateLaneGroup(hdlmUI, boundGeometry);
 prevLaneGroupId = laneGroupId;

 % Update lane types and boundary markings
 laneAttribute = laneAttributesTable.LaneGroupId == laneGroupId;
 plotLanes(hdlmUI, laneAttributesTable.Lanes{laneAttribute}, ...
 laneAttributesTable.LaneBoundaries{laneAttribute}, isForward);
 end

 updatePosition(hdlmUI, latitude, longitude);
 else
 % Read frame of the video
 imageFrame = readFrame(videoReader);
 end

 updateImage(hdlmUI, imageFrame);
 updateTime(hdlmUI, timeStamp);
 pause(1/maxDisplayRate);
end

8 Featured Examples

8-790

Conclusion

In this example, you explored how to:

1 Access HD mapping data for a given GPS sequence from the HERE HD Live Map service and
import that data into MATLAB.

2 Match recorded GPS data against the imported road network data to find the relevant link and
lane group for each geographic coordinate.

3 Query attributes of the matched link and lane group, such as speed limit and lane types, to
develop a tool for visually verifying features of the road against the recorded camera data.

The techniques discussed in this example can be further extended to support automated verification
of perception algorithms.

Supporting Functions

helperPlotLayer plots layer data and route on a geographic plot.

function gx = helperPlotLayer(layer, latitude, longitude)
%helperPlotLayer Create geographic plot with layer data and route
% gx = helperPlotLayer(layer, latitude, longitude) creates a geographic
% axes plot with the plottable HDLM layer and the route given by latitude
% and longitude on a new figure.

figure;

% Plot layer
gx = plot(layer);

% Enable adding data to the plot
hold(gx, 'on');

% Plot latitude, longitude data
geoplot(gx, latitude, longitude, 'bo-', 'DisplayName', 'Route');
hold(gx, 'off');
end

helperGetGeometry extracts geometry for topology elements from a layer in the form of a table.

function geometryTable = helperGetGeometry(layer, fields)
%helperGetGeometry Create a table with geometry for topology elements
% geometryTable = helperGetGeometry(layer, fields) returns a table
% formatted with the specified geometry fields of the TopologyGeometry
% and LaneTopology layers.

% Pre-allocate struct
S = repmat(struct, size(layer));

for field = fields
 C = strsplit(field{:}, '.');
 for idx = 1:numel(layer)
 fieldname = strjoin(C, '');
 S(idx).(fieldname) = getfield(layer, {idx}, C{:});
 end
end

 Use HERE HD Live Map Data to Verify Lane Configurations

8-791

geometryTable = struct2table(S);
end

helperGetSpeedLimits extracts speed limit data from a layer in the form of a table.

function speedTable = helperGetSpeedLimits(layer)
%helperGetSpeedLimits Create a data table with speed limits
% speedTable = helperGetSpeedLimits(layer) returns a table formatted with
% the speed limit start, end, direction, and value along a specified link
% as given by the SpeedAttributes layer object specified by layer.

speed = struct(...
 'LinkId', {}, ...
 'Start', {}, ...
 'End', {}, ...
 'Direction', {}, ...
 'Value', {});

for idx = 1 : numel(layer.LinkAttribution)

 % Assign the link ID
 link = layer.LinkAttribution(idx);
 attributions = link.ParametricAttribution;

 % Examine each attribute assigned to the link
 for attrIndex = 1 : numel(attributions)

 linkAttr = vertcat(attributions.LinkParametricAttribution);

 % For each attribute, check if the speed limit information is
 % listed. If speed limit is provided, make an entry.
 for linkAttrIndex = 1 : numel(linkAttr)

 if ~isempty(linkAttr(linkAttrIndex).SpeedLimit)

 % Assign speed limit to specified link
 speedLimit = struct;
 speedLimit.LinkId = link.LinkLocalRef;
 speedLimit.Start = attributions(attrIndex).AppliesToRange.RangeOffsetFromStart;
 speedLimit.End = attributions(attrIndex).AppliesToRange.RangeOffsetFromEnd;
 speedLimit.Direction = attributions(attrIndex).AppliesToDirection;
 speedLimit.Value = linkAttr(linkAttrIndex).SpeedLimit.Value;

 % Convert KPH to MPH
 if strcmpi(linkAttr(linkAttrIndex).SpeedLimit.Unit, 'KILOMETERS_PER_HOUR')
 speedLimit.Value = speedLimit.Value / 1.609;
 end

 if strcmpi(speedLimit.Direction, 'BOTH')
 speed = [speed; speedLimit]; %#ok<AGROW>
 end
 end
 end

 end
end

8 Featured Examples

8-792

speedTable = struct2table(speed);
end

helperGetReferences extracts lane road references from a layer object in the form of a table.

function laneRoadReferenceTable = helperGetReferences(layer)
%helperGetReferences Create a data table with lane road references
% laneRoadReferenceTable = helperGetReferences(layer) returns a table
% formatted with a list of all lane groups existing on a specified link
% as given by the LaneRoadReferences layer object specified by layer.

numLinks = numel(layer.LinkLaneGroupReferences);
reference = repmat(struct('LinkId', {}, 'LaneGroupId', {}), numLinks, 1);

% Get references from links to lane groups
for idx = 1 : numLinks
 link = layer.LinkLaneGroupReferences(idx);
 laneGroups = vertcat(link.LaneGroupReferences.LaneGroupRef);

 reference(idx).LinkId = link.LinkLocalRef;
 reference(idx).LaneGroupId = [laneGroups(:).LaneGroupId]';
end

laneRoadReferenceTable = struct2table(reference);
end

helperGetLaneAttributes extracts lane attributes from a layer object in the form of a table.

function laneAttributesTable = helperGetLaneAttributes(layer)
%helperGetLaneAttributes Create a table with lane and boundary types
% laneAttributesTable = helperGetLaneAttributes(layer) returns a table
% formatted with the lane types and the lane boundary markings for each
% lane group in the LaneAttributes layer object specified by layer.

for laneGroupAttrIndex = 1 : numel(layer.LaneGroupAttribution)
 laneGroup = layer.LaneGroupAttribution(laneGroupAttrIndex);
 attributes(laneGroupAttrIndex).LaneGroupId = laneGroup.LaneGroupRef; %#ok

 % Get lane types for each lane group
 for laneAttrIndex = 1 : numel(laneGroup.LaneAttribution)

 lane = laneGroup.LaneAttribution(laneAttrIndex);

 laneAttr = vertcat(lane.ParametricAttribution);
 laneAttr = vertcat(laneAttr.LaneParametricAttribution);

 for idx = 1 : numel(laneAttr)
 if ~isempty(laneAttr(idx).LaneType)
 attributes(laneGroupAttrIndex).Lanes{lane.LaneNumber} = ...
 laneAttr(idx).LaneType;
 end
 end
 end

 % Get lane boundaries for each lane group
 for laneBoundaryIndex = 1 : numel(laneGroup.LaneBoundaryAttribution)
 laneBoundary = laneGroup.LaneBoundaryAttribution(laneBoundaryIndex);
 boundaries = vertcat(laneBoundary.ParametricAttribution.LaneBoundaryParametricAttribution);

 Use HERE HD Live Map Data to Verify Lane Configurations

8-793

 attributes(laneGroupAttrIndex).LaneBoundaries{laneBoundary.LaneBoundaryNumber} = ...
 boundaries.LaneBoundaryMarking;
 end

end

laneAttributesTable = struct2table(attributes);
end

helperLoadCameraData loads a video reader and timestamps from folder.

function [videoReader, videoTime] = helperLoadCameraData(dirName)
%helperLoadCameraData Load camera images from folder in a timetable
% [videoReader, videoTime] = helperLoadCameraData(dirName) loads a video
% from the folder dirName. Timestamps for the video are read from a
% MAT-file in the folder named timeStamps.mat.

if ~isfolder(dirName)
 error('Expected dirName to be a path to a folder.')
end

matFileName = fullfile(dirName, 'centerCameraTime.mat');
if exist(matFileName, 'file') ~= 2
 error('Expected dirName to have a MAT-file named centerCameraTime.mat containing timestamps.')
end

% Load the MAT-file with timestamps
ts = load(matFileName);
fieldNames = fields(ts);
Time = ts.(fieldNames{1});

videoFileName = fullfile(dirName, 'centerCamera.avi');
if exist(matFileName, 'file') ~= 2
 error('Expected dirName to have a video file named centerCamera.avi.')
end

% Load the video file
videoTime = timetable(Time);
videoReader = VideoReader(videoFileName);
end

See Also
hereHDLMReader | read | plot

More About
• “HERE HD Live Map Layers” on page 4-15
• “Read and Visualize HERE HD Live Map Data” on page 4-7
• “Import HERE HD Live Map Roads into Driving Scenario” on page 5-104

8 Featured Examples

8-794

Localization Correction Using Traffic Sign Data from HERE HD
Maps

This example shows how to use the traffic sign data from the HERE HD Live Map (HERE HDLM)
service to correct the GPS measurements collected by an autonomous vehicle.

Overview

HERE HDLM data contains highly detailed and accurate information about the vehicle environment,
such as road and lane topology, and is suitable for developing automated driving applications. For an
overview of the data that is accessible from HERE HDLM layers, see “HERE HD Live Map Layers” on
page 4-15. This example focuses on the HD Localization Model layer, which contains precise and
dense information about traffic signs. You can improve localization accuracy by combining this
information with live detections of traffic signs from onboard sensors. This example demonstrates a
simplified solution in which you retrieve road sign location data and then use it to correct GPS
readings. A more complete solution uses such data as landmarks in a landmark-based simultaneous
localization and mapping (SLAM) pipeline.

In this example, you learn how to:

1 Read and process traffic sign information from HERE HDLM data using a GPS sequence.
2 Match traffic signs detected by the onboard lidar and camera sensors with the signs stored in the

HERE HDLM data.
3 Compute the position error by comparing known sign locations in HERE HDLM to GPS-returned

locations, and correct the localization results.

Load Sensor Data

The vehicle sensor data used in this example has been recorded to a rosbag using ROS. The example
includes only a snippet of the rosbag to show how to extract, synchronize, and postprocess the data.
To streamline localization correction, the rest of the example uses the post-processed data stored in
MAT files.

% Download sensor data
baseDownloadURL = 'https://ssd.mathworks.com/supportfiles/vision/data/localizationAutonomousCarDataset.zip';
dataFolder = fullfile(tempdir,'localizationAutonomousCarDataset',filesep);
options = weboptions('Timeout',Inf);
zipFileName = [dataFolder,'localizationAutonomousCarDataset.zip'];
folderExists = exist(dataFolder,'dir');

% Create a folder in a temporary directory to save the downloaded file
if ~folderExists
 mkdir(dataFolder)
 disp('Downloading localizationAutonomousCarDataset.zip (1.01 GB). This download can take a few minutes.')
 websave(zipFileName, baseDownloadURL, options);

 % Extract contents of the downloaded file
 disp('Extracting localizationAutonomousCarDataset.zip (1.01 GB) ...')
 unzip(zipFileName, dataFolder)
end

% Extract data from a rosbag (requires ROS Toolbox)
readRosbagData = false;
hasROSToolbox = license('test','ros_toolbox');

 Localization Correction Using Traffic Sign Data from HERE HD Maps

8-795

if readRosbagData && hasROSToolbox
 filepath = [dataFolder,'\rosbag\demoRosbag.bag'];
 % helperReadRosbag uses a small rosbag sample to show how a larger
 % rosbag can be processed. An entire data set is loaded below from MAT files.
 [ptCloudsRosbag, imgsRosbag, gpsRosbag] = helperReadRosbag(filepath);
end

% Load synchronized sensor data directly from MAT files. This data was
% extracted from a much larger rosbag collected using an autonomous car.
imgs = load([dataFolder,'\sensor\images.mat']).imgs; % Images
ptClouds = load([dataFolder,'\sensor\ptClouds.mat']).pcds; % Point clouds
gps = load([dataFolder,'\sensor\gps.mat']).gps; % GPS signals

In a complete pipeline, you first detect the traffic signs in the camera frames, and then project them
onto the lidar point clouds using the lidar-camera calibration result. This projection gives you the 3-D
locations of the traffic signs, which can be used to calculate the error metric based on the traffic
signs detected in HERE HD map data. To simplify the processing for illustration purposes, the traffic
sign data in this example has been hand-annotated using the Ground Truth Labeler app. Load the
bounding boxes of the traffic signs for both the images and point clouds.

imgBBoxes = load([dataFolder,'\utility\imgBBoxes.mat']).imgBBoxes;
pcBBoxes = load([dataFolder,'\utility\pcBBoxes.mat']).pcBBoxes;

Undistort the images by using camera calibration. The calibration data has been obtained using the
Camera Calibrator app.

camCalib = load([dataFolder,'\utility\calibration.mat']).calib;
intrinsics = camCalib.intrinsics;

Display one of the frames to inspect the sensor data.

% Pick a frame
frameIndex = 110;

% Display the camera image and 2-D bounding box of the traffic sign
helperDisplayCameraFrame(imgs,imgBBoxes,frameIndex,intrinsics);

8 Featured Examples

8-796

% Display the point cloud and 3-D bounding box of the traffic sign
helperDisplayPointCloud(ptClouds, pcBBoxes, frameIndex);

 Localization Correction Using Traffic Sign Data from HERE HD Maps

8-797

HERE HDLM data contains links within map tiles. Load the GPS coordinates of a complete route. This
route covers a link that stretches over three HDLM tiles.

gpsRoute = load([dataFolder,'\utility\gpsRoute.mat']).gps_route;

Read Map Data

To read the data from the map tiles that the GPS route is on, use a hereHDLMReader object. Use of
the HERE HD Live Map service requires valid HERE HDLM credentials. You need to enter into a
separate agreement with HERE in order to gain access to the HDLM services and to get the required
credentials (access_key_id and access_key_secret) for using the HERE Service.

% Create and configure the reader
config = hereHDLMConfiguration('hrn:here:data::olp-here-had:here-hdlm-protobuf-na-2',2291);
reader = hereHDLMReader(gpsRoute(:,1),gpsRoute(:,2),'Configuration',config);

% Read data
topologyLayer = read(reader,'TopologyGeometry');
signLayer= read(reader,'LocalizationSign');

Preprocess the data to improve the search time when querying the required data. The helper function
helperProcessHDLMData, defined at the end of the example, takes the GPS route and returns the
following data:

• linkData — Contains all the links present in the tiles spanning the GPS route. The links are
segmented into pairs of [lat, lon] coordinates.

8 Featured Examples

8-798

• signData — Contains information about the signs available in the tiles spanning the GPS route.

[linkData,signData] = helperProcessHDLMData(config,topologyLayer,signLayer);

Localization, Traffic Sign Matching, and Error Correction

To localize the autonomous vehicle, use the GPS measurements and the links forming each road in
the TopologyGeometry layer:

1 For each GPS location, find the closest link in the tile using the helperFindClosestLink
function.

2 Find the closest traffic sign to the vehicle position based on the LocalizationSign layer data.
Then, match that sign to the one of the traffic signs detected by the lidar and camera.

3 Once a traffic sign is not detected anymore, calculate the difference in position between the
traffic signs detected by the lidar and camera and the traffic signs selected from the HERE
HDLM data.

4 Apply the corrections to the previous GPS measurements.

% Initialize variables
hdlmDetectedSigns = zeros(0,2);
lidarDetectedSigns = zeros(0,2);
relevantGPS = zeros(0,2);
finalGPS = zeros(0,4);
finalSigns = zeros(0,4);
numDetections = 0;

for i = 1:numel(gps)

 gpsMeasurement = gps{i};
 pcBBox = pcBBoxes{i};

 % Find the closest link
 closestLinkID = helperFindClosestLink(linkData, gpsMeasurement);

 isSignDetected = ~isempty(pcBBox);
 if isSignDetected
 % If a traffic sign is detected by lidar and camera, find the ID of
 % the traffic sign that is closest to the current GPS position.
 distToSigns = helperDistance(gpsMeasurement(1),gpsMeasurement(2), ...
 signData(:,2),signData(:,3));
 [~,minIndex] = min(distToSigns);
 closestSignID = signData(minIndex,1);

 % Make sure that the closest traffic sign is on the closest link
 for m = 1:size(signLayer,1)
 roadToSignsRefs = signLayer(m,1).RoadToSignsReferences;

 if ismember(closestLinkID,[roadToSignsRefs.LinkRef])
 signRefs = vertcat(roadToSignsRefs.SignRefs);
 if ismember(closestSignID,[signRefs.SignId])
 % Transform the coordinates from the lidar frame to the GPS frame
 [lat,lon] = helperLidar2latlon(pcBBox,gps,i);

 % Store relevant results
 hdlmDetectedSigns = [hdlmDetectedSigns; signData(minIndex,2:3)]; %#ok<*AGROW>
 lidarDetectedSigns = [lidarDetectedSigns; lat, lon];

 Localization Correction Using Traffic Sign Data from HERE HD Maps

8-799

 relevantGPS = [relevantGPS; gpsMeasurement(1:2)];
 numDetections = numDetections+1;
 break
 end
 end
 end

 elseif numDetections > 1
 % Once a traffic sign is not detected anymore, calculate the error between
 % the traffic signs detected by the lidar and camera and the traffic signs
 % selected from the HDLM data.
 error = hdlmDetectedSigns(end,1:2) - mean(lidarDetectedSigns(:,1:2));

 % Apply the correction to the GPS coordinates reported by the GPS sensor
 correctedGPS = relevantGPS + error;

 % Store results
 finalGPS = [finalGPS; relevantGPS, correctedGPS];
 finalSigns = [finalSigns; mean(lidarDetectedSigns), hdlmDetectedSigns(end,:)];

 % Re-initialize storage variables
 numDetections = 0;
 relevantGPS = zeros(0,2);
 hdlmDetectedSigns = zeros(0,2);
 lidarDetectedSigns = zeros(0,2);
 end
end

Display Results on Map

Display the results of the localization pipeline on a map using the calculated latitude and longitude
measurements.

helperDisplayResults(finalSigns,finalGPS,topologyLayer);

8 Featured Examples

8-800

The corrected localization trace matches the lane level localization more accurately as compared to
an actual drive.

Helper Functions

helperReadRosbag reads sensor data from a rosbag and outputs synchronized point clouds, images,
and GPS data. It is meant to illustrate rosbag processing. In this example, it processes only a snippet
of the data that is stored in the post-processed MAT files. This function requires ROS Toolbox™.

function [ptClouds, images, gps] = helperReadRosbag(filepath)

bag = rosbag(filepath);

% Names of ROS topics
lidarTopic = '/os1_cloud_node/points';
imageTopic = '/camera/image_color';
gpsTopic = '/raw_fix';

bagLidar = select(bag,'Topic',lidarTopic);
bagImage = select(bag,'Topic',imageTopic);
bagGPS = select(bag,'Topic',gpsTopic);

% Read the messages
msgStructsImage = readMessages(bagImage);
msgStructsPC = readMessages(bagLidar);
msgStructsGPS = readMessages(bagGPS);

 Localization Correction Using Traffic Sign Data from HERE HD Maps

8-801

numLidarFrames = size(bagLidar.MessageList,1);

ptClouds = cell(numLidarFrames, 1);
images = cell(numLidarFrames, 1);
gps = cell(numLidarFrames, 1);

% Since each sensor runs at a different frequency, use the
% lidar's acquisition rate as the basis for synchronizing lidar,
% video and GPS data. Collect frames from other sensors by
% selecting the closest ones according to their time stamps.
for i = 1:numLidarFrames
 timeStamp = bagLidar.MessageList.Time(i);

 % Lidar point cloud
 msgPC = msgStructsPC{i};
 ptClouds{i} = pointCloud(readXYZ(msgPC));

 % Camera data
 [~, minIdx] = min(abs(bagImage.MessageList.Time-timeStamp));
 images{i} = readImage(msgStructsImage{minIdx});

 % GPS data
 [~, minIdx] = min(abs(bagGPS.MessageList.Time-timeStamp));
 gps{i} = [msgStructsGPS{minIdx}.Latitude, ...
 msgStructsGPS{minIdx}.Longitude, ...
 msgStructsGPS{minIdx}.Altitude];
end
end

helperProcessHDLMData processes the data available in the TopologyGeometry and
LocalizationSign layers used for localization.

function [linkData,signData] = helperProcessHDLMData(config,topologyLayer,signLayer)

% Collect all the links in the tiles from the TopologyGeometry layer
[linkIDs,linkGeometries] = helperCollectLinksData(config,topologyLayer);

% Divide the links into segments of two points. This gives more accurate
% results when finding the closest link for a given GPS position
linkData = helperSegmentLinks(linkIDs,linkGeometries);

% Collect all the signs in the tiles from the LocalizationSign layer
signData = helperCollectSignData(signLayer);
end

helperCollectLinksData collects relevant information on all the links that appear in the tiles.

function [linkIDs, linkGeometries] = helperCollectLinksData(config,topologyLayer)

linkIDs=[];
linkGeometries=[];

intersectLinkRefs = vertcat(topologyLayer.IntersectingLinkRefs);
tileIDs = unique(vertcat(intersectLinkRefs.LinkHereTileId));
reader = hereHDLMReader(tileIDs,'Configuration',config);
topologies = read(reader,'TopologyGeometry');

for j = 1:size(topologyLayer,1)

8 Featured Examples

8-802

 % Intersecting links
 currIntersectLinkRefs = topologyLayer(j, 1).IntersectingLinkRefs;
 for i = 1:size(currIntersectLinkRefs,1)
 tileID = currIntersectLinkRefs(i).LinkHereTileId;
 linkID = currIntersectLinkRefs(i).LinkId;
 topology = topologies(tileIDs==tileID);

 linksStartingInTile = topology.LinksStartingInTile;
 linksTileID = vertcat(linksStartingInTile.LinkId);
 linkGeometry = linksStartingInTile(linksTileID==linkID).Geometry.Here2dCoordinateDiffs;
 linkIDs = [linkIDs; linkID];
 linkGeometries = [linkGeometries; {linkGeometry}];
 end

 % Links starting in tile
 linksStartingInTile = topologyLayer(j,1).LinksStartingInTile;
 for i = 1:size(linksStartingInTile,1)
 linkIDs = [linkIDs; linksStartingInTile(i).LinkId];
 linkGeometry = linksStartingInTile(i).Geometry.Here2dCoordinateDiffs;
 linkGeometries = [linkGeometries; {linkGeometry}];
 end
end
end

helperCollectSignData collects the IDs and positions of traffic signs.

function signData = helperCollectSignData(signLayer)

signData = [];
for i = 1:size(signLayer,1)
 signData = [signData; double(vertcat(signLayer(i).Signs.SignId)), ...
 vertcat(signLayer(i).Signs.Here2dCoordinate)];
end
end

helperSegmentLinks breaks up long links into shorter segments.

function linkData = helperSegmentLinks(linkIDs,linkGeometries)

linkData = zeros(0,5); % [LinkID, start_lat, start_lon, end_lat, end_lon]
for i = 1:numel(linkIDs)
 points = linkGeometries{i};
 numSegments = size(points, 1) - 1;
 linkData = [linkData; [repmat(double(linkIDs(i)),numSegments,1), ...
 points(1:numSegments, 1:2), points(2:numSegments+1, 1:2)]];
end
end

helperFindClosestLink finds the closest link to the GPS location.

function closestLinkID = helperFindClosestLink(linkData,gps)

% Compute distance to link
distToLinkStart = helperDistance(gps(1),gps(2),linkData(:, 2),linkData(:, 3));
distToLinkEnd = helperDistance(gps(1),gps(2),linkData(:, 4),linkData(:, 5));
distToLinks = min(distToLinkStart,distToLinkEnd);

% Find closest link

 Localization Correction Using Traffic Sign Data from HERE HD Maps

8-803

[~,index] = min(distToLinks);
closestLinkID = linkData(index, 1);
end

helperLidar2latlon converts coordinates from the lidar frame to the GPS frame.

function [lat,lon] = helperLidar2latlon(bbox, gps, i)
% Converts the lidar coordinates of the detected traffic sign to latitude and
% longitude measurements. This is done by first converting the lidar coordinates
% to the vehicle frame, then the East, North, Up (ENU) frame, and finally the GPS frame.

% Center of the bounding box in the lidar frame.
center = bbox(1:3);

% Calculate the bearing angle.
lon1 = gps{1,i-4}(1);
lon2 = gps{1,i}(1);
lat1 = gps{1,i-4}(2);
lat2 = gps{1,i}(2);

dLon = lon2 - lon1;
y = sin(dLon) * cos(lat2);
x = cos(lat1) * sin(lat2) - sin(lat1) * cos(lat2) * cos(dLon);
theta = atan2(y, x);

initialBearing = mod(theta + 2*pi, 2*pi);
finalBearing = mod(initialBearing + pi/2, 2*pi);

% Transform from the lidar frame to the vehicle frame.
x = -center(1);
y = -center(2);

% Transform from the vehicle frame to the ENU frame.
e = sin(finalBearing)*x - cos(finalBearing)*y;
n = cos(finalBearing)*x + sin(finalBearing)*y;

% Transform from the ENU frame to the GPS frame.
% The origin of the ENU local frame is set to the current GPS location.
origin = [gps{1,i}(1) gps{1,i}(2) gps{1,i}(3)];
[lat,lon] = local2latlon(e,n,0,origin);
end

helperDistance calculates the distance between two groups of GPS points.

function d = helperDistance(lat1,lon1,lat2,lon2)
numSignals = numel(lat2);
[x,y] = latlon2local(lat2,lon2,zeros(numSignals,1),[lat1 lon1 0]); % Assuming zero altitude
d = sqrt(x.^2 + y.^2);
end

helperDisplayResults displays the GPS results of the pipeline on a map. This basemap is from
HERE Technologies and requires a valid license separate from your HERE HDLM license. To use this
map, you must enter the Access Key ID corresponding to your HERE license.

function helperDisplayResults(finalSigns,finalGPS,topologyLayer)

% Create dialog box for entering the Access Key ID.
url = ['https://1.base.maps.ls.hereapi.com/maptile/2.1/maptile/', ...

8 Featured Examples

8-804

 'newest/normal.day/${z}/${x}/${y}/256/png?apikey=%s'];

prompt = {'HERE Access Key ID:'};
title = 'HERE Tokens';

dims = [1 40]; % Text edit field height and width
hereTokens = inputdlg(prompt,title,dims);

if ~isempty(hereTokens)

 % Add HERE basemap with custom attribution.
 url = sprintf(url,hereTokens{1});
 copyrightSymbol = char(169);
 attribution = [copyrightSymbol,' ',datestr(now,'yyyy'),' HERE'];
 addCustomBasemap('herestreets',url,'Attribution',attribution);

 f = figure('Name','Corrected GPS measurements');
 gx = geoaxes("Parent",f);
 plot(topologyLayer,'Axes',gx);
 hold(gx,'on');
 legend(gx,'Boundaries','Nodes','Links','Location','northwest');

 nlat = [finalSigns(1,1) finalSigns(end,1)];
 nlon = [finalSigns(1,2) finalSigns(end,2)];
 nzoom = 16;

 geolimits(gx,nlat,nlon);
 gx.ZoomLevel = nzoom;

 geobasemap(gx,'herestreets');
 geoplot(gx,finalSigns(:,1),finalSigns(:,2),'o','DisplayName','Lidar traffic signs');
 geoplot(gx,finalSigns(:,3),finalSigns(:,4),'*','DisplayName','HDLM traffic signs');
 geoplot(gx,finalGPS(:,1),finalGPS(:,2),'r-+','DisplayName','GPS before correction');
 geoplot(gx,finalGPS(:,3),finalGPS(:,4),'g-+','DisplayName','GPS after correction');
else
 error('You must enter valid credentials to access maps from HERE Technologies');
end
end

helperDisplayCameraFrame displays one camera image with 2-D traffic sign bounding boxes.

function helperDisplayCameraFrame(imgs,imgBBoxes,frameIndex,intrinsics)

img = undistortImage(imgs{frameIndex},intrinsics);

f = figure('Name','Camera frame');
ax = gca(f);

% Display camera frame
imshow(img,'Parent',ax);
hold(ax,'on')

showShape('rectangle',imgBBoxes{frameIndex},'Color','blue','LineWidth',2,'Parent',ax);
end

helperDisplayPointCloud displays one lidar point cloud with 3-D traffic sign bounding boxes.

 Localization Correction Using Traffic Sign Data from HERE HD Maps

8-805

function helperDisplayPointCloud(ptClouds,pcBBoxes,frameIndex)

f = figure('Name','Point cloud');
ax = gca(f);

pcshow(ptClouds{frameIndex},'Parent',ax);
hold(ax,'on')
xlabel(ax,'X')
ylabel(ax,'Y')
zlabel(ax,'Z')

xlim([-40 40])
ylim([-20 40])
zlim([-5 10])
view([90 45])

showShape('cuboid', pcBBoxes{frameIndex},'Color','red','LineWidth',2,'Parent',ax);
end

See Also
hereHDLMReader

Related Examples
• “Use HERE HD Live Map Data to Verify Lane Configurations” on page 8-781
• “Read and Visualize HERE HD Live Map Data” on page 4-7

8 Featured Examples

8-806

Build a Map from Lidar Data
This example shows how to process 3-D lidar data from a sensor mounted on a vehicle to
progressively build a map, with assistance from inertial measurement unit (IMU) readings. Such a
map can facilitate path planning for vehicle navigation or can be used for localization. For evaluating
the generated map, this example also shows how to compare the trajectory of the vehicle against
global positioning system (GPS) recording.

Overview

High Definition (HD) maps are mapping services that provide precise geometry of roads up to a few
centimeters in accuracy. This level of accuracy makes HD maps suitable for automated driving
workflows such as localization and navigation. Such HD maps are generated by building a map from
3-D lidar scans, in conjunction with high-precision GPS and or IMU sensors and can be used to
localize a vehicle within a few centimeters. This example implements a subset of features required to
build such a system.

In this example, you learn how to:

• Load, explore and visualize recorded driving data
• Build a map using lidar scans
• Improve the map using IMU readings

Load and Explore Recorded Driving Data

The data used in this example is from this GitHub® repository, and represents approximately 100
seconds of lidar, GPS and IMU data. The data is saved in the form of MAT-files, each containing a
timetable. Download the MAT-files from the repository and load them into the MATLAB®
workspace.

Note: This download can take a few minutes.

baseDownloadURL = 'https://github.com/mathworks/udacity-self-driving-data-subset/raw/master/drive_segment_11_18_16/';
dataFolder = fullfile(tempdir, 'drive_segment_11_18_16', filesep);
options = weboptions('Timeout', Inf);

lidarFileName = dataFolder + "lidarPointClouds.mat";
imuFileName = dataFolder + "imuOrientations.mat";
gpsFileName = dataFolder + "gpsSequence.mat";

folderExists = exist(dataFolder, 'dir');
matfilesExist = exist(lidarFileName, 'file') && exist(imuFileName, 'file') ...
 && exist(gpsFileName, 'file');

if ~folderExists
 mkdir(dataFolder);
end

if ~matfilesExist
 disp('Downloading lidarPointClouds.mat (613 MB)...')
 websave(lidarFileName, baseDownloadURL + "lidarPointClouds.mat", options);

 disp('Downloading imuOrientations.mat (1.2 MB)...')
 websave(imuFileName, baseDownloadURL + "imuOrientations.mat", options);

 Build a Map from Lidar Data

8-807

https://github.com/mathworks/udacity-self-driving-data-subset/

 disp('Downloading gpsSequence.mat (3 KB)...')
 websave(gpsFileName, baseDownloadURL + "gpsSequence.mat", options);
end

Downloading lidarPointClouds.mat (613 MB)...
Downloading imuOrientations.mat (1.2 MB)...
Downloading gpsSequence.mat (3 KB)...

First, load the point cloud data saved from a Velodyne® HDL32E lidar. Each scan of lidar data is
stored as a 3-D point cloud using the pointCloud object. This object internally organizes the data
using a K-d tree data structure for faster search. The timestamp associated with each lidar scan is
recorded in the Time variable of the timetable.

% Load lidar data from MAT-file
data = load(lidarFileName);
lidarPointClouds = data.lidarPointClouds;

% Display first few rows of lidar data
head(lidarPointClouds)

ans =

 8×1 timetable

 Time PointCloud
 _____________ ______________

 23:46:10.5115 1×1 pointCloud
 23:46:10.6115 1×1 pointCloud
 23:46:10.7116 1×1 pointCloud
 23:46:10.8117 1×1 pointCloud
 23:46:10.9118 1×1 pointCloud
 23:46:11.0119 1×1 pointCloud
 23:46:11.1120 1×1 pointCloud
 23:46:11.2120 1×1 pointCloud

Load the GPS data from the MAT-file. The Latitude, Longitude, and Altitude variables of the
timetable are used to store the geographic coordinates recorded by the GPS device on the vehicle.

% Load GPS sequence from MAT-file
data = load(gpsFileName);
gpsSequence = data.gpsSequence;

% Display first few rows of GPS data
head(gpsSequence)

ans =

 8×3 timetable

 Time Latitude Longitude Altitude
 _____________ ________ _________ ________

 23:46:11.4563 37.4 -122.11 -42.5
 23:46:12.4563 37.4 -122.11 -42.5

8 Featured Examples

8-808

 23:46:13.4565 37.4 -122.11 -42.5
 23:46:14.4455 37.4 -122.11 -42.5
 23:46:15.4455 37.4 -122.11 -42.5
 23:46:16.4567 37.4 -122.11 -42.5
 23:46:17.4573 37.4 -122.11 -42.5
 23:46:18.4656 37.4 -122.11 -42.5

Load the IMU data from the MAT-file. An IMU typically consists of individual sensors that report
information about the motion of the vehicle. They combine multiple sensors, including
accelerometers, gyroscopes and magnetometers. The Orientation variable stores the reported
orientation of the IMU sensor. These readings are reported as quaternions. Each reading is specified
as a 1-by-4 vector containing the four quaternion parts. Convert the 1-by-4 vector to a quaternion
object.

% Load IMU recordings from MAT-file
data = load(imuFileName);
imuOrientations = data.imuOrientations;

% Convert IMU recordings to quaternion type
imuOrientations = convertvars(imuOrientations, 'Orientation', 'quaternion');

% Display first few rows of IMU data
head(imuOrientations)

ans =

 8×1 timetable

 Time Orientation
 _____________ ______________

 23:46:11.4570 1×1 quaternion
 23:46:11.4605 1×1 quaternion
 23:46:11.4620 1×1 quaternion
 23:46:11.4655 1×1 quaternion
 23:46:11.4670 1×1 quaternion
 23:46:11.4705 1×1 quaternion
 23:46:11.4720 1×1 quaternion
 23:46:11.4755 1×1 quaternion

To understand how the sensor readings come in, for each sensor, compute the approximate frame
duration.

lidarFrameDuration = median(diff(lidarPointClouds.Time));
gpsFrameDuration = median(diff(gpsSequence.Time));
imuFrameDuration = median(diff(imuOrientations.Time));

% Adjust display format to seconds
lidarFrameDuration.Format = 's';
gpsFrameDuration.Format = 's';
imuFrameDuration.Format = 's';

% Compute frame rates
lidarRate = 1/seconds(lidarFrameDuration);
gpsRate = 1/seconds(gpsFrameDuration);

 Build a Map from Lidar Data

8-809

imuRate = 1/seconds(imuFrameDuration);

% Display frame durations and rates
fprintf('Lidar: %s, %3.1f Hz\n', char(lidarFrameDuration), lidarRate);
fprintf('GPS : %s, %3.1f Hz\n', char(gpsFrameDuration), gpsRate);
fprintf('IMU : %s, %3.1f Hz\n', char(imuFrameDuration), imuRate);

Lidar: 0.10008 sec, 10.0 Hz
GPS : 1.0001 sec, 1.0 Hz
IMU : 0.002493 sec, 401.1 Hz

The GPS sensor is the slowest, running at a rate close to 1 Hz. The lidar is next slowest, running at a
rate close to 10 Hz, followed by the IMU at a rate of almost 400 Hz.

Visualize Driving Data

To understand what the scene contains, visualize the recorded data using streaming players. To
visualize the GPS readings, use geoplayer. To visualize lidar readings using pcplayer.

% Create a geoplayer to visualize streaming geographic coordinates
latCenter = gpsSequence.Latitude(1);
lonCenter = gpsSequence.Longitude(1);
zoomLevel = 17;

gpsPlayer = geoplayer(latCenter, lonCenter, zoomLevel);

% Plot the full route
plotRoute(gpsPlayer, gpsSequence.Latitude, gpsSequence.Longitude);

% Determine limits for the player
xlimits = [-45 45]; % meters
ylimits = [-45 45];
zlimits = [-10 20];

% Create a pcplayer to visualize streaming point clouds from lidar sensor
lidarPlayer = pcplayer(xlimits, ylimits, zlimits);

% Customize player axes labels
xlabel(lidarPlayer.Axes, 'X (m)')
ylabel(lidarPlayer.Axes, 'Y (m)')
zlabel(lidarPlayer.Axes, 'Z (m)')

title(lidarPlayer.Axes, 'Lidar Sensor Data')

% Align players on screen
helperAlignPlayers({gpsPlayer, lidarPlayer});

% Outer loop over GPS readings (slower signal)
for g = 1 : height(gpsSequence)-1

 % Extract geographic coordinates from timetable
 latitude = gpsSequence.Latitude(g);
 longitude = gpsSequence.Longitude(g);

 % Update current position in GPS display
 plotPosition(gpsPlayer, latitude, longitude);

 % Compute the time span between the current and next GPS reading

8 Featured Examples

8-810

 timeSpan = timerange(gpsSequence.Time(g), gpsSequence.Time(g+1));

 % Extract the lidar frames recorded during this time span
 lidarFrames = lidarPointClouds(timeSpan, :);

 % Inner loop over lidar readings (faster signal)
 for l = 1 : height(lidarFrames)

 % Extract point cloud
 ptCloud = lidarFrames.PointCloud(l);

 % Update lidar display
 view(lidarPlayer, ptCloud);

 % Pause to slow down the display
 pause(0.01)
 end
end

 Build a Map from Lidar Data

8-811

Use Recorded Lidar Data to Build a Map

Lidars are powerful sensors that can be used for perception in challenging environments where other
sensors are not useful. They provide a detailed, full 360 degree view of the environment of the
vehicle.

% Hide players
hide(gpsPlayer)
hide(lidarPlayer)

% Select a frame of lidar data to demonstrate registration workflow
frameNum = 600;
ptCloud = lidarPointClouds.PointCloud(frameNum);

% Display and rotate ego view to show lidar data
helperVisualizeEgoView(ptCloud);

8 Featured Examples

8-812

Lidars can be used to build centimeter-accurate HD maps, including HD maps of entire cities. These
maps can later be used for in-vehicle localization. A typical approach to build such a map is to align
successive lidar scans obtained from the moving vehicle and combine them into a single large point
cloud. The rest of this example explores this approach to building a map.

1 Align lidar scans: Align successive lidar scans using a point cloud registration technique like
the iterative closest point (ICP) algorithm or the normal-distributions transform (NDT) algorithm.
See pcregistericp and pcregisterndt for more details about each algorithm. This example
uses NDT, because it is typically more accurate, especially when considering rotations. The
pcregisterndt function returns the rigid transformation that aligns the moving point cloud
with respect to the reference point cloud. By successively composing these transformations, each
point cloud is transformed back to the reference frame of the first point cloud.

2 Combine aligned scans: Once a new point cloud scan is registered and transformed back to the
reference frame of the first point cloud, the point cloud can be merged with the first point cloud
using pcmerge.

Start by taking two point clouds corresponding to nearby lidar scans. To speed up processing, and
accumulate enough motion between scans, use every tenth scan.

 Build a Map from Lidar Data

8-813

skipFrames = 10;
frameNum = 100;

fixed = lidarPointClouds.PointCloud(frameNum);
moving = lidarPointClouds.PointCloud(frameNum + skipFrames);

Prior to registration, process the point cloud so as to retain structures in the point cloud that are
distinctive. These pre-processing steps include the following:

• Detect and remove the ground plane
• Detect and remove ego-vehicle

These steps are described in more detail in the “Ground Plane and Obstacle Detection Using Lidar”
on page 8-172 example. In this example, the helperProcessPointCloud helper function
accomplishes these steps.

fixedProcessed = helperProcessPointCloud(fixed);
movingProcessed = helperProcessPointCloud(moving);

Display the raw and processed point clouds in top-view. Magenta points were removed during
processing. These points correspond to the ground plane and ego vehicle.

hFigFixed = figure;
pcshowpair(fixed, fixedProcessed)
view(2); % Adjust view to show top-view

helperMakeFigurePublishFriendly(hFigFixed);

% Downsample the point clouds prior to registration. Downsampling improves
% both registration accuracy and algorithm speed.
downsamplePercent = 0.1;
fixedDownsampled = pcdownsample(fixedProcessed, 'random', downsamplePercent);
movingDownsampled = pcdownsample(movingProcessed, 'random', downsamplePercent);

8 Featured Examples

8-814

After preprocessing the point clouds, register them using NDT. Visualize the alignment before and
after registration.

regGridStep = 5;
tform = pcregisterndt(movingDownsampled, fixedDownsampled, regGridStep);

movingReg = pctransform(movingProcessed, tform);

% Visualize alignment in top-view before and after registration
hFigAlign = figure;

subplot(121)
pcshowpair(movingProcessed, fixedProcessed)
title('Before Registration')
view(2)

subplot(122)
pcshowpair(movingReg, fixedProcessed)
title('After Registration')
view(2)

helperMakeFigurePublishFriendly(hFigAlign);

 Build a Map from Lidar Data

8-815

Notice that the point clouds are well-aligned after registration. Even though the point clouds are
closely aligned, the alignment is still not perfect.

Next, merge the point clouds using pcmerge.

mergeGridStep = 0.5;
ptCloudAccum = pcmerge(fixedProcessed, movingReg, mergeGridStep);

hFigAccum = figure;
pcshow(ptCloudAccum)
title('Accumulated Point Cloud')
view(2)

helperMakeFigurePublishFriendly(hFigAccum);

8 Featured Examples

8-816

Now that the processing pipeline for a single pair of point clouds is well-understood, put this together
in a loop over the entire sequence of recorded data. The helperLidarMapBuilder class puts all
this together. The updateMap method of the class takes in a new point cloud and goes through the
steps detailed previously:

• Processing the point cloud by removing the ground plane and ego vehicle, using the
processPointCloud method.

• Downsampling the point cloud.
• Estimating the rigid transformation required to merge the previous point cloud with the current

point cloud.
• Transforming the point cloud back to the first frame.
• Merging the point cloud with the accumulated point cloud map.

Additionally, the updateMap method also accepts an initial transformation estimate, which is used to
initialize the registration. A good initialization can significantly improve results of registration.
Conversely, a poor initialization can adversely affect registration. Providing a good initialization can
also improve the execution time of the algorithm.

 Build a Map from Lidar Data

8-817

A common approach to providing an initial estimate for registration is to use a constant velocity
assumption. Use the transformation from the previous iteration as the initial estimate.

The updateDisplay method additionally creates and updates a 2-D top-view streaming point cloud
display.

% Create a map builder object
mapBuilder = helperLidarMapBuilder('DownsamplePercent', downsamplePercent);

% Set random number seed
rng(0);

closeDisplay = false;
numFrames = height(lidarPointClouds);

tform = rigid3d;
for n = 1 : skipFrames : numFrames - skipFrames

 % Get the nth point cloud
 ptCloud = lidarPointClouds.PointCloud(n);

 % Use transformation from previous iteration as initial estimate for
 % current iteration of point cloud registration. (constant velocity)
 initTform = tform;

 % Update map using the point cloud
 tform = updateMap(mapBuilder, ptCloud, initTform);

 % Update map display
 updateDisplay(mapBuilder, closeDisplay);
end

8 Featured Examples

8-818

Point cloud registration alone builds a map of the environment traversed by the vehicle. While the
map may appear locally consistent, it might have developed significant drift over the entire sequence.

Use the recorded GPS readings as a ground truth trajectory, to visually evaluate the quality of the
built map. First convert the GPS readings (latitude, longitude, altitude) to a local coordinate system.
Select a local coordinate system that coincides with the origin of the first point cloud in the sequence.
This conversion is computed using two transformations:

1 Convert the GPS coordinates to local Cartesian East-North-Up coordinates using the
latlon2local function. The GPS location from the start of the trajectory is used as the
reference point and defines the origin of the local x,y,z coordinate system.

2 Rotate the Cartesian coordinates so that the local coordinate system is aligned with the first lidar
sensor coordinates. Since the exact mounting configuration of the lidar and GPS on the vehicle
are not known, they are estimated.

% Select reference point as first GPS reading
origin = [gpsSequence.Latitude(1), gpsSequence.Longitude(1), gpsSequence.Altitude(1)];

% Convert GPS readings to a local East-North-Up coordinate system
[xEast, yNorth, zUp] = latlon2local(gpsSequence.Latitude, gpsSequence.Longitude, ...

 Build a Map from Lidar Data

8-819

 gpsSequence.Altitude, origin);

% Estimate rough orientation at start of trajectory to align local ENU
% system with lidar coordinate system
theta = median(atan2d(yNorth(1:15), xEast(1:15)));

R = [cosd(90-theta) sind(90-theta) 0;
 -sind(90-theta) cosd(90-theta) 0;
 0 0 1];

% Rotate ENU coordinates to align with lidar coordinate system
groundTruthTrajectory = [xEast, yNorth, zUp] * R;

Superimpose the ground truth trajectory on the built map.

hold(mapBuilder.Axes, 'on')
scatter(mapBuilder.Axes, groundTruthTrajectory(:,1), groundTruthTrajectory(:,2), ...
 'green','filled');

helperAddLegend(mapBuilder.Axes, ...
 {'Map Points', 'Estimated Trajectory', 'Ground Truth Trajectory'});

8 Featured Examples

8-820

After the initial turn, the estimated trajectory veers off the ground truth trajectory significantly. The
trajectory estimated using point cloud registration alone can drift for a number of reasons:

• Noisy scans from the sensor without sufficient overlap
• Absence of strong enough features, for example, near long roads
• Inaccurate initial transformation, especially when rotation is significant.

% Close map display
updateDisplay(mapBuilder, true);

Use IMU Orientation to Improve Built Map

An IMU is an electronic device mounted on a platform. IMUs contain multiple sensors that report
various information about the motion of the vehicle. Typical IMUs incorporate accelerometers,
gyroscopes, and magnetometers. An IMU can provide a reliable measure of orientation.

Use the IMU readings to provide a better initial estimate for registration. The IMU-reported sensor
readings used in this example have already been filtered on the device.

% Reset the map builder to clear previously built map
reset(mapBuilder);

% Set random number seed
rng(0);

initTform = rigid3d;
for n = 1 : skipFrames : numFrames - skipFrames

 % Get the nth point cloud
 ptCloud = lidarPointClouds.PointCloud(n);

 if n > 1
 % Since IMU sensor reports readings at a much faster rate, gather
 % IMU readings reported since the last lidar scan.
 prevTime = lidarPointClouds.Time(n - skipFrames);
 currTime = lidarPointClouds.Time(n);
 timeSinceScan = timerange(prevTime, currTime);

 imuReadings = imuOrientations(timeSinceScan, 'Orientation');

 % Form an initial estimate using IMU readings
 initTform = helperComputeInitialEstimateFromIMU(imuReadings, tform);
 end

 % Update map using the point cloud
 tform = updateMap(mapBuilder, ptCloud, initTform);

 % Update map display
 updateDisplay(mapBuilder, closeDisplay);
end

% Superimpose ground truth trajectory on new map
hold(mapBuilder.Axes, 'on')
scatter(mapBuilder.Axes, groundTruthTrajectory(:,1), groundTruthTrajectory(:,2), ...
 'green','filled');

 Build a Map from Lidar Data

8-821

helperAddLegend(mapBuilder.Axes, ...
 {'Map Points', 'Estimated Trajectory', 'Ground Truth Trajectory'});

% Capture snapshot for publishing
snapnow;

% Close open figures
close([hFigFixed, hFigAlign, hFigAccum]);
updateDisplay(mapBuilder, true);

Using the orientation estimate from IMU significantly improved registration, leading to a much closer
trajectory with smaller drift.

Supporting Functions

helperAlignPlayers aligns a cell array of streaming players so they are arranged from left to right
on the screen.

function helperAlignPlayers(players)

validateattributes(players, {'cell'}, {'vector'});

8 Featured Examples

8-822

hasAxes = cellfun(@(p)isprop(p,'Axes'),players,'UniformOutput', true);
if ~all(hasAxes)
 error('Expected all viewers to have an Axes property');
end

screenSize = get(groot, 'ScreenSize');
screenMargin = [50, 100];

playerSizes = cellfun(@getPlayerSize, players, 'UniformOutput', false);
playerSizes = cell2mat(playerSizes);

maxHeightInSet = max(playerSizes(1:3:end));

% Arrange players vertically so that the tallest player is 100 pixels from
% the top.
location = round([screenMargin(1), screenSize(4)-screenMargin(2)-maxHeightInSet]);
for n = 1 : numel(players)
 player = players{n};

 hFig = ancestor(player.Axes, 'figure');
 hFig.OuterPosition(1:2) = location;

 % Set up next location by going right
 location = location + [50+hFig.OuterPosition(3), 0];
end

 function sz = getPlayerSize(viewer)

 % Get the parent figure container
 h = ancestor(viewer.Axes, 'figure');

 sz = h.OuterPosition(3:4);
 end
end

helperVisualizeEgoView visualizes point cloud data in the ego perspective by rotating about the
center.

function player = helperVisualizeEgoView(ptCloud)

% Create a pcplayer object
xlimits = ptCloud.XLimits;
ylimits = ptCloud.YLimits;
zlimits = ptCloud.ZLimits;

player = pcplayer(xlimits, ylimits, zlimits);

% Turn off axes lines
axis(player.Axes, 'off');

% Set up camera to show ego view
camproj(player.Axes, 'perspective');
camva(player.Axes, 90);
campos(player.Axes, [0 0 0]);
camtarget(player.Axes, [-1 0 0]);

% Set up a transformation to rotate by 5 degrees
theta = 5;

 Build a Map from Lidar Data

8-823

R = [cosd(theta) sind(theta) 0 0
 -sind(theta) cosd(theta) 0 0
 0 0 1 0
 0 0 0 1];
rotateByTheta = rigid3d(R);

for n = 0 : theta : 359
 % Rotate point cloud by theta
 ptCloud = pctransform(ptCloud, rotateByTheta);

 % Display point cloud
 view(player, ptCloud);

 pause(0.05)
end
end

helperProcessPointCloud processes a point cloud by removing points belonging to the ground
plane or ego vehicle.

function ptCloudProcessed = helperProcessPointCloud(ptCloud)

% Check if the point cloud is organized
isOrganized = ~ismatrix(ptCloud.Location);

% If the point cloud is organized, use range-based flood fill algorithm
% (segmentGroundFromLidarData). Otherwise, use plane fitting.
groundSegmentationMethods = ["planefit", "rangefloodfill"];
method = groundSegmentationMethods(isOrganized+1);

if method == "planefit"
 % Segment ground as the dominant plane, with reference normal vector
 % pointing in positive z-direction, using pcfitplane. For organized
 % point clouds, consider using segmentGroundFromLidarData instead.
 maxDistance = 0.4; % meters
 maxAngDistance = 5; % degrees
 refVector = [0, 0, 1]; % z-direction

 [~,groundIndices] = pcfitplane(ptCloud, maxDistance, refVector, maxAngDistance);
elseif method == "rangefloodfill"
 % Segment ground using range-based flood fill.
 groundIndices = segmentGroundFromLidarData(ptCloud);
else
 error("Expected method to be 'planefit' or 'rangefloodfill'")
end

% Segment ego vehicle as points within a given radius of sensor
sensorLocation = [0, 0, 0];
radius = 3.5;

egoIndices = findNeighborsInRadius(ptCloud, sensorLocation, radius);

% Remove points belonging to ground or ego vehicle
ptsToKeep = true(ptCloud.Count, 1);
ptsToKeep(groundIndices) = false;
ptsToKeep(egoIndices) = false;

% If the point cloud is organized, retain organized structure

8 Featured Examples

8-824

if isOrganized
 ptCloudProcessed = select(ptCloud, find(ptsToKeep), 'OutputSize', 'full');
else
 ptCloudProcessed = select(ptCloud, find(ptsToKeep));
end
end

helperComputeInitialEstimateFromIMU estimates an initial transformation for NDT using IMU
orientation readings and previously estimated transformation.

function tform = helperComputeInitialEstimateFromIMU(imuReadings, prevTform)

% Initialize transformation using previously estimated transform
tform = prevTform;

% If no IMU readings are available, return
if height(imuReadings) <= 1
 return;
end

% IMU orientation readings are reported as quaternions representing the
% rotational offset to the body frame. Compute the orientation change
% between the first and last reported IMU orientations during the interval
% of the lidar scan.
q1 = imuReadings.Orientation(1);
q2 = imuReadings.Orientation(end);

% Compute rotational offset between first and last IMU reading by
% - Rotating from q2 frame to body frame
% - Rotating from body frame to q1 frame
q = q1 * conj(q2);

% Convert to Euler angles
yawPitchRoll = euler(q, 'ZYX', 'point');

% Discard pitch and roll angle estimates. Use only heading angle estimate
% from IMU orientation.
yawPitchRoll(2:3) = 0;

% Convert back to rotation matrix
q = quaternion(yawPitchRoll, 'euler', 'ZYX', 'point');
R = rotmat(q, 'point');

% Use computed rotation
tform.T(1:3, 1:3) = R';
end

helperAddLegend adds a legend to the axes.

function helperAddLegend(hAx, labels)

% Add a legend to the axes
hLegend = legend(hAx, labels{:});

% Set text color and font weight
hLegend.TextColor = [1 1 1];
hLegend.FontWeight = 'bold';
end

 Build a Map from Lidar Data

8-825

helperMakeFigurePublishFriendly adjusts figures so that screenshot captured by publish is
correct.

function helperMakeFigurePublishFriendly(hFig)

if ~isempty(hFig) && isvalid(hFig)
 hFig.HandleVisibility = 'callback';
end

end

See Also
Functions
pcmerge | pcregistericp | pcregisterndt

Objects
pcplayer | geoplayer | pointCloud

More About
• “Build a Map from Lidar Data Using SLAM” on page 8-827
• “Lidar Localization with Unreal Engine Simulation” on page 8-972
• “Ground Plane and Obstacle Detection Using Lidar” on page 8-172

External Websites
• Udacity Self-Driving Car Data Subset (MathWorks GitHub repository)

8 Featured Examples

8-826

https://github.com/mathworks/udacity-self-driving-data-subset

Build a Map from Lidar Data Using SLAM
This example shows how to process 3-D lidar data from a sensor mounted on a vehicle to
progressively build a map and estimate the trajectory of a vehicle using simultaneous localization and
mapping (SLAM). In addition to 3-D lidar data, an inertial navigation sensor (INS) is also used to help
build the map. Maps built this way can facilitate path planning for vehicle navigation or can be used
for localization.

Overview

The “Build a Map from Lidar Data” on page 8-807 example uses 3-D lidar data and IMU readings to
progressively build a map of the environment traversed by a vehicle. While this approach builds a
locally consistent map, it is suitable only for mapping small areas. Over longer sequences, the drift
accumulates into a significant error. To overcome this limitation, this example recognizes previously
visited places and tries to correct for the accumulated drift using the graph SLAM approach.

Load and Explore Recorded Data

The data used in this example is part of the Velodyne SLAM Dataset, and represents close to 6
minutes of recorded data. Download the data to a temporary directory.

Note: This download can take a few minutes.

baseDownloadURL = 'https://www.mrt.kit.edu/z/publ/download/velodyneslam/data/scenario1.zip';
dataFolder = fullfile(tempdir, 'kit_velodyneslam_data_scenario1', filesep);
options = weboptions('Timeout', Inf);

zipFileName = dataFolder + "scenario1.zip";

% Get the full file path to the PNG files in the scenario1 folder.
pointCloudFilePattern = fullfile(dataFolder, 'scenario1', 'scan*.png');
numExpectedFiles = 2513;

folderExists = exist(dataFolder, 'dir');
if ~folderExists
 % Create a folder in a temporary directory to save the downloaded zip
 % file.
 mkdir(dataFolder);

 disp('Downloading scenario1.zip (153 MB) ...')
 websave(zipFileName, baseDownloadURL, options);

 % Unzip downloaded file
 unzip(zipFileName, dataFolder);

elseif folderExists && numel(dir(pointCloudFilePattern)) < numExpectedFiles
 % Redownload the data if it got reduced in the temporary directory.
 disp('Downloading scenario1.zip (153 MB) ...')
 websave(zipFileName, baseDownloadURL, options);

 % Unzip downloaded file.
 unzip(zipFileName, dataFolder)
end

Downloading scenario1.zip (153 MB) ...

 Build a Map from Lidar Data Using SLAM

8-827

https://www.mrt.kit.edu/z/publ/download/velodyneslam/dataset.html

Use the helperReadDataset function to read data from the created folder in the form of a
timetable. The point clouds captured by the lidar are stored in the form of PNG image files. Extract
the list of point cloud file names in the pointCloudTable variable. To read the point cloud data from
the image file, use the helperReadPointCloudFromFile function. This function takes an image file
name and returns a pointCloud object. The INS readings are read directly from a configuration file
and stored in the insDataTable variable.

datasetTable = helperReadDataset(dataFolder, pointCloudFilePattern);

pointCloudTable = datasetTable(:, 1);
insDataTable = datasetTable(:, 2:end);

Read the first point cloud and display it at the MATLAB® command prompt

ptCloud = helperReadPointCloudFromFile(pointCloudTable.PointCloudFileName{1});
disp(ptCloud)

 pointCloud with properties:

 Location: [64×870×3 single]
 Count: 55680
 XLimits: [-78.4980 77.7062]
 YLimits: [-76.8795 74.7502]
 ZLimits: [-2.4839 2.6836]
 Color: []
 Normal: []
 Intensity: []

Display the first INS reading. The timetable holds Heading, Pitch, Roll, X, Y, and Z information
from the INS.

disp(insDataTable(1, :))

 Timestamps Heading Pitch Roll X Y Z
 ____________________ _______ ________ _________ _______ _______ ______

 13-Jun-2010 06:27:31 1.9154 0.007438 -0.019888 -2889.1 -2183.9 116.47

Visualize the point clouds using pcplayer, a streaming point cloud display. The vehicle traverses a
path consisting of two loops. In the first loop, the vehicle makes a series of turns and returns to the
starting point. In the second loop, the vehicle makes a series of turns along another route and again
returns to the starting point.

% Specify limits of the player
xlimits = [-45 45]; % meters
ylimits = [-45 45];
zlimits = [-10 20];

% Create a streaming point cloud display object
lidarPlayer = pcplayer(xlimits, ylimits, zlimits);

% Customize player axes labels
xlabel(lidarPlayer.Axes, 'X (m)')
ylabel(lidarPlayer.Axes, 'Y (m)')
zlabel(lidarPlayer.Axes, 'Z (m)')

8 Featured Examples

8-828

title(lidarPlayer.Axes, 'Lidar Sensor Data')

% Skip evey other frame since this is a long sequence
skipFrames = 2;
numFrames = height(pointCloudTable);
for n = 1 : skipFrames : numFrames

 % Read a point cloud
 fileName = pointCloudTable.PointCloudFileName{n};
 ptCloud = helperReadPointCloudFromFile(fileName);

 % Visualize point cloud
 view(lidarPlayer, ptCloud);

 pause(0.01)
end

Build a Map Using Odometry

First, use the approach explained in the “Build a Map from Lidar Data” on page 8-807 example to
build a map. The approach consists of the following steps:

 Build a Map from Lidar Data Using SLAM

8-829

• Align lidar scans: Align successive lidar scans using a point cloud registration technique. This
example uses pcregisterndt for registering scans. By successively composing these
transformations, each point cloud is transformed back to the reference frame of the first point
cloud.

• Combine aligned scans: Generate a map by combining all the transformed point clouds.

This approach of incrementally building a map and estimating the trajectory of the vehicle is called
odometry.

Use a pcviewset object to store and manage data across multiple views. A view set consists of a set
of connected views.

• Each view stores information associated with a single view. This information includes the absolute
pose of the view, the point cloud sensor data captured at that view, and a unique identifier for the
view. Add views to the view set using addView.

• To establish a connection between views use addConnection. A connection stores information
like the relative transformation between the connecting views, the uncertainty involved in
computing this measurement (represented as an information matrix) and the associated view
identifiers.

• Use the plot method to visualize the connections established by the view set. These connections
can be used to visualize the path traversed by the vehicle.

hide(lidarPlayer)

% Set random seed to ensure reproducibility
rng(0);

% Create an empty view set
vSet = pcviewset;

% Create a figure for view set display
hFigBefore = figure('Name', 'View Set Display');
hAxBefore = axes(hFigBefore);

% Initialize point cloud processing parameters
downsamplePercent = 0.1;
regGridSize = 3;

% Initialize transformations
absTform = rigid3d; % Absolute transformation to reference frame
relTform = rigid3d; % Relative transformation between successive scans

viewId = 1;
skipFrames = 5;
numFrames = height(pointCloudTable);
displayRate = 100; % Update display every 100 frames
for n = 1 : skipFrames : numFrames

 % Read point cloud
 fileName = pointCloudTable.PointCloudFileName{n};
 ptCloudOrig = helperReadPointCloudFromFile(fileName);

 % Process point cloud
 % - Segment and remove ground plane
 % - Segment and remove ego vehicle

8 Featured Examples

8-830

 ptCloud = helperProcessPointCloud(ptCloudOrig);

 % Downsample the processed point cloud
 ptCloud = pcdownsample(ptCloud, "random", downsamplePercent);

 firstFrame = (n==1);
 if firstFrame
 % Add first point cloud scan as a view to the view set
 vSet = addView(vSet, viewId, absTform, "PointCloud", ptCloudOrig);

 viewId = viewId + 1;
 ptCloudPrev = ptCloud;
 continue;
 end

 % Use INS to estimate an initial transformation for registration
 initTform = helperComputeInitialEstimateFromINS(relTform, ...
 insDataTable(n-skipFrames:n, :));

 % Compute rigid transformation that registers current point cloud with
 % previous point cloud
 relTform = pcregisterndt(ptCloud, ptCloudPrev, regGridSize, ...
 "InitialTransform", initTform);

 % Update absolute transformation to reference frame (first point cloud)
 absTform = rigid3d(relTform.T * absTform.T);

 % Add current point cloud scan as a view to the view set
 vSet = addView(vSet, viewId, absTform, "PointCloud", ptCloudOrig);

 % Add a connection from the previous view to the current view, representing
 % the relative transformation between them
 vSet = addConnection(vSet, viewId-1, viewId, relTform);

 viewId = viewId + 1;

 ptCloudPrev = ptCloud;
 initTform = relTform;

 if n>1 && mod(n, displayRate) == 1
 plot(vSet, "Parent", hAxBefore);
 drawnow update
 end
end

 Build a Map from Lidar Data Using SLAM

8-831

The view set object vSet, now holds views and connections. In the Views table of vSet, the
AbsolutePose variable specifies the absolute pose of each view with respect to the first view. In the
Connections table of vSet, the RelativePose variable specifies relative constraints between the
connected views, the InformationMatrix variable specifies, for each edge, the uncertainty
associated with a connection.

% Display the first few views and connections
head(vSet.Views)
head(vSet.Connections)

ans =

 8×3 table

 ViewId AbsolutePose PointCloud
 ______ ____________ ______________

 1 1×1 rigid3d 1×1 pointCloud
 2 1×1 rigid3d 1×1 pointCloud
 3 1×1 rigid3d 1×1 pointCloud
 4 1×1 rigid3d 1×1 pointCloud
 5 1×1 rigid3d 1×1 pointCloud
 6 1×1 rigid3d 1×1 pointCloud
 7 1×1 rigid3d 1×1 pointCloud
 8 1×1 rigid3d 1×1 pointCloud

8 Featured Examples

8-832

ans =

 8×4 table

 ViewId1 ViewId2 RelativePose InformationMatrix
 _______ _______ ____________ _________________

 1 2 1×1 rigid3d {6×6 double}
 2 3 1×1 rigid3d {6×6 double}
 3 4 1×1 rigid3d {6×6 double}
 4 5 1×1 rigid3d {6×6 double}
 5 6 1×1 rigid3d {6×6 double}
 6 7 1×1 rigid3d {6×6 double}
 7 8 1×1 rigid3d {6×6 double}
 8 9 1×1 rigid3d {6×6 double}

Now, build a point cloud map using the created view set. Align the view absolute poses with the point
clouds in the view set using pcalign. Specify a grid size to control the resolution of the map. The
map is returned as a pointCloud object.

ptClouds = vSet.Views.PointCloud;
absPoses = vSet.Views.AbsolutePose;
mapGridSize = 0.2;
ptCloudMap = pcalign(ptClouds, absPoses, mapGridSize);

Notice that the path traversed using this approach drifts over time. While the path along the first loop
back to the starting point seems reasonable, the second loop drifts significantly from the starting
point. The accumulated drift results in the second loop terminating several meters away from the
starting point.

A map built using odometry alone is inaccurate. Display the built point cloud map with the traversed
path. Notice that the map and traversed path for the second loop are not consistent with the first
loop.

hold(hAxBefore, 'on');
pcshow(ptCloudMap);
hold(hAxBefore, 'off');

close(hAxBefore.Parent)

Correct Drift Using Pose Graph Optimization

Graph SLAM is a widely used technique for resolving the drift in odometry. The graph SLAM
approach incrementally creates a graph, where nodes correspond to vehicle poses and edges
represent sensor measurements constraining the connected poses. Such a graph is called a pose
graph. The pose graph contains edges that encode contradictory information, due to noise or
inaccuracies in measurement. The nodes in the constructed graph are then optimized to find the set
of vehicle poses that optimally explain the measurements. This technique is called pose graph
optimization.

To create a pose graph from a view set, you can use the createPoseGraph function. This function
creates a node for each view, and an edge for each connection in the view set. To optimize the pose
graph, you can use the optimizePoseGraph (Navigation Toolbox) function.

 Build a Map from Lidar Data Using SLAM

8-833

A key aspect contributing to the effectiveness of graph SLAM in correcting drift is the accurate
detection of loops, that is, places that have been previously visited. This is called loop closure
detection or place recognition. Adding edges to the pose graph corresponding to loop closures
provides a contradictory measurement for the connected node poses, which can be resolved during
pose graph optimization.

Loop closures can be detected using descriptors that characterize the local environment visible to the
Lidar sensor. The Scan Context descriptor [1] is one such descriptor that can be computed from a
point cloud using the scanContextDescriptor function. This example uses a
scanContextLoopDetector object to manage the scan context descriptors that correspond to each
view. It uses the detectLoop object function to detect loop closures with a two phase descriptor
search algorithm. In the first phase, it computes the ring key subdescriptors to find potential loop
candidates. In the second phase, it classifies views as loop closures by thresholding the scan context
distance.

% Set random seed to ensure reproducibility
rng(0);

% Create an empty view set
vSet = pcviewset;

% Create a loop closure detector
loopDetector = scanContextLoopDetector;

% Create a figure for view set display
hFigBefore = figure('Name', 'View Set Display');
hAxBefore = axes(hFigBefore);

% Initialize transformations
absTform = rigid3d; % Absolute transformation to reference frame
relTform = rigid3d; % Relative transformation between successive scans

maxTolerableRMSE = 3; % Maximum allowed RMSE for a loop closure candidate to be accepted

viewId = 1;
for n = 1 : skipFrames : numFrames

 % Read point cloud
 fileName = pointCloudTable.PointCloudFileName{n};
 ptCloudOrig = helperReadPointCloudFromFile(fileName);

 % Process point cloud
 % - Segment and remove ground plane
 % - Segment and remove ego vehicle
 ptCloud = helperProcessPointCloud(ptCloudOrig);

 % Downsample the processed point cloud
 ptCloud = pcdownsample(ptCloud, "random", downsamplePercent);

 firstFrame = (n==1);
 if firstFrame
 % Add first point cloud scan as a view to the view set
 vSet = addView(vSet, viewId, absTform, "PointCloud", ptCloudOrig);

 % Extract the scan context descriptor from the first point cloud
 descriptor = scanContextDescriptor(ptCloudOrig);

8 Featured Examples

8-834

 % Add the first descriptor to the loop closure detector
 addDescriptor(loopDetector, viewId, descriptor)

 viewId = viewId + 1;
 ptCloudPrev = ptCloud;
 continue;
 end

 % Use INS to estimate an initial transformation for registration
 initTform = helperComputeInitialEstimateFromINS(relTform, ...
 insDataTable(n-skipFrames:n, :));

 % Compute rigid transformation that registers current point cloud with
 % previous point cloud
 relTform = pcregisterndt(ptCloud, ptCloudPrev, regGridSize, ...
 "InitialTransform", initTform);

 % Update absolute transformation to reference frame (first point cloud)
 absTform = rigid3d(relTform.T * absTform.T);

 % Add current point cloud scan as a view to the view set
 vSet = addView(vSet, viewId, absTform, "PointCloud", ptCloudOrig);

 % Add a connection from the previous view to the current view representing
 % the relative transformation between them
 vSet = addConnection(vSet, viewId-1, viewId, relTform);

 % Extract the scan context descriptor from the point cloud
 descriptor = scanContextDescriptor(ptCloudOrig);

 % Add the descriptor to the loop closure detector
 addDescriptor(loopDetector, viewId, descriptor)

 % Detect loop closure candidates
 loopViewId = detectLoop(loopDetector);

 % A loop candidate was found
 if ~isempty(loopViewId)
 loopViewId = loopViewId(1);

 % Retrieve point cloud from view set
 loopView = findView(vSet, loopViewId);
 ptCloudOrig = loopView.PointCloud;

 % Process point cloud
 ptCloudOld = helperProcessPointCloud(ptCloudOrig);

 % Downsample point cloud
 ptCloudOld = pcdownsample(ptCloudOld, "random", downsamplePercent);

 % Use registration to estimate the relative pose
 [relTform, ~, rmse] = pcregisterndt(ptCloud, ptCloudOld, ...
 regGridSize, "MaxIterations", 50);

 acceptLoopClosure = rmse <= maxTolerableRMSE;
 if acceptLoopClosure
 % For simplicity, use a constant, small information matrix for
 % loop closure edges

 Build a Map from Lidar Data Using SLAM

8-835

 infoMat = 0.01 * eye(6);

 % Add a connection corresponding to a loop closure
 vSet = addConnection(vSet, loopViewId, viewId, relTform, infoMat);
 end
 end

 viewId = viewId + 1;

 ptCloudPrev = ptCloud;
 initTform = relTform;

 if n>1 && mod(n, displayRate) == 1
 hG = plot(vSet, "Parent", hAxBefore);
 drawnow update
 end
end

Create a pose graph from the view set by using the createPoseGraph method. The pose graph is a
digraph object with:

• Nodes containing the absolute pose of each view
• Edges containing the relative pose constraints of each connection

G = createPoseGraph(vSet);
disp(G)

8 Featured Examples

8-836

 digraph with properties:

 Edges: [539×3 table]
 Nodes: [503×2 table]

In addition to the odometry connections between successive views, the view set now includes loop
closure connections. For example, notice the new connections between the second loop traversal and
the first loop traversal. These are loop closure connections. These can be identified as edges in the
graph whose end nodes are not consecutive.

% Update axes limits to focus on loop closure connections
xlim(hAxBefore, [-50 50]);
ylim(hAxBefore, [-100 50]);

% Find and highlight loop closure connections
loopEdgeIds = find(abs(diff(G.Edges.EndNodes, 1, 2)) > 1);
highlight(hG, 'Edges', loopEdgeIds, 'EdgeColor', 'red', 'LineWidth', 3)

Optimize the pose graph using optimizePoseGraph.

optimG = optimizePoseGraph(G, 'g2o-levenberg-marquardt');

vSetOptim = updateView(vSet, optimG.Nodes);

Display the view set with optimized poses. Notice that the detected loops are now merged, resulting
in a more accurate trajectory.

 Build a Map from Lidar Data Using SLAM

8-837

plot(vSetOptim, 'Parent', hAxBefore)

The absolute poses in the optimized view set can now be used to build a more accurate map. Use the
pcalign function to align the view set point clouds with the optimized view set absolute poses into a
single point cloud map. Specify a grid size to control the resolution of the created point cloud map.

mapGridSize = 0.2;
ptClouds = vSetOptim.Views.PointCloud;
absPoses = vSetOptim.Views.AbsolutePose;
ptCloudMap = pcalign(ptClouds, absPoses, mapGridSize);

hFigAfter = figure('Name', 'View Set Display (after optimization)');
hAxAfter = axes(hFigAfter);
pcshow(ptCloudMap, 'Parent', hAxAfter);

% Overlay view set display
hold on
plot(vSetOptim, 'Parent', hAxAfter);

helperMakeFigurePublishFriendly(hFigAfter);

8 Featured Examples

8-838

While accuracy can still be improved, this point cloud map is significantly more accurate.

References
1 G. Kim and A. Kim, "Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D

Point Cloud Map," 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Madrid, 2018, pp. 4802-4809.

Supporting Functions and Classes

helperReadDataset reads data from specified folder into a timetable.

function datasetTable = helperReadDataset(dataFolder, pointCloudFilePattern)
%helperReadDataset Read Velodyne SLAM Dataset data into a timetable
% datasetTable = helperReadDataset(dataFolder) reads data from the
% folder specified in dataFolder into a timetable. The function
% expects data from the Velodyne SLAM Dataset.
%
% See also fileDatastore, helperReadINSConfigFile.

% Create a file datastore to read in files in the right order
fileDS = fileDatastore(pointCloudFilePattern, 'ReadFcn', ...

 Build a Map from Lidar Data Using SLAM

8-839

 @helperReadPointCloudFromFile);

% Extract the file list from the datastore
pointCloudFiles = fileDS.Files;

imuConfigFile = fullfile(dataFolder, 'scenario1', 'imu.cfg');
insDataTable = helperReadINSConfigFile(imuConfigFile);

% Delete the bad row from the INS config file
insDataTable(1447, :) = [];

% Remove columns that will not be used
datasetTable = removevars(insDataTable, ...
 {'Num_Satellites', 'Latitude', 'Longitude', 'Altitude', 'Omega_Heading', ...
 'Omega_Pitch', 'Omega_Roll', 'V_X', 'V_Y', 'V_ZDown'});

datasetTable = addvars(datasetTable, pointCloudFiles, 'Before', 1, ...
 'NewVariableNames', "PointCloudFileName");
end

helperProcessPointCloud processes a point cloud by removing points belonging to the ground
plane and the ego vehicle.

function ptCloud = helperProcessPointCloud(ptCloudIn, method)
%helperProcessPointCloud Process pointCloud to remove ground and ego vehicle
% ptCloud = helperProcessPointCloud(ptCloudIn, method) processes
% ptCloudIn by removing the ground plane and the ego vehicle.
% method can be "planefit" or "rangefloodfill".
%
% See also pcfitplane, pointCloud/findNeighborsInRadius.

arguments
 ptCloudIn (1,1) pointCloud
 method string {mustBeMember(method, ["planefit","rangefloodfill"])} = "rangefloodfill"
end

isOrganized = ~ismatrix(ptCloudIn.Location);

if (method=="rangefloodfill" && isOrganized)
 % Segment ground using floodfill on range image
 groundFixedIdx = segmentGroundFromLidarData(ptCloudIn, ...
 "ElevationAngleDelta", 11);
else
 % Segment ground as the dominant plane with reference normal
 % vector pointing in positive z-direction
 maxDistance = 0.4;
 maxAngularDistance = 5;
 referenceVector = [0 0 1];

 [~, groundFixedIdx] = pcfitplane(ptCloudIn, maxDistance, ...
 referenceVector, maxAngularDistance);
end

if isOrganized
 groundFixed = false(size(ptCloudIn.Location,1),size(ptCloudIn.Location,2));
else
 groundFixed = false(ptCloudIn.Count, 1);
end

8 Featured Examples

8-840

groundFixed(groundFixedIdx) = true;

% Segment ego vehicle as points within a given radius of sensor
sensorLocation = [0 0 0];
radius = 3.5;
egoFixedIdx = findNeighborsInRadius(ptCloudIn, sensorLocation, radius);

if isOrganized
 egoFixed = false(size(ptCloudIn.Location,1),size(ptCloudIn.Location,2));
else
 egoFixed = false(ptCloudIn.Count, 1);
end
egoFixed(egoFixedIdx) = true;

% Retain subset of point cloud without ground and ego vehicle
if isOrganized
 indices = ~groundFixed & ~egoFixed;
else
 indices = find(~groundFixed & ~egoFixed);
end

ptCloud = select(ptCloudIn, indices);
end

helperComputeInitialEstimateFromINS estimates an initial transformation for registration
from INS readings.

function initTform = helperComputeInitialEstimateFromINS(initTform, insData)

% If no INS readings are available, return
if isempty(insData)
 return;
end

% The INS readings are provided with X pointing to the front, Y to the left
% and Z up. Translation below accounts for transformation into the lidar
% frame.
insToLidarOffset = [0 -0.79 -1.73]; % See DATAFORMAT.txt
Tnow = [-insData.Y(end), insData.X(end), insData.Z(end)].' + insToLidarOffset';
Tbef = [-insData.Y(1) , insData.X(1) , insData.Z(1)].' + insToLidarOffset';

% Since the vehicle is expected to move along the ground, changes in roll
% and pitch are minimal. Ignore changes in roll and pitch, use heading only.
Rnow = rotmat(quaternion([insData.Heading(end) 0 0], 'euler', 'ZYX', 'point'), 'point');
Rbef = rotmat(quaternion([insData.Heading(1) 0 0], 'euler', 'ZYX', 'point'), 'point');

T = [Rbef Tbef;0 0 0 1] \ [Rnow Tnow;0 0 0 1];

initTform = rigid3d(T.');
end

helperMakeFigurePublishFriendly adjusts figures so that screenshot captured by publish is
correct.

function helperMakeFigurePublishFriendly(hFig)

if ~isempty(hFig) && isvalid(hFig)
 hFig.HandleVisibility = 'callback';

 Build a Map from Lidar Data Using SLAM

8-841

end
end

See Also
Functions
pcregisterndt | pcshow | createPoseGraph | optimizePoses

Objects
pcviewset | rigid3d | pointCloud

More About
• “Build a Map from Lidar Data” on page 8-807
• “Ground Plane and Obstacle Detection Using Lidar” on page 8-172
• “Lidar Localization with Unreal Engine Simulation” on page 8-972
• “Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment” on page 8-962

External Websites
• Velodyne SLAM Dataset

8 Featured Examples

8-842

https://www.mrt.kit.edu/z/publ/download/velodyneslam/dataset.html

Create Occupancy Grid Using Monocular Camera and Semantic
Segmentation

This example shows how to estimate free space around a vehicle and create an occupancy grid using
semantic segmentation and deep learning. You then use this occupancy grid to create a vehicle
costmap, which can be used to plan a path.

About Free Space Estimation

Free space estimation identifies areas in the environment where the ego vehicle can drive without
hitting any obstacles such as pedestrians, curbs, or other vehicles. A vehicle can use a variety of
sensors to estimate free space such as radar, lidar, or cameras. This example focuses on estimating
free space from an image sensor using semantic segmentation.

In this example, you learn how to:

• Use semantic image segmentation to estimate free space.
• Create an occupancy grid using the free space estimate.
• Visualize the occupancy grid on a bird's-eye plot.
• Create a vehicle costmap using the occupancy grid.
• Check whether locations in the world are occupied or free.

Download Pretrained Network

This example uses a pretrained semantic segmentation network, which can classify pixels into 11
different classes, including Road, Pedestrian, Car, and Sky. The free space in an image can be
estimated by defining image pixels classified as Road as free space. All other classes are defined as
non-free space or obstacles.

The complete procedure for training this network is shown in the “Semantic Segmentation Using
Deep Learning” example. Download the pretrained network.

% Download the pretrained network.
pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/segnetVGG16CamVid.mat';
pretrainedFolder = fullfile(tempdir,'pretrainedSegNet');
pretrainedSegNet = fullfile(pretrainedFolder,'segnetVGG16CamVid.mat');
if ~exist(pretrainedFolder,'dir')
 mkdir(pretrainedFolder);
 disp('Downloading pretrained SegNet (107 MB)...');
 websave(pretrainedSegNet,pretrainedURL);
 disp('Download complete.');
end

% % Load the network.
data = load(pretrainedSegNet);
net = data.net;

Note: Download time of the data depends on your Internet connection. The commands used above
block MATLAB® until the download is complete. Alternatively, you can use your web browser to first
download the data set to your local disk. In this case, to use the file you downloaded from the web,
change the pretrainedFolder variable above to the location of the downloaded file.

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

8-843

Estimate Free Space

Estimate free space by processing the image using downloaded semantic segmentation network. The
network returns classifications for each image pixel in the image. The free space is identified as
image pixels that have been classified as Road.

The image used in this example is a single frame from an image sequence in the CamVid data set[1].
The procedure shown in this example can be applied to a sequence of frames to estimate free space
as a vehicle drives along. However, because a very deep convolutional neural network architecture is
used in this example (SegNet with a VGG-16 encoder), it takes about 1 second to process each frame.
Therefore, for expediency, process a single frame.

% Read the image.
I = imread('seq05vd_snap_shot.jpg');

% Segment the image.
[C,scores,allScores] = semanticseg(I,net);

% Overlay free space onto the image.
B = labeloverlay(I,C,'IncludedLabels',"Road");

% Display free space and image.
figure
imshow(B)

8 Featured Examples

8-844

To understand the confidence in the free space estimate, display the output score for the Road class
for every pixel. The confidence values can be used to inform downstream algorithms of the estimate's
validity. For example, even if the network classifies a pixel as Road, the confidence score may be low
enough to disregard that classification for safety reasons.

% Use the network's output score for Road as the free space confidence.
roadClassIdx = 4;
freeSpaceConfidence = allScores(:,:,roadClassIdx);

% Display the free space confidence.
figure
imagesc(freeSpaceConfidence)
title('Free Space Confidence Scores')
colorbar

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

8-845

Although the initial segmentation result for Road pixels showed most pixels on the road were
classified correctly, visualizing the scores provides richer detail on the classifier's confidence in those
classifications. For example, the confidence decreases as you get closer to the boundary of the car.

Create Bird's-Eye-View Image

The free space estimate is generated in the image space. To facilitate generation of an occupancy
grid that is useful for navigation, the free space estimate needs to be transformed into the vehicle
coordinate system. This can be done by transforming the free space estimate to a bird's-eye-view
image.

To create the bird's-eye-view image, first define the camera sensor configuration. The supporting
function listed at the end of this example, camvidMonoCameraSensor, returns a monoCamera object
representing the monocular camera used to collect the CamVid[1] data. Configuring the monoCamera
requires the camera intrinsics and extrinsics, which were estimated using data provided in the
CamVid data set. To estimate the camera intrinsics, the function used CamVid checkerboard
calibration images and the Camera Calibrator app. Estimates of the camera extrinsics, such as height
and pitch, were derived from the extrinsic data estimated by the authors of the CamVid data set.

8 Featured Examples

8-846

% Create monoCamera for CamVid data.
sensor = camvidMonoCameraSensor();

Given the camera setup, the birdsEyeView object transforms the original image to the bird's-eye
view. This object lets you specify the area that you want transformed using vehicle coordinates. Note
that the vehicle coordinate units were established by the monoCamera object, when the camera
mounting height was specified in meters. For example, if the height was specified in millimeters, the
rest of the simulation would use millimeters.

% Define bird's-eye-view transformation parameters.
distAheadOfSensor = 20; % in meters, as previously specified in monoCamera height input
spaceToOneSide = 3; % look 3 meters to the right and left
bottomOffset = 0;
outView = [bottomOffset, distAheadOfSensor, -spaceToOneSide, spaceToOneSide];

outImageSize = [NaN, 256]; % output image width in pixels; height is chosen automatically to preserve units per pixel ratio

birdsEyeConfig = birdsEyeView(sensor,outView,outImageSize);

Generate bird's-eye-view image for the image and free space confidence.

% Resize image and free space estimate to size of CamVid sensor.
imageSize = sensor.Intrinsics.ImageSize;
I = imresize(I,imageSize);
freeSpaceConfidence = imresize(freeSpaceConfidence,imageSize);

% Transform image and free space confidence scores into bird's-eye view.
imageBEV = transformImage(birdsEyeConfig,I);
freeSpaceBEV = transformImage(birdsEyeConfig,freeSpaceConfidence);

% Display image frame in bird's-eye view.
figure
imshow(imageBEV)

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

8-847

8 Featured Examples

8-848

Transform the image into a bird's-eye view and generate the free space confidence.

figure
imagesc(freeSpaceBEV)
title('Free Space Confidence')

The areas farther away from the sensor are more blurry, due to having fewer pixels and thus
requiring greater amount of interpolation.

Create Occupancy Grid Based on Free Space Estimation

Occupancy grids are used to represent a vehicle's surroundings as a discrete grid in vehicle
coordinates and are used for path planning. Each cell in the occupancy grid has a value representing
the probability of the occupancy of that cell. The estimated free space can be used to fill in values of
the occupancy grid.

The procedure to fill the occupancy grid using the free space estimate is as follows:

1 Define the dimensions of the occupancy grid in vehicle coordinates.
2 Generate a set of (X,Y) points for each grid cell. These points are in the vehicle's coordinate

system.

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

8-849

3 Transform the points from the vehicle coordinate space (X,Y) into the bird's-eye-view image
coordinate space (x,y) using the vehicleToImage transform.

4 Sample the free space confidence values at (x,y) locations using griddedInterpolant to
interpolate free space confidence values that are not exactly at pixel centers in the image.

5 Fill the occupancy grid cell with the average free space confidence value for all (x,y) points that
correspond to that grid cell.

For brevity, the procedure shown above is implemented in the supporting function,
createOccupancyGridFromFreeSpaceEstimate, which is listed at the end of this example.
Define the dimensions of the occupancy grid in terms of the bird's-eye-view configuration and create
the occupancy grid by calling createOccupancyGridFromFreeSpaceEstimate.

% Define dimensions and resolution of the occupancy grid.
gridX = distAheadOfSensor;
gridY = 2 * spaceToOneSide;
cellSize = 0.25; % in meters to match units used by CamVid sensor

% Create the occupancy grid from the free space estimate.
occupancyGrid = createOccupancyGridFromFreeSpaceEstimate(...
 freeSpaceBEV, birdsEyeConfig, gridX, gridY, cellSize);

Visualize the occupancy grid using birdsEyePlot. Create a birdsEyePlot and add the occupancy
grid on top using pcolor.

% Create bird's-eye plot.
bep = birdsEyePlot('XLimits',[0 distAheadOfSensor],'YLimits', [-5 5]);

% Add occupancy grid to bird's-eye plot.
hold on
[numCellsY,numCellsX] = size(occupancyGrid);
X = linspace(0, gridX, numCellsX);
Y = linspace(-gridY/2, gridY/2, numCellsY);
h = pcolor(X,Y,occupancyGrid);
title('Occupancy Grid (probability)')
colorbar
delete(legend)

% Make the occupancy grid visualization transparent and remove grid lines.
h.FaceAlpha = 0.5;
h.LineStyle = 'none';

8 Featured Examples

8-850

The bird's-eye plot can also display data from multiple sensors. For example, add the radar coverage
area using coverageAreaPlotter.

% Add coverage area to plot.
caPlotter = coverageAreaPlotter(bep, 'DisplayName', 'Coverage Area');

% Update it with a field of view of 35 degrees and a range of 60 meters
mountPosition = [0 0];
range = 15;
orientation = 0;
fieldOfView = 35;
plotCoverageArea(caPlotter, mountPosition, range, orientation, fieldOfView);
hold off

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

8-851

Displaying data from multiple sensors is useful for diagnosing and debugging decisions made by
autonomous vehicles.

Create Vehicle Costmap Using the Occupancy Grid

The vehicleCostmap provides functionality to check if locations, in vehicle or world coordinates,
are occupied or free. This check is required for any path-planning or decision-making algorithm.
Create the vehicleCostmap using the generated occupancyGrid.

% Create the costmap.
costmap = vehicleCostmap(flipud(occupancyGrid), ...
 'CellSize',cellSize, ...
 'MapLocation',[0,-spaceToOneSide]);
costmap.CollisionChecker.InflationRadius = 0;

% Display the costmap.
figure
plot(costmap,'Inflation','off')
colormap(parula)
colorbar
title('Vehicle Costmap')

8 Featured Examples

8-852

% Orient the costmap so that it lines up with the vehicle coordinate
% system, where the X-axis points in front of the ego vehicle and the
% Y-axis points to the left.
view(gca,-90,90)

To illustrate how to use the vehicleCostmap, create a set of locations in world coordinates. These
locations represent a path the vehicle could traverse.

% Create a set of locations in vehicle coordinates.
candidateLocations = [
 8 0.375
 10 0.375
 12 2
 14 0.375
];

Use checkOccupied to check whether each location is occupied or free. Based on the results, a
potential path might be impossible to follow because it collides with obstacles defined in the
costmap.

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

8-853

% Check if locations are occupied.
isOccupied = checkOccupied(costmap,candidateLocations);

% Partition locations into free and occupied for visualization purposes.
occupiedLocations = candidateLocations(isOccupied,:);
freeLocations = candidateLocations(~isOccupied,:);

% Display free and occupied points on top of costmap.
hold on
markerSize = 100;
scatter(freeLocations(:,1),freeLocations(:,2),markerSize,'g','filled')
scatter(occupiedLocations(:,1),occupiedLocations(:,2),markerSize,'r','filled');
legend(["Free" "Occupied"])
hold off

The use of occupancyGrid, vehicleCostmap, and checkOccupied shown above illustrate the
basic operations used by path planners such as pathPlannerRRT. Learn more about path planning
in the “Automated Parking Valet” on page 8-696 example.

8 Featured Examples

8-854

References

[1] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic Object Classes in Video: A
high-definition ground truth database." Pattern Recognition Letters. Vol. 30, Issue 2, 2009, pp. 88-97.

Supporting Functions

function sensor = camvidMonoCameraSensor()
% Return a monoCamera camera configuration based on data from the CamVid
% data set[1].
%
% The cameraCalibrator app was used to calibrate the camera using the
% calibration images provided in CamVid:
%
% http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/CalibrationSeq_and_Files_0010YU.zip
%
% Calibration pattern grid size is 28 mm.
%
% Camera pitch is computed from camera pose matrices [R t] stored here:
%
% http://web4.cs.ucl.ac.uk/staff/g.brostow/MotionSegRecData/data/EgoBoost_trax_matFiles.zip

% References
% ----------
% [1] Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic Object
% Classes in Video: A high-definition ground truth database." _Pattern Recognition
% Letters_. Vol. 30, Issue 2, 2009, pp. 88-97.

calibrationData = load('camera_params_camvid.mat');

% Describe camera configuration.
focalLength = calibrationData.cameraParams.FocalLength;
principalPoint = calibrationData.cameraParams.PrincipalPoint;
imageSize = calibrationData.cameraParams.ImageSize;

% Camera height estimated based on camera setup pictured in [1].
height = 0.5; % height in meters from the ground

% Camera pitch was computed using camera extrinsics provided in data set.
pitch = 0; % pitch of the camera, towards the ground, in degrees

camIntrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);
sensor = monoCamera(camIntrinsics,height,'Pitch',pitch);
end

function occupancyGrid = createOccupancyGridFromFreeSpaceEstimate(...
 freeSpaceBEV,birdsEyeConfig,gridX,gridY,cellSize)
% Return an occupancy grid that contains the occupancy probability over
% a uniform 2-D grid.

% Number of cells in occupancy grid.
numCellsX = ceil(gridX / cellSize);
numCellsY = ceil(gridY / cellSize);

% Generate a set of (X,Y) points for each grid cell. These points are in
% the vehicle's coordinate system. Start by defining the edges of each grid
% cell.

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

8-855

% Define the edges of each grid cell in vehicle coordinates.
XEdges = linspace(0,gridX,numCellsX);
YEdges = linspace(-gridY/2,gridY/2,numCellsY);

% Next, specify the number of sample points to generate along each
% dimension within a grid cell. Use these to compute the step size in the
% X and Y direction. The step size will be used to shift the edge values of
% each grid to produce points that cover the entire area of a grid cell at
% the desired resolution.

% Sample 20 points from each grid cell. Sampling more points may produce
% smoother estimates at the cost of additional computation.
numSamplePoints = 20;

% Step size needed to sample number of desired points.
XStep = (XEdges(2)-XEdges(1)) / (numSamplePoints-1);
YStep = (YEdges(2)-YEdges(1)) / (numSamplePoints-1);

% Finally, slide the set of points across both dimensions of the grid
% cells. Sample the occupancy probability along the way using
% griddedInterpolant.

% Create griddedInterpolant for sampling occupancy probability. Use 1
% minus the free space confidence to represent the probability of occupancy.
occupancyProb = 1 - freeSpaceBEV;
sz = size(occupancyProb);
[y,x] = ndgrid(1:sz(1),1:sz(2));
F = griddedInterpolant(y,x,occupancyProb);

% Initialize the occupancy grid to zero.
occupancyGrid = zeros(numCellsY*numCellsX,1);

% Slide the set of points XEdges and YEdges across both dimensions of the
% grid cell.
for j = 1:numSamplePoints

 % Increment sample points in the X-direction
 X = XEdges + (j-1)*XStep;

 for i = 1:numSamplePoints

 % Increment sample points in the Y-direction
 Y = YEdges + (i-1)*YStep;

 % Generate a grid of sample points in bird's-eye-view vehicle coordinates
 [XGrid,YGrid] = meshgrid(X,Y);

 % Transform grid of sample points to image coordinates
 xy = vehicleToImage(birdsEyeConfig,[XGrid(:) YGrid(:)]);

 % Clip sample points to lie within image boundaries
 xy = max(xy,1);
 xq = min(xy(:,1),sz(2));
 yq = min(xy(:,2),sz(1));

 % Sample occupancy probabilities using griddedInterpolant and keep
 % a running sum.
 occupancyGrid = occupancyGrid + F(yq,xq);

8 Featured Examples

8-856

 end

end

% Determine mean occupancy probability.
occupancyGrid = occupancyGrid / numSamplePoints^2;
occupancyGrid = reshape(occupancyGrid,numCellsY,numCellsX);
end

See Also
Apps
Camera Calibrator

Functions
semanticseg | checkOccupied

Objects
birdsEyeView | monoCamera | pathPlannerRRT | vehicleCostmap | birdsEyePlot

More About
• “Semantic Segmentation Using Deep Learning”
• “Automated Parking Valet” on page 8-696
• “Automate Ground Truth Labeling for Semantic Segmentation” on page 8-58
• “Train Deep Learning Semantic Segmentation Network Using 3-D Simulation Data” (Deep

Learning Toolbox)

 Create Occupancy Grid Using Monocular Camera and Semantic Segmentation

8-857

Lateral Control Tutorial
This example shows how to control the steering angle of a vehicle that is following a planned path
while changing lanes, using the Lateral Controller Stanley block.

Overview

Vehicle control is the final step in a navigation system and is typically accomplished using two
independent controllers:

• Lateral Controller: Adjust the steering angle such that the vehicle follows the reference path.
The controller minimizes the distance between the current vehicle position and the reference
path.

• Longitudinal Controller: While following the reference path, maintain the desired speed by
controlling the throttle and the brake. The controller minimizes the difference between the
heading angle of the vehicle and the orientation of the reference path.

This example focuses on lateral control in the context of path following in a constant longitudinal
velocity scenario. In the example, you will:

1 Learn about the algorithm behind the Lateral Controller Stanley block.
2 Create a driving scenario using the Driving Scenario Designer app and generate a reference path

for the vehicle to follow.
3 Test the lateral controller in the scenario using a closed-loop Simulink® model.
4 Visualize the scenario and the associated simulation results using the Bird's-Eye Scope.

Lateral Controller

The Stanley lateral controller [1] uses a nonlinear control law to minimize the cross-track error and
the heading angle of the front wheel relative to the reference path. The Lateral Controller Stanley
block computes the steering angle command that adjusts a vehicle's current pose to match a
reference pose.

8 Featured Examples

8-858

Depending on the vehicle model used in deriving the control law, the Lateral Controller Stanley block
has two configurations [1]:

• Kinematic bicycle model: The kinematic model assumes that the vehicle has negligible inertia.
This configuration is mainly suitable for low-speed environments, where inertial effects are
minimal. The steering command is computed based on the reference pose, the current pose, and
the velocity of the vehicle.

• Dynamic bicycle model: The dynamic model includes inertia effects: tire slip and steering servo
actuation. This more complicated, but more accurate, model allows the controller to handle
realistic dynamics. In this configuration, the controller also requires the path curvature, the
current yaw rate of the vehicle, and the current steering angle to compute the steering command.

You can set the configuration through the Vehicle model parameter in the block dialog box.

Scenario Creation

The scenario was created using the Driving Scenario Designer app. This scenario includes a single,
three-lane road and the ego vehicle. For detailed steps on adding roads, lanes, and vehicles, see
“Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2. In this
scenario, the vehicle:

1 Starts in the middle lane.
2 Switches to the left lane after entering the curved part of the road.
3 Changes back to the middle lane.

Throughout the simulation, the vehicle runs at a constant velocity of 10 meters/second. This scenario
was exported from the app as a MATLAB® function using the Export > Export MATLAB Function
button. The exported function is named helperCreateDrivingScenario. The roads and actors
from this scenario were saved to the scenario file LateralControl.mat.

 Lateral Control Tutorial

8-859

Model Setup

Open the Simulink tutorial model.

open_system('LateralControlTutorial')

8 Featured Examples

8-860

The model contains the following main components:

• A Lateral Controller Variant Subsystem, Variant Model (Simulink) which contains two Lateral
Controller Stanley blocks, one configured with a kinematic bicycle model and the other one with a
dynamic bicycle model. They both can control the steering angle of the vehicle. You can specify
the active one from the command line. For example, to select the Lateral Controller Stanley
Kinematic block, use the following command:

variant = 'LateralControlTutorial/Lateral Controller';
set_param(variant, 'LabelModeActivechoice', 'Kinematic');

• A HelperPathAnalyzer block, which provides the reference signal for the lateral controller.
Given the current pose of the vehicle, it determines the reference pose by searching for the
closest point to the vehicle on the reference path.

• A Vehicle and Environment subsystem, which models the motion of the vehicle using a Vehicle
Body 3DOF (Vehicle Dynamics Blockset) block. The subsystem also models the environment by
using a Scenario Reader block to read the roads and actors from the LateralControl.mat scenario
file.

Opening the model also runs the helperLateralControlTutorialSetup script, which initializes
data used by the model. The script loads certain constants needed by the Simulink model, such as
vehicle parameters, controller parameters, the road scenario, and reference poses. In particular, the
script calls the previously exported function helperCreateDrivingScenario to build the scenario.
The script also sets up the buses required for the model by calling
helperCreateLaneSensorBuses.

You can plot the road and the planned path using:

helperPlotRoadAndPath(scenario, refPoses)

 Lateral Control Tutorial

8-861

Simulate Scenario

When simulating the model, you can open the Bird's-Eye Scope to analyze the simulation. After
opening the scope, click Find Signals to set up the signals. Then run the simulation to display the
vehicle, the road boundaries, and the lane markings. The image below shows the Bird's-Eye Scope for
this example at 25 seconds. At this instant, the vehicle has switched to the left lane.

8 Featured Examples

8-862

You can run the full simulation and explore the results using the following command:

sim('LateralControlTutorial');

You can also use the Simulink® Scope (Simulink) in the Vehicle and Environment subsystem to
inspect the performance of the controller as the vehicle follows the planned path. The scope shows
the maximum deviation from the path is less than 0.3 meters and the largest steering angle
magnitude is less than 3 degrees.

scope = 'LateralControlTutorial/Vehicle and Environment/Scope';
open_system(scope)

 Lateral Control Tutorial

8-863

To reduce the lateral deviation and oscillation in the steering command, use the Lateral Controller
Stanley Dynamic block and simulate the model again:

set_param(variant, 'LabelModeActivechoice', 'Dynamic');
sim('LateralControlTutorial');

8 Featured Examples

8-864

Conclusions

This example showed how to simulate lateral control of a vehicle in a lane changing scenario using
Simulink. Compared with the Lateral Controller Stanley Kinematic block, the Lateral Controller
Stanley Dynamic block provides improved performance in path following with smaller lateral
deviation from the reference path.

References

[1] Hoffmann, Gabriel M., Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun. "Autonomous
Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and
Racing." American Control Conference. 2007, pp. 2296-2301.

Supporting Functions

helperPlotRoadAndPath Plot the road and the reference path

 Lateral Control Tutorial

8-865

function helperPlotRoadAndPath(scenario,refPoses)
%helperPlotRoadAndPath Plot the road and the reference path
h = figure('Color','white');
ax1 = axes(h, 'Box','on');

plot(scenario,'Parent',ax1)
hold on
plot(ax1,refPoses(:,1),refPoses(:,2),'b')
xlim([150, 300])
ylim([0 150])
ax1.Title = text(0.5,0.5,'Road and Reference Path');
end

See Also
Apps
Bird's-Eye Scope | Driving Scenario Designer

Blocks
Lateral Controller Stanley | Lane Keeping Assist System | Vehicle Body 3DOF

More About
• “Automated Parking Valet in Simulink” on page 8-724
• “Create Driving Scenario Interactively and Generate Synthetic Sensor Data” on page 5-2

8 Featured Examples

8-866

Highway Lane Change
This example shows how to perceive surround-view information and use it to design an automated
lane change maneuver system for highway driving scenarios.

Introduction

An automated lane change maneuver (LCM) system enables the ego vehicle to automatically move
from one lane to another lane. An LCM system models the longitudinal and lateral control dynamics
for an automated lane change. LCM systems scan the environment for most important objects (MIOs)
using onboard sensors, identify an optimal trajectory that avoids these objects, and steer the ego
vehicle along the identified trajectory.

This example shows how to create a test bench model to test the sensor fusion, planner, and
controller components of an LCM system. This example uses five vision sensors and one radar sensor
to detect other vehicles from the surrounding view of the ego vehicle. It uses a joint probabilistic data
association (JPDA) based tracker to track the fused detections from these multiple sensors. The lane
change planner then generates a feasible trajectory for the tracks to negotiate a lane change that is
executed by the lane change controller. In this example, you:

• Partition the algorithm and test bench — The model is partitioned into lane change algorithm
models and a test bench model. The algorithm models implement the individual components of the
LCM system. The test bench includes the integration of the algorithm models and testing
framework.

• Explore the test bench model — The test bench model contains the testing framework, which
includes the sensors and environment, ego vehicle dynamics model, and metrics assessment using
ground truth.

• Explore the algorithm models — Algorithm models are reference models that implement the
sensor fusion, planner, and controller components to build the lane change application.

• Simulate and visualize system behavior — Simulate the test bench model to test the
integration of sensor fusion and tracking with planning and controls to perform lane change
maneuvers on a curved road with multiple vehicles.

• Explore other scenarios — These scenarios test the system under additional conditions.

You can apply the modeling patterns used in this example to test your own LCM system.

Partition Algorithm and Test Bench

The model is partitioned into separate algorithm models and a test bench model.

• Algorithm models — Algorithm models are reference models that implement the functionality of
individual components.

• Test bench model — The Highway Lane Change Test Bench specifies the stimulus and
environment for testing the algorithm models.

Explore Test Bench Model

In this example, you use a system-level simulation test bench model to explore the behavior of a
probabilistic sensor-based LCM system.

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so you can edit them.

 Highway Lane Change

8-867

addpath(fullfile(matlabroot,"toolbox","driving","drivingdemos"));
helperDrivingProjectSetup("HighwayLaneChange.zip",workDir=pwd);

Open the system-level simulation test bench model.

open_system("HighwayLaneChangeTestBench")

Opening this model runs the helperSLHighwayLaneChangeSetup function, which initializes the
road scenario using the drivingScenario object in the base workspace. It also configures the
sensor configuration parameters, tracker design parameters, planner configuration parameters,
controller design parameters, vehicle model parameters, and the Simulink® bus signals required for
defining the inputs and outputs for the HighwayLaneChangeTestBench model.

The test bench model contains these subsystems:

• Scenario and Environment — Subsystem that specifies the scene, vehicles, sensors, and map
data used for simulation. This example uses five vision sensors, one radar sensor, and an INS
sensor.

• Surround Vehicle Sensor Fusion — Subsystem that fuses the detections from multiple
sensors to produce tracks.

• Planner Configuration Parameters — Subsystem that specifies the configuration
parameters required for the planner algorithm.

• Highway Lane Change Planner — Subsystem that implements the lane change planner
algorithm for highway driving.

• Lane Change Controller — Subsystem that specifies the path-following controller that
generates control commands to steer the ego vehicle along the generated trajectory.

• Vehicle Dynamics — Subsystem that specifies the dynamic model for the ego vehicle.
• Metrics Assessment — Subsystem that specifies metrics to assess system-level behavior.

The Highway Lane Change Planner, Lane Change Controller, and Metrics Assessment
subsystems are the same as those in the “Highway Lane Change Planner and Controller” on page 8-

8 Featured Examples

8-868

1361 example. However, whereas the lane change planner in the Highway Lane Change Planner and
Controller example, uses ground truth information from the scenario to detect MIOs, the lane change
planner in this example uses tracks from surround vehicle sensor fusion to detect the MIOs. The
Vehicle Dynamics subsystem models the ego vehicle using a Bicycle Model block, and updates its
state using commands received from the Lane Change Controller subsystem.

The Scenario and Environment subsystem uses the Scenario Reader block to provide road
network and vehicle ground truth positions. This block also outputs map data required for the
highway lane change planner algorithm. This subsystem outputs the detections from the vision
sensors, clusters from the radar sensor, and ego-estimated position from the INS sensor required for
the sensor fusion and tracking algorithm. Open the Scenario and Environment subsystem.

open_system("HighwayLaneChangeTestBench/Scenario and Environment")

• The Scenario Reader block configures the driving scenario and outputs actor poses, which control
the positions of the target vehicles.

• The Vehicle To World block converts actor poses from the coordinates of the ego vehicle to the
world coordinates.

• The Vision Detection Generator block simulates object detections using a camera sensor model.
• The Driving Radar Data Generator block simulates object detections based on a statistical model.

It also outputs clustered object detections for further processing.

 Highway Lane Change

8-869

• The INS block models the measurements from the inertial navigation system and global navigation
satellite system and outputs the fused measurements. It outputs the noise-corrupted position,
velocity, and orientation of the ego vehicle.

The subsystem configures five vision sensors and a radar sensor to capture the surround view of the
vehicle. These sensors are mounted on different locations on the ego vehicle to capture a 360-degree
view.

The Bird's-Eye Scope displays sensor coverage using a cuboid representation. The radar coverage
area and detections are in red. The vision coverage area and detections are in blue.

8 Featured Examples

8-870

The Vehicle Dynamics subsystem uses a Bicycle Model block to model the ego vehicle. For more
details on the Vehicle Dynamics subsystem, see the “Highway Lane Following” on page 8-922
example. Open the Vehicle Dynamics subsystem.

open_system("HighwayLaneChangeTestBench/Vehicle Dynamics");

The Bicycle Model block implements a rigid two-axle single-track vehicle body model to calculate
longitudinal, lateral, and yaw motion. The block accounts for body mass, aerodynamic drag, and
weight distribution between the axles due to acceleration and steering. For more details, see Bicycle
Model (Automated Driving Toolbox).

The Metric Assessment subsystem enables system-level metric evaluations using the ground truth
information from the scenario. Open the Metrics Assessment subsystem.

open_system("HighwayLaneChangeTestBench/Metrics Assessment")

 Highway Lane Change

8-871

• The Collision Detection subsystem detects the collision of the ego vehicle with other
vehicles and halts the simulation if it detects a collision. The subsystem also computes the
TimeGap parameter using the distance to the lead vehicle (headway) and the longitudinal velocity
of the ego vehicle. This parameter is evaluated against prescribed limits.

• The Jerk Metrics subsystem computes the LongitudinalJerk and LateralJerk parameters
using longitudinal velocity and lateral velocity, respectively. These parameters are evaluated
against prescribed limits.

For more details on how to validate the metrics automatically using Simulink Test, see the “Automate
Testing for Highway Lane Change” on page 8-1267 example.

Explore Algorithm Models

The lane change system is developed by integrating the surround vehicle sensor fusion, lane-change
planner, and lane-following controller components.

8 Featured Examples

8-872

The surround vehicle sensor fusion algorithm model fuses vehicle detections from cameras and radar
sensors and tracks the detected vehicles using the central-level tracking method. Open the Surround
Vehicle Sensor Fusion algorithm model.

open_system("SurroundVehicleSensorFusion")

The surround vehicle sensor fusion model takes the vehicle detections from vision sensors and
clusters from the radar sensor as inputs.

• The Vision Detection Concatenation block concatenates the vision detections.
• The Delete Velocity From Vision block is a MATLAB Function block that deletes velocity

information from vision detections.
• The Vision and Radar Detection Concatenation block concatenates the vision and radar

detections.
• The Add Localization Information block is a MATLAB Function block that adds localization

information for the ego vehicle to the concatenated detections using an estimated ego vehicle
pose from the INS sensor. This enables the tracker to track in the global frame, and minimizes the
effect on the tracks of lane change maneuvers by the ego vehicle.

• The helperJPDATracker block performs fusion and manages the tracks of stationary and
moving objects. The tracker fuses the information contained in the concatenated detections and
tracks the objects around the ego vehicle. It estimates tracks in the Frenet coordinate system. It
uses mapInfo from the scenario to estimate the tracks in Frenet coordinate system. The tracker
then outputs a list of confirmed tracks. These tracks are updated at a prediction time driven by a
digital clock in the Scenario and Environment subsystem.

For more details on the algorithm, see the “Object Tracking and Motion Planning Using Frenet
Reference Path” on page 8-484 example.

The highway lane change planner is a fundamental component of a highway lane change system. This
component is expected to handle different driving behaviors to safely navigate the ego vehicle from
one point to another point. The Highway Lane Change Planner algorithm model contains a
terminal state sampler, motion planner, and motion prediction module. The terminal state sampler
samples terminal states based on the planner parameters and the current state of both the ego
vehicle and other vehicles in the scenario. The motion prediction module predicts the future motion
of MIOs. The motion planner samples trajectories and outputs an optimal trajectory. Open the
Highway Lane Change Planner algorithm model.

 Highway Lane Change

8-873

open_system("HighwayLaneChangePlanner")

The algorithm model implements the main algorithm for the highway lane change system. The
reference model reads map data, actor poses (in world coordinates), and planner parameters from
the Scenario and Environment subsystem to perform trajectory planning. The model uses the
Frenet coordinate system to find the MIOs surrounding the ego vehicle. Then, the model samples
terminal states for different behaviors, predicts the motion of target actors, and generates multiple
trajectories. Finally, the model evaluates the costs of generated trajectories and checks for the
possibility of collision and kinematic feasibility to estimate the optimal trajectory. For more details,
see the “Generate Code for Highway Lane Change Planner” on page 8-1180 example.

The Lane Change Controller reference model simulates a path-following control mechanism that
keeps the ego vehicle traveling along the generated trajectory while tracking a set velocity. Open the
Lane Change Controller reference model.

open_system("LaneChangeController");

8 Featured Examples

8-874

The controller adjusts both the longitudinal acceleration and front steering angle of the ego vehicle to
ensure that the ego vehicle travels along the generated trajectory. The controller computes optimal
control actions while satisfying velocity, acceleration, and steering angle constraints using adaptive
model predictive control (MPC). For more details on the integration of the highway lane change
planner and controller, see the “Highway Lane Change Planner and Controller” on page 8-1361
example.

Simulate and Visualize System Behavior

Set up and run the HighwayLaneChangeTestBench simulation model to visualize the behavior of
the system during a lane change. The Visualization block in the model creates a MATLAB figure
that shows the chase view and top view of the scenario and plots the ego vehicle, tracks, sampled
trajectories, capsule list, and other vehicles in the scenario.

Disable the MPC update messages.

mpcverbosity("off");

Configure the HighwayLaneChangeTestBench model to use the
scenario_LC_15_StopnGo_Curved scenario.

helperSLHighwayLaneChangeSetup(scenarioFcnName="scenario_LC_15_StopnGo_Curved");
sim("HighwayLaneChangeTestBench");

 Highway Lane Change

8-875

During the simulation, the model logs signals to the base workspace as logsout. You can analyze the
simulation results and debug any failures in the system behavior using the
helperAnalyzeLCSimulationResults function. The function creates a MATLAB figure and plots a
chase view of the scenario. For more details on this figure, see the “Highway Lane Change Planner
and Controller” on page 8-1361 to example. Run the function and explore the plot.

helperAnalyzeLCSimulationResults(logsout);

8 Featured Examples

8-876

Explore Other Scenarios

In this example, you have explored the system behavior for the scenario_LC_15_StopnGo_Curved
scenario, but you can use the same test bench model to explore other scenarios. This is a list of
scenarios that are compatible with the HighwayLaneChangeTestBench model.

scenario_LC_01_SlowMoving
scenario_LC_02_SlowMovingWithPassingCar
scenario_LC_03_DisabledCar
scenario_LC_04_CutInWithBrake
scenario_LC_05_SingleLaneChange
scenario_LC_06_DoubleLaneChange
scenario_LC_07_RightLaneChange
scenario_LC_08_SlowmovingCar_Curved
scenario_LC_09_CutInWithBrake_Curved
scenario_LC_10_SingleLaneChange_Curved
scenario_LC_11_MergingCar_HighwayEntry
scenario_LC_12_CutInCar_HighwayEntry
scenario_LC_13_DisabledCar_Ushape
scenario_LC_14_DoubleLaneChange_Ushape
scenario_LC_15_StopnGo_Curved [Default]

Each of these scenarios have been created using the Driving Scenario Designer and exported to a
scenario file. Examine the comments in each file for more details on the road and vehicles in each
scenario. You can configure the HighwayLaneChangeTestBench model and workspace to simulate
these scenarios using the helperSLHighwayLaneChangeSetup function. For example, you can
configure the simulation for a curved road scenario using this command.

helperSLHighwayLaneChangeSetup(scenarioFcnName="scenario_LC_10_SingleLaneChange_Curved");

 Highway Lane Change

8-877

Conclusion

In this example, you designed and simulated a highway lane change maneuver system using
information perceived from surround view. This example showed how to integrate sensor fusion,
planner, and controller components to simulate a highway lane change system in a closed-loop
environment. The example also demonstrated various evaluation metrics to validate the performance
of the designed system. If you have a Simulink Coder™ license and Embedded Coder™ license, you
can generate ready-to-deploy code of the algorithm models for an embedded real-time target (ERT).

Enable the MPC update messages again.

mpcverbosity("on");

See Also
trajectoryOptimalFrenet

More About
• “Highway Lane Following” on page 8-922
• “Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map” on page 8-758

8 Featured Examples

8-878

Visual Localization in a Parking Lot
This example shows how to develop a visual localization system using synthetic image data from the
Unreal Engine® simulation environment.

It is a challenging task to obtain ground truth for evaluating the performance of a localization
algorithm in different conditions. Virtual simulation in different scenarios is a cost-effective method to
obtain the ground truth in comparison with more expensive approaches such as using high-precision
inertial navigation systems or differential GPS. The use of simulation enables testing under a variety
of scenarios and sensor configurations. It also enables a rapid algorithm development, and provides
precise ground truth.

This example uses the Unreal Engine simulation environment from Epic Games® to develop and
evaluate a visual localization algorithm in a parking lot scenario.

Overview

Visual localization is the process of estimating the camera pose for a captured image relative to a
visual representation of a known scene. It is a key technology for applications such as augmented
reality, robotics, and automated driving. Compared with a “Implement Visual SLAM in MATLAB”,
visual localization assumes that a map of the environment is known and does not require 3-D
reconstruction or loop closure detection. The pipeline of visual localization includes the following:

• Map Loading: Load the pre-built map 3-D map containing world point positions and the 3-D to 2-
D correspondences between the map points and the key frames. Additionally. for each key frame,
load the feature descriptors corresponding to the 3-D map points.

• Global Initialization: Extract features from the first image frame and match them with the
features corresponding to all the 3-D map points. After getting the 3-D to 2-D correspondences,
estimate the camera pose of the first frame in the world coordinate by solving a Perspective-n-
Point (PnP) problem. Refine the pose using motion-only bundle adjustment. The key frame that
shares the most covisible 3-D map points with the first frame is identified as the reference key
frame.

• Tracking: Once the first frame is localized, for each new frame, match features in the new frame
with features in the reference key frame that have known 3-D world points. Estimate and refine
the camera pose using the same approach as in Global Initialization step. The camera pose can be
further refined by tracking the features associated with nearby key frames.

Create Scene

Guiding a vehicle into a parking spot is a challenging maneuver that relies on accurate localization.
The VisualLocalizationInAParkingLot model simulates a visual localization system in the
parking lot scenario used in the “Develop Visual SLAM Algorithm Using Unreal Engine Simulation”
on page 8-983 example.

• The Simulation 3D Scene Configuration block sets up the Large Parking Lot scene. The Parked
Vehicles subsystem adds parked cars into the parking lot.

• The Simulation 3D Vehicle with Ground Following block controls the motion of the ego vehicle.
• The Simulation 3D Camerablock models a monocular camera fixed at the center of the vehicle's

roof. You can use the Camera Calibrator app to estimate intrinsics of the actual camera that you
want to simulate.

• The Helper Visual Localization MATLAB System block implements the visual localization
algorithm. The initial camera pose with respect to the map is estimated using the

 Visual Localization in a Parking Lot

8-879

helperGlobalInitialization function. The subsequent camera poses are estimated using the
helperTrackingRefKeyFrame function and refined using the helperTrackLocalKeyFrames
function. This block also provides a visualization of the estimated camera trajectory in the pre-
built map. You can specify the pre-built map data and the camera intrinsic parameters in the block
dialog.

% Open the model
modelName = 'VisualLocalizationInAParkingLot';
open_system(modelName);

8 Featured Examples

8-880

Load Map Data

The pre-built map data is generated using the stereo camera in the “Develop Visual SLAM Algorithm
Using Unreal Engine Simulation” on page 8-983 example. The data consists of three objects that are
commonly used to manage image and map data for visual SLAM:

• vSetKeyFrame: an imageviewset object storing the camera poses of key frames and the
associated feature points for each 3-D map point in mapPointSet.

• mapPointSet: a worldpointset object storing the 3-D map point locations and the
correspondences between the 3-D points and 2-D feature points across key frames. The 3-D map
points provide a sparse representation of the environment.

• directionAndDepth: a helperViewDirectionAndDepth object storing view direction and
depth of each map point in mapPointSet.

% Load pre-built map data
mapData = load("prebuiltMapData.mat")

mapData = struct with fields:
 vSetKeyFrames: [1×1 imageviewset]
 mapPointSet: [1×1 worldpointset]
 directionAndDepth: [1×1 helperViewDirectionAndDepth]

 Visual Localization in a Parking Lot

8-881

Set Up Ego Vehicle and Camera Sensor

You can follow the “Select Waypoints for Unreal Engine Simulation” on page 8-894 example to select
a sequence of waypoints and generate a reference trajectory for the ego vehicle. This example uses a
recorded reference trajectory.

% Load reference path
refPosesData = load('parkingLotLocalizationData.mat');

% Set reference trajectory of the ego vehicle
refPosesX = refPosesData.refPosesX;
refPosesY = refPosesData.refPosesY;
refPosesT = refPosesData.refPosesT;

% Set camera intrinsics
focalLength = [700, 700]; % specified in units of pixels
principalPoint = [600, 180]; % in pixels [x, y]
imageSize = [370, 1230]; % in pixels [mrows, ncols]

Run Simulation

Run the simulation and visualize the estimated camera trajectory in the pre-built map. The white
points represent the tracked 3-D map points in the current frame. You can compare the estimated
trajectory with the ground truth provided by the Simulation 3D Camera block to evaluate the
localization accuracy.

if ~ispc
 error("Unreal Engine Simulation is supported only on Microsoft" + char(174) + " Windows" + char(174) + ".");
end

% Open video viewer to examine camera images
open_system([modelName, '/Video Viewer']);

% Run simulation
sim(modelName);

8 Featured Examples

8-882

 Visual Localization in a Parking Lot

8-883

Close the model.

close_system([modelName, '/Video Viewer']);
close_system(modelName, 0);

Conclusion

With this setup, you can rapidly iterate over different scenarios, sensor configurations, or reference
trajectories and refine the visual localization algorithm before moving to real-world testing.

• To select a different scenario, use the Simulation 3D Scene Configuration block. Choose from the
existing prebuilt scenes or create a custom scene in the Unreal® Editor.

• To create a different reference trajectory, use the helperSelectSceneWaypoints tool, as shown
in the Select Waypoints for Unreal Engine Simulation example.

• To alter the sensor configuration use the Simulation 3D Camerablock. The Mounting tab provides
options for specifying different sensor mounting placements. The Parameters tab provides
options for modifying sensor parameters such as detection range, field of view, and resolution. You
can also use the Simulation 3D Fisheye Camera block which provides a larger field of view.

8 Featured Examples

8-884

https://www.mathworks.com/help/driving/ref/simulation3dsceneconfiguration.html
https://www.mathworks.com/help/driving/ug/select-waypoints-for-3d-simulation.html

Design Lane Marker Detector Using Unreal Engine Simulation
Environment

This example shows how to use a 3D simulation environment to record synthetic sensor data, develop
a lane marker detection system, and test that system under different scenarios. This simulation
environment is rendered using the Unreal Engine® from Epic Games®.

Overview

Developing a reliable perception system can be very challenging. A visual perception system must be
reliable under a variety of conditions, especially when it is used in a fully automated system that
controls a vehicle. This example uses a lane detection algorithm to illustrate the process of using the
3D simulation environment to strengthen the design of the algorithm. The main focus of the example
is the effective use of the 3D simulation tools rather than the algorithm itself. Therefore, this example
reuses the perception algorithms from the “Visual Perception Using Monocular Camera” on page 8-
107 example.

The Visual Perception Using Monocular Camera example uses recorded video data to develop a visual
perception system that contains lane marker detection and classification, vehicle detection, and
distance estimation. Use of the recorded video is a great start, but it is inadequate for exploring many
other cases that can be more easily synthesized in a virtual environment. More complex scenarios can
include complex lane change maneuvers, occlusion of lane markers due to other vehicles, and so on.
Most importantly, closed-loop simulation involves both perception and control of the vehicle, both of
which require either a virtual environment or a real vehicle. Additionally, testing up front with a real
vehicle can be expensive, thus making the use of a 3D simulation environment very attractive.

This example takes the following steps to familiarize you with an approach to designing a visual
perception algorithm:

1 Introduces you to the 3D simulation environment in Simulink®
2 Guides you through the setup of a virtual vehicle and camera sensor
3 Shows you how to effectively set up a debugging environment for your visual perception

algorithm
4 Presents how to increase scene complexity in preparation for closed-loop simulation

Introduction to the 3D Simulation Environment

Automated Driving Toolbox™ integrates a 3D simulation environment in Simulink. The 3D simulation
environment uses the Unreal Engine by Epic Games. Simulink blocks related to the 3D simulation
environment provide the ability to:

• Select different scenes in the 3D visualization engine
• Place and move vehicles in the scene
• Attach and configure sensors on the vehicles
• Simulate sensor data based on the environment around the vehicle

The Simulink blocks for 3D simulation can be accessed by opening drivingsim3d library.

To aid in the design of visual perception algorithms in this example, you use a block that defines a
scene, a block that controls a virtual vehicle, and a block that defines a virtual camera. The example
focuses on detecting lane markers using a monocular camera system.

 Design Lane Marker Detector Using Unreal Engine Simulation Environment

8-885

Create a Simple Straight Road Scene in 3D Simulation

Start by defining a simple scenario involving a straight highway road on which to exercise the lane
marker detection algorithm.

open_system('straightRoadSim3D');

The Simulation 3D Scene Configuration block lets you choose one of the predefined scenes, in this
case Straight Road. When the model is invoked, it launches the Unreal Engine®. The Simulation 3D
Vehicle with Ground Following block creates a virtual vehicle within the gaming engine and lets
Simulink take control of its position by supplying X and Y in meters, and Yaw in degrees. X, Y, and
Yaw are specified with respect to a world coordinate system, with an origin in the middle of the
scene. In this case, since the road is straight, an offset of 0.75 meters in the Y-direction and a series
of increasing X values move the vehicle forward. Later sections of this example show how to define
more complex maneuvers without resorting to X, Y, and Yaw settings based on trial and error.

The model also contains a Simulation 3D Camera block, which extracts video frames from a virtual
camera attached at the rearview mirror within the virtual vehicle. The camera parameters let you
simulate typical parameters of a camera that can be described by a pinhole camera model, including
focal length, camera optical center, radial distortion, and output image size. When the model is
invoked, the resulting scene is shown from a perspective of a camera that automatically follows the
vehicle.

sim('straightRoadSim3D');

8 Featured Examples

8-886

Design and Debugging of Visual Perception Module

Visual perception is generally complex, whether it involves classic computer vision or deep learning.
Developing such a system often requires rapid iterations with incremental refinements. Although
Simulink is a powerful environment for system-level engineering and closed-loop simulations,
perception-based algorithms are typically developed in textual programming languages like MATLAB
or C++. Additionally, the startup time for a model that needs to establish communication between
Simulink and the Unreal Engine® is significant. For these reasons, it is convenient to record the
image data generated by the virtual camera into a video and develop the perception algorithm in
MATLAB. The following model records the camera into an MP4 file on disk.

 Design Lane Marker Detector Using Unreal Engine Simulation Environment

8-887

open_system('straightRoadVideoRecording');

The video is recorded using the To Multimedia File block. The resulting straightRoad.mp4 file can
now be used to develop the perception module, without incurring the startup-time penalty of the 3D
simulation environment.

To design the lane marker detector, you use a module from the “Visual Perception Using Monocular
Camera” on page 8-107 example. However, if you simply transplant the existing
helperMonoSensor.m routine from that example, even the simplest straight road scene does not
produce good results. Immediately, you can see how powerful the virtual environment can be. You can
choose any trajectory or environment for your vehicle, thus letting you explore many what-if
scenarios prior to placing the perception module on an actual vehicle.

To aid in the design of the algorithm, use the provided HelperLaneDetectorWrapper.m system
object. This system object works in MATLAB and when placed inside the “MATLAB System Block”
(Simulink) in Simulink. The following script, helperStraightRoadMLTest, invokes the wrapper
from the MATLAB command prompt. This approach permits quick iterations of the design without
continuous invocation of the 3D simulation environment.

helperStraightRoadMLTest

8 Featured Examples

8-888

Once the algorithm begins to work well, you can place it back into a model as shown below. You can
attempt to change the car's trajectory, as demonstrated in the “Select Waypoints for Unreal Engine
Simulation” on page 8-894 example. That way, you can look for ways to move the car such that the
algorithm fails. The entire process is meant to be iterative.

open_system('straightRoadMonoCamera');

 Design Lane Marker Detector Using Unreal Engine Simulation Environment

8-889

Navigate Through a More Complex Scene to Improve the Perception Algorithm

While developing your algorithm, you can increase the level of scene complexity to continue adapting
your system to conditions resembling reality. In this section, switch the scene to Virtual Mcity, which
provides stretches of the road with curved lanes, no lane markers, or merging lane markers.

Before you begin, you need to define a trajectory through a suitable stretch of the virtual Mcity, which
is a representation of actual testing grounds that belong to the University of Michigan. To see the
details of how to obtain a series of X, Y, and Yaw values suitable for moving a car through a complex
environment, refer to the “Select Waypoints for Unreal Engine Simulation” on page 8-894 example.
The key steps are summarized below for your convenience.

% Extract scene image location based on scene's name
sceneName = 'VirtualMCity';
[sceneImage, sceneRef] = helperGetSceneImage(sceneName);

% Interactively select waypoints through Mcity
helperSelectSceneWaypoints(sceneImage, sceneRef)

% Convert the sparse waypoints into a denser trajectory that a car can
% follow
numPoses = size(refPoses, 1);
refDirections = ones(numPoses,1); % Forward-only motion
numSmoothPoses = 20 * numPoses; % Increase this to increase the number of returned poses
[newRefPoses,~,cumLengths] = smoothPathSpline(refPoses, refDirections, numSmoothPoses);

% Create a constant velocity profile by generating a time vector
% proportional to the cumulative path length
simStopTime = 10;
timeVector = normalize(cumLengths, 'range', [0, simStopTime]);

refPosesX = [timeVector, newRefPoses(:,1)];
refPosesY = [timeVector, newRefPoses(:,2)];
refPosesYaw = [timeVector, newRefPoses(:,3)];

Load the preconfigured vehicle poses created using the method shown above.

poses = load('mcityPoses');

With the predefined trajectory, you can now virtually drive the vehicle through a longer stretch of a
complex virtual environment.

open_system('mcityMonoCamera');
sim('mcityMonoCamera');
clear poses;

8 Featured Examples

8-890

Many times, the results are less than desirable. For example, notice where the barriers are confused
with lane markers and when the region of interest selected for analysis is too narrow to pick up the
left lane.

However, the detector performs well in other areas of the scene.

 Design Lane Marker Detector Using Unreal Engine Simulation Environment

8-891

The main point is that the virtual environment lets you stress-test your design and helps you realize
what kind of conditions you may encounter on real roads. Running your algorithm in a virtual
environment also saves you time. If your design does not run successfully in the virtual environment,
then there is no point of running it in a real vehicle on a road, which is far more time-consuming and
expensive.

Closed-Loop Testing

One of the most powerful features of a 3D simulation environment is that it can facilitate closed-loop
testing of a complex system. Lane keep assist, for example, involves both perception and control of
the vehicle. Once a perception system is perfected on very complex scenes and performs well, it can
then be used to drive a control system that actually steers the car. In this case, rather than manually
set up a trajectory, the vehicle uses the perception system to drive itself. It is beyond the scope of this
example to show the entire process. However, the steps described here should provide you with ideas
on how to design and debug your perception system so it can later be used in a more complex closed-
loop simulation.

bdclose all;

See Also
Blocks
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Simulation 3D
Camera | Simulation 3D Fisheye Camera

More About
• “Select Waypoints for Unreal Engine Simulation” on page 8-894
• “Choose a Sensor for Unreal Engine Simulation” on page 6-17
• “Simulate Simple Driving Scenario and Sensor in Unreal Engine Environment” on page 6-21

8 Featured Examples

8-892

• “Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation” on page 6-30
• “Unreal Engine Simulation for Automated Driving” on page 6-2
• “Highway Lane Following” on page 8-922

 Design Lane Marker Detector Using Unreal Engine Simulation Environment

8-893

Select Waypoints for Unreal Engine Simulation
This example shows how to select a sequence of waypoints from a scene and visualize the path of a
vehicle following these waypoints in a 3D simulation environment. This environment uses the Unreal
Engine® by Epic Games®.

Introduction

Automated Driving Toolbox™ integrates an Unreal Engine simulation environment in Simulink®.
Simulink blocks related to the simulation environment can be found in the drivingsim3d library.
These blocks provide the ability to:

• Select different scenes in the simulation environment.
• Place and move vehicles in the scene.
• Attach and configure sensors on the vehicles.
• Simulate sensor data based on the environment around the vehicle.

This powerful simulation tool can be used to supplement real data when developing, testing, and
verifying the performance of automated driving algorithms. In conjunction with a vehicle model, you
can use this environment to perform realistic closed-loop simulations that encompass the entire
automated driving stack, from perception to control.

The first step in using this environment is understanding the scene and selecting waypoints along a
desired vehicle path. This step is useful especially in scenarios where the localization algorithm is not
under test. This example focuses on this first step.

In this example, you will:

• Visualize the scene in MATLAB®.
• Interactively select waypoints along a path in the scene.
• Set up the simulation environment.
• Move the vehicle along the path.

Visualize Scene

First, visualize the scene in MATLAB. Each scene can be visualized using a 2D top-view projection of
the scene onto an image. Each scene image has a corresponding 2D spatial referencing object of
class imref2d describing the relationship between the pixels in the image and the world coordinates
of the scene. Use the helperGetSceneImage function to retrieve the scene image and associated
spatial reference. This example uses a prebuilt scene of a large parking lot. To generate a scene
image and spatial reference for a custom scene, follow the process described in “Create Top-Down
Map of Unreal Engine Scene” on page 6-66 instead.

sceneName = 'LargeParkingLot';
[sceneImage, sceneRef] = helperGetSceneImage(sceneName);

To better understand the physical dimensions of the scene, inspect the sceneRef variable. The
XWorldLimits and YWorldLimits properties specify the limits of the world in the X and Y
directions.

sceneRef.XWorldLimits % (in meters)
sceneRef.YWorldLimits % (in meters)

8 Featured Examples

8-894

ans =

 -78.6000 72.6000

ans =

 -77.7000 73.5000

Visualize the scene image by using the helperShowSceneImage function. This helper function
displays the scene image in a figure window. Use the pan and zoom tools to explore the scene.

hScene = figure;
helperShowSceneImage(sceneImage, sceneRef)
title(sceneName)

 Select Waypoints for Unreal Engine Simulation

8-895

Interactively Select Waypoints

After exploring the scene, select a set of waypoints to define a path for a vehicle to follow. This path
can be used to move the vehicle in the scene. Use the helper function
helperSelectSceneWaypoints to interactively select waypoints in the scene.

hFig = helperSelectSceneWaypoints(sceneImage, sceneRef);

8 Featured Examples

8-896

This helper function opens a figure window with the selected scene.

• Explore the scene by zooming and panning through the scene image. Use the mouse scrollwheel
or the axes toolbar to zoom. Hover over the edge of the axes to pan in that direction.

• Begin drawing a path by clicking on the scene. A path is created as a polyline consisting of
multiple points. Finish drawing the path by double-clicking or right-clicking.

• Once you are done drawing a path, click Export to Workspace to export the variables to the
MATLAB workspace. In the dialog box that opens, click OK to export a set of variables to the
workspace.

The following data is exported to the workspace as MATLAB variables:

 Select Waypoints for Unreal Engine Simulation

8-897

• Waypoints: A cell array with each element containing an M-by-2 matrix of waypoints in
world coordinates. Each element of the cell array corresponds to the waypoints from a different
path.

• Path Poses: A cell array with each element containing M-by-3 matrices of poses
containing the pose of each waypoint. and are specified in meters. is specified in degrees.

% Load variables to workspace if they do not exist
if exist('refPoses', 'var')==0 || exist('wayPoints', 'var')==0

 % Load MAT-file containing preselected waypoints
 data = load('waypointsLargeParkingLot');
 data = data.waypointsLargeParkingLot;

 % Assign to caller workspace
 assignin('caller', 'wayPoints', {data.waypoints});
 assignin('caller', 'refPoses', {data.refPoses});
end

The exported variables now contain a sequence of waypoints (wayPoints) and a sequence of poses
(refPoses). Use the smoothPathSpline function to transform the sequence of poses to a
continuous path.

numPoses = size(refPoses{1}, 1);

refDirections = ones(numPoses,1); % Forward-only motion
numSmoothPoses = 20 * numPoses; % Increase this to increase the number of returned poses

[smoothRefPoses,~,cumLengths] = smoothPathSpline(refPoses{1}, refDirections, numSmoothPoses);

Set Up Model and Simulation Environment

Open the VisualizeVehiclePathIn3DSimulation Simulink model. This model uses the
Simulation 3D Scene Configuration block to select a desired scene. This example uses the Large
Parking Lot scene. The Simulation 3D Scene Configuration block sets up the environment and
establishes communication between Simulink and the simulation environment.

if ~ispc
 error(['3D Simulation is only supported on Microsoft', char(174), ' Windows', char(174), '.']);
end

modelName = 'VisualizeVehiclePathIn3DSimulation';
open_system(modelName);
snapnow;

8 Featured Examples

8-898

Move Vehicle Along Path

Use the Simulation 3D Vehicle with Ground Following block to place and move vehicles in the scene.
The model is set up to accept variables refPosesX, refPosesY, and refPosesT from the
workspace using the From Workspace (Simulink) block. Separate , and from newRefPoses into
separate time series. The model reads these workspace variables to update the position of the
vehicle.

% Configure the model to stop simulation at 5 seconds.
simStopTime = 5;
set_param(gcs, 'StopTime', num2str(simStopTime));

% Create a constant velocity profile by generating a time vector
% proportional to the cumulative path length.
timeVector = normalize(cumLengths, 'range', [0, simStopTime]);

 Select Waypoints for Unreal Engine Simulation

8-899

% Create variables required by the Simulink model.
refPosesX = [timeVector, smoothRefPoses(:,1)];
refPosesY = [timeVector, smoothRefPoses(:,2)];
refPosesT = [timeVector, smoothRefPoses(:,3)];

When you simulate the model, a few seconds are needed to initialize the simulation environment.
Once this initialization is complete, a separate window opens for the simulation environment
visualization. The image below is a snapshot of the simulation environment window.

8 Featured Examples

8-900

Run the simulation. The figure window plot shows the path that the vehicle traverses through the
simulation environment.

sim(modelName);

 Select Waypoints for Unreal Engine Simulation

8-901

% Close the model and figure windows.
close(hFig)
close_system(modelName)
close(hScene)

See Also
Blocks
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following

8 Featured Examples

8-902

Functions
imref2d

More About
• “Create Top-Down Map of Unreal Engine Scene” on page 6-66
• “Design Lane Marker Detector Using Unreal Engine Simulation Environment” on page 8-885
• “Visualize Automated Parking Valet Using Unreal Engine Simulation” on page 8-904
• “Simulate Vision and Radar Sensors in Unreal Engine Environment” on page 8-916
• “Unreal Engine Simulation for Automated Driving” on page 6-2
• “Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox” on page 6-11

 Select Waypoints for Unreal Engine Simulation

8-903

Visualize Automated Parking Valet Using Unreal Engine
Simulation

This example shows how to visualize vehicle motion in a 3D simulation environment rendered using
the Unreal Engine® from Epic Games®. It closely follows the “Automated Parking Valet in Simulink”
on page 8-724 example.

Introduction

Automated Driving Toolbox™ integrates an Unreal Engine simulation environment in Simulink®. You
can use this environment to visualize the motion of a vehicle in a prebuilt scene. This environment
provides an intuitive way to analyze the performance of path planning and vehicle control algorithms.
The “Automated Parking Valet in Simulink” on page 8-724 example shows how to design a path
planning and vehicle control algorithm for an automated parking valet system in Simulink. This
example shows how to augment the model to visualize the vehicle motion in a scene using the
visualization engine. The steps in this workflow are:

1 Create a costmap from a 3D scene.
2 Create a route plan from the scene.
3 Configure the 3D scene and ego vehicle in Simulink.
4 Simulate and visualize the vehicle's motion in the 3D scene.

Create Costmap from 3D Scene

The visualization integration comes with a number of prebuilt scenes. Each scene comes with a high-
resolution image that can be used to explore the scene. Use the helperShowSceneImage function to
display the images. This example uses the Large Parking Lot scene.

% Load and display the image of the parking lot
sceneName = 'LargeParkingLot';
[sceneImage, sceneRef] = helperGetSceneImage(sceneName);

% Visualize the scene image
figure
helperShowSceneImage(sceneImage, sceneRef)

8 Featured Examples

8-904

Such a high-resolution image is an accurate depiction of the environment up to some resolution. You
can use this image to create a vehicleCostmap for path planning and navigation.

First, estimate free space from the image. Free space is the area where a vehicle can drive without
collision with other static objects, such as parked cars, cones, and road boundaries, and without
crossing marked lines. In this example, you can estimate the free space based on the color of the
image. Use the Color Thresholder app from Image Processing Toolbox to perform the segmentation
and generate a binary image from the image. You can also use the helper function
helperCreateCostmapFromImage at the end of the example to generate the binary image:

sceneImageBinary = helperCreateCostmapFromImage(sceneImage);

 Visualize Automated Parking Valet Using Unreal Engine Simulation

8-905

Alternatively, load a pregenerated binary image.

sceneImageBinary = imread('sim3d_LargeParkingLotBinary.bmp');

Next, create a costmap from the binary image. Use the binary image to specify the cost value at each
cell.

% Get the left-bottom corner location of the map
mapLocation = [sceneRef.XWorldLimits(1), sceneRef.YWorldLimits(1)]; % [meters, meters]

% Compute resolution
mapWidth = sceneRef.XWorldLimits(2)-sceneRef.XWorldLimits(1); % meters
cellSize = mapWidth/size(sceneImageBinary, 2);

% Create the costmap
costmap = vehicleCostmap(im2single(sceneImageBinary), 'CellSize', cellSize, 'MapLocation', mapLocation);

figure
plot(costmap, 'Inflation', 'off');
legend off

You also need to specify the dimensions of the vehicle that will park automatically based on the
vehicles available in the 3D scene. This example uses the dimension of a Hatchback. These
dimensions need to be consistent between the costmap and the Simulink model.

centerToFront = 1.104; % meters
centerToRear = 1.343; % meters
frontOverhang = 0.828; % meters

8 Featured Examples

8-906

rearOverhang = 0.589; % meters
vehicleWidth = 1.653; % meters
vehicleHeight = 1.513; % meters
vehicleLength = centerToFront + centerToRear + frontOverhang + rearOverhang;

vehicleDims = vehicleDimensions(vehicleLength, vehicleWidth, vehicleHeight,...
 'FrontOverhang', frontOverhang, 'RearOverhang', rearOverhang);
costmap.CollisionChecker.VehicleDimensions = vehicleDims;

Set the inflation radius by specifying the number of circles enclosing the vehicle.

costmap.CollisionChecker.NumCircles = 5;

Create Route Plan from a 3D Scene

The global route plan is described as a sequence of lane segments to traverse in order to reach a
parking spot. You can interactively select intermediate goal positions from the scene image using the
tool described in “Select Waypoints for Unreal Engine Simulation” on page 8-894. In this example, the
route plan has been created and stored in a table. Before simulation, the PreLoadFcn callback
function of the model loads the route plan.

data = load('routePlanUnreal.mat');
routePlan = data.routePlan %#ok<NOPTS>

% Plot vehicle at the starting pose
startPose = routePlan.StartPose(1,:);
hold on
helperPlotVehicle(startPose, vehicleDims, 'DisplayName', 'Current Pose')
legend

for n = 1 : height(routePlan)
 % Extract the goal waypoint
 vehiclePose = routePlan{n, 'EndPose'};

 % Plot the pose
 legendEntry = sprintf('Goal %i', n);
 helperPlotVehicle(vehiclePose, vehicleDims, 'DisplayName', legendEntry);
 hold on
end
hold off

routePlan =

 5×3 table

 StartPose EndPose Attributes
 _______________________ _______________________ __________

 44.5 8 180 -33.5 8.5 180 1×1 struct
 -33.5 8.5 180 -45.2 -0.7 250 1×1 struct
 -45.2 -0.7 250 -33.5 -13.5 0 1×1 struct
 -33.5 -13.5 0 -20.3 -13.5 -7 1×1 struct
 -20.3 -13.5 -7 -13.5 -6.8 90 1×1 struct

 Visualize Automated Parking Valet Using Unreal Engine Simulation

8-907

Configure 3D Scene and Ego Vehicle

Close the figures and open the model.

helperCloseFigures

if ~ispc
 error(['3D Simulation is only supported on Microsoft', char(174), ' Windows', char(174), '.']);
end

modelName = 'APVWith3DSimulation';
open_system(modelName)
snapnow

8 Featured Examples

8-908

This model extends the one used in the Automated Parking Valet in Simulink example by adding two
blocks for visualizing the vehicle in the 3D scene:

• Simulation 3D Scene Configuration: Implements the 3D simulation environment. The Scene
description parameter is set to Large parking lot.

• Simulation 3D Vehicle with Ground Following: Provides an interface that changes the position
and orientation of the vehicle in the 3D scene. The Type of the vehicle is set to Hatchback to be
consistent with the vehicle dimensions in costmap. The inputs to this block are the vehicle's [X,
Y] position in meters and the Yaw heading angle in degrees. These values are in the world
coordinate system.

Visualize Vehicle Motion in 3D Scene

Simulate the model to see how the vehicle drives into the desired parking spot.

sim(modelName)

 Visualize Automated Parking Valet Using Unreal Engine Simulation

8-909

8 Featured Examples

8-910

As the simulation runs, the Simulink environment updates the position and orientation of the vehicle
in the 3D visualization engine through the Simulation 3D Vehicle with Ground Following block. A new
window shows the ego vehicle in the 3D visualization engine. The Automated Parking Valet
figure displays the planned path in blue and the actual path of the vehicle in red. The Parking
Maneuver figure shows a local costmap used in searching for the final parking maneuver.

 Visualize Automated Parking Valet Using Unreal Engine Simulation

8-911

Explore Enhanced Path Planning System

The Path Planner block plans a feasible path through the environment map using the optimal rapidly
exploring random tree (RRT*) algorithm. To ensure the performance of the planning algorithm, the
path planning module is modified to include two separate modules:

• Driving Mode: Uses the costmap of the entire parking lot for navigation. This implementation is
also used in the “Automated Parking Valet in Simulink” on page 8-724 example.

• Parking Mode: Uses a local costmap for the final parking maneuver. The local costmap is a
submap of the costmap with a square shape. To specify the size of this map, use the Local
costmap size (m) parameter of the Path Planner block dialog box. A costmap with smaller
dimensions significantly reduces the computation burden in searching for a feasible path to the
final parking spot. It also increases the probability of finding a feasible path given the same
planner settings.

Open the Path Planner subsystem.

open_system([modelName, '/Path Planner'], 'force')

8 Featured Examples

8-912

The two path planner modules are implemented as Enabled Subsystem (Simulink) blocks. The enable
signal is from the IsParkingManeuver signal in the input Config bus sent from the Behavior
Planner block. When the Parking Mode subsystem is enabled, a local costmap is created with the
center as the current position of the vehicle.

Close the model and the figures.

bdclose all
helperCloseFigures

Conclusions

This example showed how to integrate 3D simulation with the existing Automated Parking Valet in
Simulink example to visualize the motion of vehicle in a 3D parking lot scene.

Supporting Functions

helperCreateCostmapFromImage

function BW = helperCreateCostmapFromImage(sceneImage) %#ok<DEFNU>
%helperCreateCostmapFromImage Create a costmap from an RGB image.

% Flip the scene image
sceneImage = flipud(sceneImage);

% Call the autogenerated code from the Color Thresholder app
BW = helperCreateMask(sceneImage);

% Smooth the image
BW = im2uint8(medfilt2(BW));

% Resize
BW = imresize(BW, 0.5);

% Compute complement
BW = imcomplement(BW);
end

 Visualize Automated Parking Valet Using Unreal Engine Simulation

8-913

helperCreateMask

function [BW,maskedRGBImage] = helperCreateMask(RGB)
%createMask Threshold RGB image using auto-generated code from colorThresholder app.
% [BW,MASKEDRGBIMAGE] = createMask(RGB) thresholds image RGB using
% auto-generated code from the colorThresholder app. The colorspace and
% range for each channel of the colorspace were set within the app. The
% segmentation mask is returned in BW, and a composite of the mask and
% original RGB images is returned in maskedRGBImage.

% Auto-generated by colorThresholder app on 22-Oct-2021
%--

% Convert RGB image to chosen color space
I = RGB;

% Define thresholds for channel 1 based on histogram settings
channel1Min = 42.000;
channel1Max = 179.000;

% Define thresholds for channel 2 based on histogram settings
channel2Min = 66.000;
channel2Max = 191.000;

% Define thresholds for channel 3 based on histogram settings
channel3Min = 67.000;
channel3Max = 164.000;

% Create mask based on chosen histogram thresholds
sliderBW = (I(:,:,1) >= channel1Min) & (I(:,:,1) <= channel1Max) & ...
 (I(:,:,2) >= channel2Min) & (I(:,:,2) <= channel2Max) & ...
 (I(:,:,3) >= channel3Min) & (I(:,:,3) <= channel3Max);
BW = sliderBW;

% Initialize output masked image based on input image.
maskedRGBImage = RGB;

% Set background pixels where BW is false to zero.
maskedRGBImage(repmat(~BW,[1 1 3])) = 0;
end

helperCloseFigures

function helperCloseFigures()
%helperCloseFigures Close all the figures except the simulation visualization

% Find all the figure objects
figHandles = findobj('Type', 'figure');

% Close the figures
for i = 1: length(figHandles)
 close(figHandles(i));

8 Featured Examples

8-914

end
end

See Also
Blocks
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following

Functions
vehicleCostmap | vehicleDimensions

Apps
Color Thresholder

More About
• “Select Waypoints for Unreal Engine Simulation” on page 8-894
• “Automated Parking Valet in Simulink” on page 8-724
• “Unreal Engine Simulation for Automated Driving” on page 6-2
• “Visualize Automated Parking Valet Using Cuboid Simulation” on page 8-731

 Visualize Automated Parking Valet Using Unreal Engine Simulation

8-915

Simulate Vision and Radar Sensors in Unreal Engine
Environment

This example shows how to implement a synthetic data simulation for tracking and sensor fusion in
Simulink® with using the Unreal Engine® simulation environment from Epic Games®. It closely
follows the “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” on page 8-295
example.

Introduction

Automated Driving Toolbox™ provides tools for authoring, simulating, and visualizing virtual driving
scenarios. With these scenarios, you can simulate rare and potentially dangerous events, generate
synthetic radar and vision detections from the scenarios, and use the synthetic detections to test
vehicle algorithms. This example covers the entire synthetic data workflow in Simulink using the 3D
simulation environment.

Setup and Overview of Model

Prior to running this example, the roads, actors, and trajectories in the scenario were created using
this procedure:

1 Extract the center locations from a portion of the road in the “Define Road Layouts
Programmatically” on page 8-674 3D scene, using the techniques introduced in “Select
Waypoints for Unreal Engine Simulation” on page 8-894.

2 Create a road in the Driving Scenario Designer that has these extracted locations as its road
center values.

3 Define multiple moving vehicles on the road that have trajectories similar to the ones in the
scenario defined in “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” on page
8-295.

4 Save the scenario file, curved_road.mat, from the Driving Scenario Designer and load them into
the model using a Scenario Reader block.

5 Output poses of vehicles from the Scenario Reader block and convert them to the world
coordinates. Use the Cuboid to 3D Simulation block to convert to X, Y, and Yaw required by the
3D vehicle block.

The actor poses provided by the Scenario Reader block is used by the Simulation 3D Vehicle with
Ground Following blocks to define the locations of the ego vehicle, lead vehicle, and other vehicles at
each time step of the simulation.

close;
if ~ispc
 error(['3D Simulation is supported only on Microsoft', char(174), ' Windows', char(174), '.']);
end

open_system('SimulateSensorsIn3DEnvironmentModel');

8 Featured Examples

8-916

Simulating Sensor Detections

In this example, you simulate an ego vehicle that has a vision sensor on its front bumper and six radar
sensors covering the full 360 degrees field of view. The ego vehicle is equipped with a long-range
radar on both the front and rear of the vehicle. Each side of the vehicle has two short-range radars,
each covering 90 degrees. One radar on each side covers from the middle of the vehicle to the back.
The other radar on each side covers from the middle of the vehicle forward.

The Ego Sensors subsystem contains the one Simulation 3D Vision Detection Generator block and six
Simulation 3D Probabilistic Radar blocks that model the previously described sensors. The outputs of
the radar blocks are concatenated using a Detection Concatenation block. In the top-level model, the
radar output is then concatenated with the vision output to create a single stream of detections to be
fused by the Multi-Object Tracker block.

open_system('SimulateSensorsIn3DEnvironmentModel/Ego Sensors')

 Simulate Vision and Radar Sensors in Unreal Engine Environment

8-917

The probabilistic radars "see" not only an actor's physical dimensions (e.g., length, width, and height)
but are also sensitive to an actor's electrical size. An actor's electrical size is referred to as its radar
cross-section (RCS). The RCS patterns for the vehicles in the simulation are defined using the
Simulation 3D Probabilistic Radar Configuration block.

8 Featured Examples

8-918

Use this block to define the RCS patterns for all of the actors in the simulation. Any actors that do not
have a specified RCS pattern use the default RCS value.

Tracking and Sensor Fusion

The detections generated by the ego vehicle's suite of radars are preprocessed using a helper
Detection Clustering block before they are fused using the Multi-Object Tracker block. The multi-
object tracker is configured with the same parameters used in the corresponding Simulink example,
“Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” on page 8-295. The output from
the Multi-Object Tracker block is a list of confirmed tracks.

Display

The Bird's-Eye Scope is a model-level visualization tool in Simulink opened from the Simulink
toolstrip. After opening the scope, click Find Signals to set up the signals. Then run the simulation
to display the ego actor, radar and vision detections, and tracks. The following image shows the
scope's display for this example.

When the simulation starts, a few seconds are needed to initialize the Unreal Engine simulation
environment, especially when running it for the first time. Once this initialization is complete, the
simulation environment opens in a separate window. The following image is a snapshot of the
simulation window corresponding to the snapshot of the Bird's-Eye Scope shown in the previous
image.

 Simulate Vision and Radar Sensors in Unreal Engine Environment

8-919

The simulated vehicles are shown in the simulation window. The detections and tracks generated by
the simulation appear only in the Bird's-Eye Scope.

Summary

In this example, you learned how to extract road centers from a 3D scenario for use in the Driving
Scenario Designer app. You also learned how to export the vehicle trajectories created from the road
segments for use in the 3D simulation environment in Simulink. You then learned how to configure a
probabilistic camera model and multiple probabilistic radar models in the Unreal Engine environment
and how to fuse the detections from the multiple sensors located around the ego vehicle's perimeter
using a multi-object tracker. The confirmed tracks generated by the tracker can then be used for
control algorithms such as adaptive cruise control (ACC) or forward collision warning (FCW).

close_system('SimulateSensorsIn3DEnvironmentModel');

See Also
Apps
Bird's-Eye Scope | Driving Scenario Designer

Blocks
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Simulation 3D
Probabilistic Radar | Simulation 3D Probabilistic Radar Configuration | Detection Concatenation |
Multi-Object Tracker

8 Featured Examples

8-920

More About
• “Visualize Sensor Data from Unreal Engine Simulation Environment” on page 6-36
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” on page 8-295

 Simulate Vision and Radar Sensors in Unreal Engine Environment

8-921

Highway Lane Following
This example shows how to simulate a highway lane following application with vision processing,
sensor fusion, and controller components. These components are tested in a 3D simulation
environment that includes camera and radar sensor models.

Introduction

A highway lane following system steers a vehicle to travel within a marked lane. It also maintains a
set velocity or safe distance to a preceding vehicle in the same lane. The system typically uses vision
processing algorithms to detect lanes and vehicles from a camera. The vehicle detections from the
camera are then fused with detections from a radar to improve the robustness of perception. The
controller uses the lane detections, vehicle detections, and set speed to control steering and
acceleration.

This example demonstrates how to create a test bench model to test vision processing, sensor fusion,
and controls in a 3D simulation environment. The test bench model can be configured for different
scenarios to test the ability to follow lanes and avoid collisions with other vehicles. In this example,
you:

1 Partition the algorithm and test bench — The model is partitioned into lane following
algorithm models and a test bench model. The algorithm models implement the individual
components. The test bench includes the integration of the algorithm models, and virtual testing
framework.

2 Explore the test bench model — The test bench model contains the testing framework, which
includes the scenario, ego vehicle dynamics model, and metrics assessment using ground truth. A
cuboid scenario defines vehicle trajectories and specifies the ground truth. An equivalent Unreal
Engine® scene is used to model detections from a radar sensor and images from a monocular
camera sensor. A bicycle model is used to model the ego vehicle.

3 Explore the algorithm models — Algorithm models are reference models that implement
vision processing, sensor fusion, decision logic, and controls components to build the lane
following application.

4 Visualize a test scenario — The scenario contains a curved road with multiple vehicles.
5 Simulate the test bench model — The model is simulated to test integration of the vision

processing, sensor fusion, and controls components.
6 Explore additional scenarios — These scenarios test the system under additional conditions.

Testing the integration of the controller and the perception algorithm requires a photorealistic
simulation environment. In this example, you enable system-level simulation through integration with
the Unreal Engine from Epic Games®. The 3D simulation environment requires a Windows® 64-bit
platform.

if ~ispc
 error(['3D Simulation is supported only on Microsoft', char(174), ' Windows', char(174), '.'])
end

To ensure reproducibility of the simulation results, set the random seed.

rng(0)

Partition Algorithm and Test Bench

The model is partitioned into separate algorithm and test bench models.

8 Featured Examples

8-922

• Algorithm models — Algorithm models are reference models that implement the functionality of
individual components.

• Test bench model — The Highway Lane Following test bench specifies the stimulus and
environment to test the algorithm models.

Explore Test Bench Model

In this example, you use a system-level simulation test bench model to explore the behavior of the
control and vision processing algorithms for the lane following system.

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot, "toolbox", "driving", "drivingdemos"));
helperDrivingProjectSetup("HighwayLaneFollowing.zip", workDir=pwd);

Open the system-level simulation test bench model.

open_system("HighwayLaneFollowingTestBench")

The test bench model contains these modules:

• Simulation 3D Scenario — Subsystem that specifies the road, vehicles, camera sensor, and radar
sensor used for simulation.

• Lane Marker Detector — Algorithm model to detect the lane boundaries in the frame captured by
the camera sensor.

• Vehicle Detector — Algorithm model to detect vehicles in the frame captured by the camera
sensor.

• Forward Vehicle Sensor Fusion — Algorithm model to fuse vehicle detections from the camera and
radar sensors.

 Highway Lane Following

8-923

• Lane Following Decision Logic — Algorithm model to specify the lateral and longitudinal decision
logic that provides information related to the most important object (MIO) and lane center to the
controller.

• Lane Following Controller — Algorithm model that specifies the steering angle and acceleration
controls.

• Vehicle Dynamics — Subsystem that specifies the dynamic model of the ego vehicle.
• Metrics Assessment — Subsystem that assesses system-level behavior.

The Simulation 3D Scenario subsystem configures the road network, positions vehicles, and
synthesizes sensors. Open the Simulation 3D Scenario subsystem.

open_system("HighwayLaneFollowingTestBench/Simulation 3D Scenario")

8 Featured Examples

8-924

The scene and road network are specified by these parts of the subsystem:

 Highway Lane Following

8-925

• The Simulation 3D Scene Configuration block has the SceneName parameter set to Curved
road.

• The Scenario Reader block is configured to use a driving scenario that contains a road network
that closely matches a section of the road network from the Curved road scene.

The vehicle positions are specified by these parts of the subsystem:

• The Ego input port controls the position of the ego vehicle, which is specified by the Simulation 3D
Vehicle with Ground Following 1 block.

• The Vehicle To World block converts actor poses from the coordinates of the ego vehicle to the
world coordinates.

• The Scenario Reader block outputs actor poses, which control the position of the target vehicles.
These vehicles are specified by the other Simulation 3D Vehicle with Ground Following blocks.

• The Cuboid To 3D Simulation block converts the ego pose coordinate system (with respect to
below the center of the vehicle rear axle) to the 3D simulation coordinate system (with respect to
below the vehicle center).

The sensors attached to the ego vehicle are specified by these parts of the subsystem:

• The Simulation 3D Camera block is attached to the ego vehicle to capture its front view. The
output image from this block is processed by the Lane Marker Detector block to detect the lanes
and Vehicle Detector block to detect the vehicles.

• The Simulation 3D Probabilistic Radar Configuration block is attached to the ego vehicle to detect
vehicles in 3D simulation environment.

• The Measurement Bias Center to Rear Axle block converts the coordinate system of the
Simulation 3D Probabilistic Radar Configuration block (with respect to below the vehicle center)
to the ego pose coordinates (with respect to below the center of the vehicle rear axle).

The Vehicle Dynamics subsystem uses a Bicycle Model block to model the ego vehicle. Open the
Vehicle Dynamics subsystem.

open_system("HighwayLaneFollowingTestBench/Vehicle Dynamics");

The Bicycle Model block implements a rigid two-axle single track vehicle body model to calculate
longitudinal, lateral, and yaw motion. The block accounts for body mass, aerodynamic drag, and

8 Featured Examples

8-926

weight distribution between the axles due to acceleration and steering. For more details, see Bicycle
Model.

The Metric Assessment subsystem enables system-level metric evaluations using the ground truth
information from the scenario. Open the Metrics Assessment subsystem.

open_system("HighwayLaneFollowingTestBench/Metrics Assessment");

In this example, four metrics are used to assess the lane-following system.

• Verify Lateral Deviation — This block verifies that the lateral deviation from the center line of the
lane is within prescribed thresholds for the corresponding scenario. Define the thresholds when
you author the test scenario.

• Verify In Lane — This block verifies that the ego vehicle is following one of the lanes on the road
throughout the simulation.

• Verify Time gap — This block verifies that the time gap between the ego vehicle and the lead
vehicle is more than 0.8 seconds. The time gap between the two vehicles is defined as the ratio of
the calculated headway distance to the ego vehicle velocity.

• Verify No Collision — This block verifies that the ego vehicle does not collide with the lead vehicle
at any point during the simulation. For more details on how to integrate these metrics with
Simulink Test™ for enabling automatic regression testing, see “Automate Testing for Highway
Lane Following” on page 8-938.

 Highway Lane Following

8-927

Explore Algorithm Models

The lane following system is developed by integrating the lane marker detector, vehicle detector,
forward vehicle sensor fusion, lane following decision logic, and lane following controller
components.

The lane marker detector algorithm model implements a perception module to analyze the images of
roads. Open the Lane Marker Detector algorithm model.

open_system("LaneMarkerDetector");

The lane marker detector takes the frame captured by a monocular camera sensor as input. It also
takes in the camera intrinsic parameters through the mask. It detects the lane boundaries and
outputs the lane information and marking type of each lane through the LaneSensor bus. For more
details on how to design and evaluate a lane marker detector, see “Design Lane Marker Detector
Using Unreal Engine Simulation Environment” on page 8-885 and “Generate Code for Lane Marker
Detector” on page 8-1085.

The vehicle detector algorithm model detects vehicles in the driving scenario. Open the Vehicle
Detector algorithm model.

open_system("VisionVehicleDetector");

8 Featured Examples

8-928

The vehicle detector takes the frame captured by a camera sensor as input. It also takes in the
camera intrinsic parameters through the mask. It detects the vehicles and outputs the vehicle
information as bounding boxes. For more details on how to design and evaluate a vehicle detector,
see “Generate Code for Vision Vehicle Detector” on page 8-1129.

The forward vehicle sensor fusion component fuses vehicle detections the from camera and radar
sensors and tracks the detected vehicles using the central level tracking method. Open the Forward
Vehicle Sensor Fusion algorithm model.

open_system("ForwardVehicleSensorFusion");

The forward vehicle sensor fusion model takes in the vehicle detections from vision and radar sensors
as inputs. The radar detections are clustered and then concatenated with vision detections. The
concatenated vehicle detections are then tracked using a joint probabilistic data association tracker.
This component outputs the confirmed tracks. For more details on forward vehicle sensor fusion, see
“Forward Vehicle Sensor Fusion” on page 8-1121.

The lane following decision logic algorithm model specifies lateral and longitudinal decisions based
on the detected lanes and tracks. Open the Lane Following Decision Logic algorithm model.

open_system("LaneFollowingDecisionLogic");

 Highway Lane Following

8-929

The lane following decision logic model takes the detected lanes from the lane marker detector and
the confirmed tracks from the forward vehicle sensor fusion module as inputs. It estimates the lane
center and also determines the MIO lead car traveling in the same lane as the ego vehicle. It outputs
the relative distance and relative velocity between the MIO and ego vehicle.

The lane following controller specifies the longitudinal and lateral controls. Open the Lane Following
Controller algorithm model.

open_system("LaneFollowingController");

8 Featured Examples

8-930

The controller takes the set velocity, lane center, and MIO information as inputs. It uses a path
following controller to control the steering angle and acceleration for the ego vehicle. It also uses a
watchdog braking controller to apply brakes as a fail-safe mode. The controller outputs the steering
angle and acceleration command that determines whether to accelerate, decelerate, or apply brakes.
The Vehicle Dynamics block uses these outputs for lateral and longitudinal control of the ego vehicle.

Visualize Test Scenario

The helper function scenario_LFACC_03_Curve_StopnGo generates a cuboid scenario that is
compatible with the HighwayLaneFollowingTestBench model. This is an open-loop scenario
containing multiple target vehicles on a curved road. The road centers, lane markings, and vehicles in
this cuboid scenario closely match a section of the curved road scene provided with the 3D simulation
environment. In this scenario, a lead vehicle slows down in front of the ego vehicle while other
vehicles travel in adjacent lanes.

Plot the open-loop scenario to see the interactions of the ego vehicle and target vehicles.

hFigScenario = helperPlotLFScenario("scenario_LFACC_03_Curve_StopnGo");

 Highway Lane Following

8-931

The ego vehicle is not under closed-loop control, so a collision occurs with the slower moving lead
vehicle. The goal of the closed-loop system is to follow the lane and maintain a safe distance from the
lead vehicles. In the HighwayLaneFollowingTestBench model, the ego vehicle has the same initial
velocity and initial position as in the open-loop scenario.

Close the figure.

close(hFigScenario)

Simulate the test bench model

Configure and test the integration of the algorithms in the 3D simulation environment. To reduce
command-window output, turn off the MPC update messages.

mpcverbosity("off");

Configure the test bench model to use the same scenario.

helperSLHighwayLaneFollowingSetup("scenarioFcnName",...
 "scenario_LFACC_03_Curve_StopnGo");
sim("HighwayLaneFollowingTestBench")

Plot the lateral controller performance results.

hFigLatResults = helperPlotLFLateralResults(logsout);

8 Featured Examples

8-932

Close the figure.

close(hFigLatResults)

Examine the simulation results.

• The Detected lane boundary lateral offsets plot shows the lateral offsets of the detected left-
lane and right-lane boundaries from the centerline of the lane. The detected values are close to
the ground truth of the lane but deviate by small quantities.

• The Lateral deviation plot shows the lateral deviation of the ego vehicle from the centerline of
the lane. Ideally, lateral deviation is zero meters, which implies that the ego vehicle exactly follows
the centerline. Small deviations occur when the vehicle is changing velocity to avoid collision with
another vehicle.

• The Relative yaw angle plot shows the relative yaw angle between ego vehicle and the centerline
of the lane. The relative yaw angle is very close to zero radian, which implies that the heading
angle of the ego vehicle matches the yaw angle of the centerline closely.

 Highway Lane Following

8-933

• The Steering angle plot shows the steering angle of the ego vehicle. The steering angle
trajectory is smooth.

Plot the longitudinal controller performance results.

hFigLongResults = helperPlotLFLongitudinalResults(logsout,time_gap,...
 default_spacing);

Close the figure.

close(hFigLongResults)

Examine the simulation results.

• The Relative longitudinal distance plot shows the distance between the ego vehicle and the
MIO. In this case, the ego vehicle approaches the MIO and gets close to it or exceeds the safe
distance in some cases.

8 Featured Examples

8-934

• The Relative longitudinal velocity plot shows the relative velocity between the ego vehicle and
the MIO. In this example, the vehicle detector only detects positions, so the tracker in the control
algorithm estimates the velocity. The estimated velocity lags the actual (ground truth) MIO
relative velocity.

• The Absolute acceleration plot shows that the controller commands the vehicle to decelerate
when it gets too close to the MIO.

• The Absolute velocity plot shows the ego vehicle initially follows the set velocity, but when the
MIO slows down, to avoid a collision, the ego vehicle also slows down.

During simulation, the model logs signals to the base workspace as logsout and records the output
of the camera sensor to forwardFacingCamera.mp4. You can use the
helperPlotLFDetectionResults function to visualize the simulated detections similar to how
recorded data is explored in the “Forward Collision Warning Using Sensor Fusion” on page 8-218
example. You can also record the visualized detections to a video file to enable review by others who
do not have access to MATLAB.

Plot the detection results from logged data, generate a video, and open the Video Viewer app.

hVideoViewer = helperPlotLFDetectionResults(...
 logsout, "forwardFacingCamera.mp4" , scenario, camera, radar,...
 scenarioFcnName,...
 "RecordVideo", true,...
 "RecordVideoFileName", scenarioFcnName + "_VPA",...
 "OpenRecordedVideoInVideoViewer", true,...
 "VideoViewerJumpToTime", 10.6);

 Highway Lane Following

8-935

Play the generated video.

• Front Facing Camera shows the image returned by the camera sensor. The left lane boundary is
plotted in red and the right lane boundary is plotted in green. These lanes are returned by the
Lane Marker Detector model. Tracked detections are also overlaid on the video.

• Bird's-Eye Plot shows true vehicle positions, sensor coverage areas, probabilistic detections, and
track outputs. The plot title includes the simulation time so that you can correlate events between
the video and previous static plots.

Close the figure.

close(hVideoViewer)

Explore Additional Scenarios

The previous simulations tested the scenario_LFACC_03_Curve_StopnGo scenario. This example
provides additional scenarios that are compatible with the HighwayLaneFollowingTestBench
model:

 scenario_LF_01_Straight_RightLane
 scenario_LF_02_Straight_LeftLane
 scenario_LF_03_Curve_LeftLane
 scenario_LF_04_Curve_RightLane
 scenario_LFACC_01_Curve_DecelTarget
 scenario_LFACC_02_Curve_AutoRetarget
 scenario_LFACC_03_Curve_StopnGo
 scenario_LFACC_04_Curve_CutInOut
 scenario_LFACC_05_Curve_CutInOut_TooClose
 scenario_LFACC_06_Straight_StopandGoLeadCar

These scenarios represent two types of testing.

• Use scenarios with the scenario_LF_ prefix to test lane-detection and lane-following algorithms
without obstruction from other vehicles. The vehicles in the scenario are positioned such that they
are not seen by the ego vehicle.

• Use scenarios with the scenario_LFACC_ prefix to test lane-detection and lane-following
algorithms with other vehicles that are within the sensor coverage area of the ego vehicle.

Examine the comments in each file for more details about the geometry of the road and vehicles in
each scenario. You can configure the HighwayLaneFollowingTestBench model and workspace to
simulate these scenarios using the helperSLHighwayLaneFollowingSetup function.

For example, while evaluating the effects of a camera-based lane detection algorithm on closed-loop
control, it can be helpful to begin with a scenario that has a road but no vehicles. To configure the
model and workspace for such a scenario, use the following code.

helperSLHighwayLaneFollowingSetup("scenarioFcnName",...
 "scenario_LF_04_Curve_RightLane");

Enable the MPC update messages again.

mpcverbosity("on");

Conclusion

This example showed how to integrate vision processing, sensor fusion and controller components to
simulate a highway lane following system in a closed-loop 3D simulation environment. The example

8 Featured Examples

8-936

also demonstrated various evaluation metrics to validate the performance of the designed system. If
you have license to Simulink Coder™ and Embedded Coder™, you can generate ready to deploy code
of the algorithm models for embedded real-time target (ERT).

See Also
Blocks
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Cuboid To 3D
Simulation | Simulation 3D Camera | Simulation 3D Probabilistic Radar | Scenario Reader

More About
• “Automate Testing for Highway Lane Following” on page 8-938
• “Highway Lane Following with Intelligent Vehicles” on page 8-1103
• “Highway Lane Change” on page 8-867
• “Visual Perception Using Monocular Camera” on page 8-107
• “Forward Collision Warning Using Sensor Fusion” on page 8-218
• “Lane Following Control with Sensor Fusion and Lane Detection” on page 8-373
• “Simulate Vision and Radar Sensors in Unreal Engine Environment” on page 8-916
• “Visualize Sensor Data from Unreal Engine Simulation Environment” on page 6-36
• “Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox” on page 6-11

 Highway Lane Following

8-937

Automate Testing for Highway Lane Following
This example shows how to assess the functionality of a lane-following application by defining
scenarios based on requirements, automating testing of components and the generated code for
those components. The components include lane-detection, sensor fusion, decision logic, and
controls. This example builds on the “Highway Lane Following” on page 8-922 example.

Introduction

A highway lane-following system steers a vehicle to travel within a marked lane. It also maintains a
set velocity or safe distance from a preceding vehicle in the same lane. The system typically includes
lane detection, sensor fusion, decision logic, and controls components. System-level simulation is a
common technique for assessing functionality of the integrated components. Simulations are
configured to test scenarios based on system requirements. Automatically running these simulations
enables regression testing to verify system-level functionality.

The “Highway Lane Following” on page 8-922 example showed how to simulate a system-level model
for lane-following. This example shows how to automate testing that model against multiple scenarios
using Simulink Test™. The scenarios are based on system-level requirements. In this example, you
will:

1 Review requirements: The requirements describe system-level test conditions. Simulation test
scenarios are created to represent these conditions.

2 Review the test bench model: Review the system-level lane-following test bench model that
contains metric assessments. These metric assessments integrate the test bench model with
Simulink Test for the automated testing.

3 Disable runtime visualizations: Runtime visualizations are disabled to reduce execution time
for the automated testing.

4 Automate testing: A test manager is configured to simulate each test scenario, assess success
criteria, and report results. The results are explored dynamically in the test manager and
exported to a PDF for external reviewers.

5 Automate testing with generated code: The lane detection, sensor fusion, decision logic, and
controls components are configured to generate C++ code. The automated testing is run on the
generated code to verify expected behavior.

6 Automate testing in parallel: Overall execution time for running the tests is reduced using
parallel computing on a multi-core computer.

Testing the system-level model requires a photorealistic simulation environment. In this example, you
enable system-level simulation through integration with the Unreal Engine from Epic Games®. The
3D simulation environment requires a Windows® 64-bit platform.

if ~ispc
 error("The 3D simulation environment requires a Windows 64-bit platform");
end

To ensure reproducibility of the simulation results, set the random seed.

rng(0);

8 Featured Examples

8-938

Review Requirements

Requirements Toolbox™ lets you author, analyze, and manage requirements within Simulink. This
example contains ten test scenarios, with high-level testing requirements defined for each scenario.
Open the requirement set.

To explore the test requirements and test bench model, open a working copy of the project example
files. MATLAB copies the files to an example folder so that you can edit them. The TestAutomation
folder contains the files that enables the automate testing.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('HighwayLaneFollowing.zip', 'workDir', pwd);

open('HighwayLaneFollowingTestRequirements.slreqx')

Alternatively, you can also open the file from the Requirements tab of the Requirements Manager
app in Simulink.

Each row in this file specifies the requirements in textual and graphical formats for testing the lane-
following system for a test scenario. The scenarios with the scenario_LF_ prefix enable you to test
lane-detection and lane-following algorithms without obstruction by other vehicles. The scenarios
with the scenario_LFACC_ prefix enable you to test lane-detection, lane-following, and ACC behavior
with other vehicles on the road.

 Automate Testing for Highway Lane Following

8-939

1 scenario_LF_01_Straight_RightLane — Straight road scenario with ego vehicle in right
lane.

2 scenario_LF_02_Straight_LeftLane — Straight road scenario with ego vehicle in left lane.
3 scenario_LF_03_Curve_LeftLane — Curved road scenario with ego vehicle in left lane.
4 scenario_LF_04_Curve_RightLane — Curved road scenario with ego vehicle in right lane.
5 scenario_LFACC_01_Curve_DecelTarget — Curved road scenario with a decelerating lead

vehicle in ego lane.
6 scenario_LFACC_02_Curve_AutoRetarget — Curved road scenario with changing lead

vehicles in ego lane. This scenario tests the ability of the ego vehicle to retarget to a new lead
vehicle while driving along a curve.

7 scenario_LFACC_03_Curve_StopnGo — Curved road scenario with a lead vehicle slowing
down in ego lane.

8 scenario_LFACC_04_Curve_CutInOut — Curved road scenario with a fast moving car in the
adjacent lane cuts into the ego lane and cuts out from ego lane.

9 scenario_LFACC_05_Curve_CutInOut_TooClose — Curved road scenario with a fast moving
car in the adjacent lane cuts into the ego lane and cuts out from ego lane aggressively.

10 scenario_LFACC_06_Straight_StopandGoLeadCar — Straight road scenario with a lead
vehicle that breaks down in ego lane.

These requirements are implemented as test scenarios with the same names as the scenarios used in
the HighwayLaneFollowingTestBench model.

Review Test Bench Model

This example reuses the HighwayLaneFollowingTestBench model from the “Highway Lane
Following” on page 8-922 example. Open the test bench model.

open_system("HighwayLaneFollowingTestBench");

8 Featured Examples

8-940

This test bench model has Simulation 3D Scenario, Lane Marker Detector, Vehicle Detector,
Forward Vehicle Sensor Fusion, Lane Following Decision Logic and Lane Following
Controller and Vehicle Dynamics components.

This test bench model is configured using the helperSLHighwayLaneFollowingSetup script. This
setup script takes scenarioName as input. scenarioName can be any one of the previously
described test scenarios. To run the setup script, use code:

scenarioName = "scenario_LFACC_03_Curve_StopnGo";
helperSLHighwayLaneFollowingSetup("scenarioFcnName",scenarioName);

You can now simulate the model and visualize the results. For more details on the analysis of the
simulation results and the design of individual components in the test bench model, see the “Highway
Lane Following” on page 8-922 example.

In this example, the focus is more on automating the simulation runs for this test bench model using
Simulink Test for the different test scenarios. The Metrics Assessment subsystem enables
integration of system-level metric evaluations with Simulink Test. This subsystem uses Check Static
Range (Simulink) blocks for this integration. Open the Metrics Assessment subsystem.

open_system("HighwayLaneFollowingTestBench/Metrics Assessment");

In this example, four metrics are used to assess the lane-following system.

• Verify Lateral Deviation: Verifies that the lateral deviation from the centerline of the lane is
within prescribed thresholds for the corresponding scenario. Prescribed thresholds are defined
while authoring the test scenario.

 Automate Testing for Highway Lane Following

8-941

• Verify In Lane: Verifies that the ego vehicle is following one of the lanes on the road throughout
the simulation.

• Verify Time gap: Verifies that the time gap between the ego vehicle and the lead vehicle is above
0.8 seconds. The time gap between the two vehicles is defined as the ratio of the calculated
headway distance to the ego vehicle velocity.

• Verify No Collision: Verifies that the ego vehicle does not collide with the lead vehicle at any
point during the simulation.

Disable Runtime Visualizations

The system-level test bench model visualizes intermediate outputs during the simulation for the
analysis of different components in the model. These visualizations are not required when the tests
are automated. You can reduce execution time for the automated testing by disabling them.

Disable runtime visualizations for the Lane Marker Detector subsystem.

load_system('LaneMarkerDetector');
blk = 'LaneMarkerDetector/Lane Marker Detector';
set_param(blk,'EnableDisplays','off');

Disable runtime visualizations for the Vehicle Detector subsystem.

load_system('VisionVehicleDetector');
blk = 'VisionVehicleDetector/Vision Vehicle Detector/ACF/ACF';
set_param(blk,'EnableDisplay','off');

Configure the Simulation 3D Scene Configuration block to run the Unreal Engine in headless mode,
where the 3D simulation window is disabled.

blk = ['HighwayLaneFollowingTestBench/Simulation 3D Scenario/', ...
 'Simulation 3D Scene Configuration'];
set_param(blk,'EnableWindow','off');

Automate Testing

The Test Manager is configured to automate the testing of the lane-following application. Open the
HighwayLaneFollowingTestAssessments.mldatx test file in the Test Manager.

sltestmgr;
testFile = sltest.testmanager.load('HighwayLaneFollowingTestAssessments.mldatx');

8 Featured Examples

8-942

Observe the populated test cases that were authored previously in this file. Each test case is linked to
the corresponding requirement in the Requirements Editor for traceability. Each test case uses the
POST-LOAD callback to run the setup script with appropriate inputs and to configure the output video
file name. After the simulation of the test case, it invokes
helperGenerateFilesForLaneFollowingReport from the CLEAN-UP callback to generate the
plots explained in the “Highway Lane Following” on page 8-922 example.

Run and explore results for a single test scenario:

To reduce command-window output, turn off the MPC update messages.

mpcverbosity('off');

To test the system-level model with the scenario_LFACC_03_Curve_StopnGo test scenario from
Simulink Test, use this code:

testSuite = getTestSuiteByName(testFile,'Test Scenarios');
testCase = getTestCaseByName(testSuite,'scenario_LFACC_03_Curve_StopnGo');
resultObj = run(testCase);

To generate a report after the simulation, use this code:

sltest.testmanager.report(resultObj,'Report.pdf',...,
 'Title','Highway Lane Following',...
 'IncludeMATLABFigures',true,...

 Automate Testing for Highway Lane Following

8-943

 'IncludeErrorMessages',true,...
 'IncludeTestResults',0,'LaunchReport',true);

Examine the report Report.pdf. Observe that the Test environment section shows the platform on
which the test is run and the MATLAB® version used for testing. The Summary section shows the
outcome of the test and duration of the simulation in seconds. The Results section shows pass/fail
results based on the assessment criteria. This section also shows the plots logged from the
helperGenerateFilesForLaneFollowingReport function.

Run and explore results for all test scenarios:

You can simulate the system for all the tests by using sltest.testmanager.run. Alternatively, you
can simulate the system by clicking Play in the Test Manager app.

After completion of the test simulations, the results for all the tests can be viewed in the Results and
Artifacts tab of the Test Manager. For each test case, the Check Static Range (Simulink) blocks in
the model are associated with the Test Manager to visualize overall pass/fail results.

You can find the generated report in current working directory. This report contains a detailed
summary of pass/fail statuses and plots for each test case.

8 Featured Examples

8-944

Verify test status in Requirements Editor:

Open the Requirements Editor and select Display. Then, select Verification Status to see a
verification status summary for each requirement. Green and red bars indicate the pass/fail status of
simulation results for each test.

 Automate Testing for Highway Lane Following

8-945

Automate Testing with Generated Code

The HighwayLaneFollowingTestBench model enables integrated testing of Lane Marker
Detector, Vehicle Detector, Forward Vehicle Sensor Fusion, Lane Following Decision Logic,
and Lane Following Controller components. It is often helpful to perform regression testing of
these components through software-in-the-loop (SIL) verification. If you have Embedded Coder™
Simulink Coder™ license, then you can generate code for these components. This workflow lets you
verify that the generated code produces expected results that match the system-level requirements
throughout simulation.

Set Lane Marker Detector to run in Software-in-the-loop mode.

model = 'HighwayLaneFollowingTestBench/Lane Marker Detector';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Vehicle Detector to run in Software-in-the-loop mode.

model = 'HighwayLaneFollowingTestBench/Vehicle Detector';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Forward Vehicle Sensor Fusion to run in Software-in-the-loop mode.

8 Featured Examples

8-946

model = 'HighwayLaneFollowingTestBench/Forward Vehicle Sensor Fusion';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Lane Following Decision Logic to run in Software-in-the-loop mode.

model = 'HighwayLaneFollowingTestBench/Lane Following Decision Logic';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Lane Following Controller to run in Software-in-the-loop mode.

model = 'HighwayLaneFollowingTestBench/Lane Following Controller';
set_param(model,'SimulationMode','Software-in-the-loop');

Now, run sltest.testmanager.run to simulate the system for all the test scenarios. After the
completion of tests, review the plots and results in the generated report.

Enable the MPC update messages again.

mpcverbosity('on');

Automate Testing in Parallel

If you have a Parallel Computing Toolbox™ license, then you can configure Test Manager to execute
tests in parallel using a parallel pool. To run tests in parallel, save the models after disabling the
runtime visualizations using save_system('LaneMarkerDetector'),
save_system('VisionVehicleDetector') and
save_system('HighwayLaneFollowingTestBench'). Test Manager uses the default Parallel
Computing Toolbox cluster and executes tests only on the local machine. Running tests in parallel can
speed up execution and decrease the amount of time it takes to get test results. For more information
on how to configure tests in parallel from the Test Manager, see “Run Tests Using Parallel Execution”
(Simulink Test).

See Also

More About
• “Highway Lane Following” on page 8-922

 Automate Testing for Highway Lane Following

8-947

Traffic Light Negotiation
This example shows how to design and test decision logic for negotiating a traffic light at an
intersection.

Introduction

Decision logic for negotiating traffic lights is a fundamental component of an automated driving
application. The decision logic must react to inputs like the state of the traffic light and surrounding
vehicles. The decision logic then provides the controller with the desired velocity and path. Since
traffic light intersections are dangerous to test, simulating such driving scenarios can provide insight
into the interactions of the decision logic and the controller.

This example shows how to design and test the decision logic for negotiating a traffic light. The
decision logic in this example reacts to the state of the traffic light, distance to the traffic light, and
distance to the closest vehicle ahead. In this example, you will:

1 Explore the test bench model: The model contains the traffic light sensors and environment,
traffic light decision logic, controls, and vehicle dynamics.

2 Model the traffic light decision logic: The traffic light decision logic arbitrates between a lead
vehicle and an upcoming traffic light. It also provides a reference path for the ego vehicle to
follow at an intersection in the absence of lanes.

3 Simulate a left turn with traffic light and a lead vehicle: The model is configured to test the
interactions between the traffic light decision logic and controls of the ego vehicle, while
approaching an intersection in the presence of a lead vehicle.

4 Simulate a left turn with traffic light and cross traffic: The model is configured to test the
interactions between the traffic light decision logic and controls of the ego vehicle when there is
cross traffic at the intersection.

5 Explore other scenarios: These scenarios test the system under additional conditions.

You can apply the modeling patterns used in this example to test your own decision logic and controls
to negotiate traffic lights.

Explore Test Bench Model

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('TrafficLightNegotiation.zip', 'workDir', pwd);

To explore the behavior of the traffic light negotiation system, open the simulation test bench model
for the system.

open_system("TrafficLightNegotiationTestBench");

8 Featured Examples

8-948

Opening this model runs the helperSLTrafficLightNegotiationSetup script that initializes the
road scenario using the drivingScenario object in the base workspace. It runs the default test
scenario, scenario_02_TLN_left_turn_with_cross_over_vehicle, that contains an ego
vehicle and two other vehicles. This setup script also configures the controller design parameters,
vehicle model parameters, and Simulink® bus signals required for defining the inputs and outputs for
the TrafficLightNegotiationTestBench model.

The test bench model contains the following subsystems:

1 Sensors and Environment: Models the traffic light sensor, road network, vehicles, and the
camera and radar sensors used for simulation.

2 Traffic Light Decision Logic: Arbitrates between the traffic light and other lead vehicles or
cross-over vehicles at the intersection.

3 Lane-Following Controller: Generates longitudinal and lateral controls.
4 Vehicle Dynamics: Models the ego vehicle using a Bicycle Model block and updates its state

using commands received from the Lane Following Controller subsystem.
5 Visualization: Plots the world coordinate view of the road network, vehicles, and the traffic light

state during simulation.

The Lane Following Controller reference model and the Vehicle Dynamics subsystem are reused
from the “Highway Lane Following” on page 8-922 example. This example focuses on the Sensors
and Environment and Traffic Light Decision Logic subsystems.

The Sensors and Environment subsystem configures the road network, defines target vehicle
trajectories, and synthesizes sensors. Open the Sensors and Environment subsystem.

open_system("TrafficLightNegotiationTestBench/Sensors and Environment");

 Traffic Light Negotiation

8-949

The scenario and sensors on the ego vehicle are specified by the following parts of the subsystem:

• The Scenario Reader block is configured to take in ego vehicle information to perform a closed-
loop simulation. It outputs ground truth information of lanes and actors in ego vehicle coordinates.
This block reads the drivingScenario object variable, scenario, from the base workspace,
which contains a road network compatible with the TrafficLightNegotiationTestBench
model.

Plot the road network provided by the scenario.

hFigScenario = figure('Position', [1 1 800 600]);
plot(scenario, 'Parent', axes(hFigScenario));

8 Featured Examples

8-950

This default scenario has one intersection with an ego vehicle, one lead vehicle, and one cross-traffic
vehicle.

Close the figure.

close(hFigScenario);

The Tracking and Sensor Fusion subsystem fuses vehicle detections from Driving Radar Data
Generator and Vision Detection Generator blocks by using a Multi-Object Tracker block to provide
object tracks surrounding the ego vehicle.

The Vision Detection Generator block also provides lane detections with respect to the ego vehicle
that helps in identifying vehicles present in the ego lane.

The Traffic Light Sensor subsystem simulates the traffic lights. It is configured to support four
traffic light sensors at the intersection, TL Sensor 1, TL Sensor 2, TL Sensor 3, and TL Sensor 4.

Plot the scenario with traffic light sensors.

hFigScenario = helperPlotScenarioWithTrafficLights();

 Traffic Light Negotiation

8-951

Observe that this is the same scenario as before, only with traffic light sensors added. These sensors
are represented by red circles at the intersection, indicating red traffic lights. The labels for the
traffic lights 1, 2, 3, 4 correspond to TL Sensor 1, TL Sensor 2, TL Sensor 3, and TL Sensor 4,
respectively.

Close the figure.

close(hFigScenario);

The test scenarios in TrafficLightNegotiationTestBench are configured such that the ego
vehicle negotiates with TL Sensor 1. There are three modes in which you can configure this Traffic
Light Sensor subsystem:

1 Steady Red: TL Sensor 1 and TL Sensor 3 are always in a red state. The other two traffic
lights are always in a green state.

2 Steady Green: TL Sensor 1 and TL Sensor 3 are always in a green state. The other two traffic
lights are always in a red state.

8 Featured Examples

8-952

3 Cycle [Default]: TL Sensor 1 and TL Sensor 3 follow a cyclic pattern: green-yellow-red with
predefined timings. Other traffic lights also follow a cyclic pattern: red-green-yellow with
predefined timings to complement the TL Sensor 1 and TL Sensor 3.

You can configure this subsystem in one of these modes by using the Traffic Light Sensor Mode
mask parameter.

Open the Traffic Light Sensor subsystem.

open_system('TrafficLightNegotiationTestBench/Sensors and Environment/Traffic Light Sensor', 'force');

The Traffic Light Switching Logic Stateflow® chart implements the traffic light state change logic
for the four traffic light sensors. The initial state for all the traffic lights is set to red. Transition to a
different mode is based on a trigger condition defined by distance of the ego vehicle to the TL
Sensor 1 traffic light. This distance is defined by the variable distanceToTrafficLight. Traffic
light transition is triggered if this distance is less than trafficLightStateTriggerThreshold.
This threshold is currently set to 60 meters and can be changed in the
helperSLTrafficLightNegotiationSetup script.

The Compute Distance To Traffic Light block calculates distanceToTrafficLight using the traffic
light position of TL Sensor 1, defined by the variable trafficLightPosition. This is obtained
from the Traffic Light Position mask parameter of the Traffic Light Sensor subsystem. The
value of the mask parameter is set to intersectionInfo.tlSensor1Position, a variable set in
the base workspace by the helperSLTrafficLightNegotiationSetup script.
intersectionInfo structure is an output from the helperGetTrafficLightScene function. This
function is used to create the test scenarios that are compatible with the
TrafficLightNegotiationTestBench model.

The following inputs are needed by the traffic light decision logic and controller to implement their
functionalities:

• ReferencePathInfo provides a predefined reference trajectory that can be used by the ego
vehicle for navigation in absence of lane information. The ego vehicle can go straight, take a left
turn, or a right turn at the intersection based on the reference path. This reference path is
obtained using referencePathInfo, an output from helperGetTrafficLightScene. This
function takes an input argument to specify the direction of travel at the intersection. The possible
values are: Straight, Left, and Right.

 Traffic Light Negotiation

8-953

• IntersectionCenter provides the position of the intersection center of the road network in the
scenario. This is obtained using the intersectionInfo, an output from
helperGetTrafficLightScene.

• Set Velocity defines the user-set velocity for the controller.

Model Traffic Light Decision Logic

The Traffic Light Decision Logic reference model arbitrates between the lead car and the traffic
light. It also calculates the lane center information as required by the controller either using the
detected lanes or a predefined path. Open the Traffic Light Decision Logic reference model.

open_system("TrafficLightDecisionLogic");

The Find Lead Car subsystem finds the lead car in the current lane from input object tracks. It
provides relative distance, relativeDistToLeadCar, and relative velocity,
relativeVelocityOfLeadCar, with respect to the lead vehicle. If there is no lead vehicle, then this
block considers the lead vehicle to be present at infinite distance.

The Arbitration Logic Stateflow chart uses the lead car information and implements the logic
required to arbitrate between the traffic light and the lead vehicle at the intersection. Open the
Arbitration Logic Stateflow chart.

open_system("TrafficLightDecisionLogic/Arbitration Logic");

8 Featured Examples

8-954

The Arbitration Logic Stateflow chart consists of two states, OnEntry and
OnRedAndYellowLightDetection. If the traffic light state is green or if there are no traffic light
detections, the state remains in the OnEntry state. If the traffic light state is red or yellow, then the
state transitions to the OnRedAndYellowLightDetection state. The control flow switches between
these states based on trafficLightDetection and distanceToTrafficLight variables. In each
state, relative distance and relative velocity with respect to the most important object (MIO) are
calculated. The lead vehicle and the red traffic light are considered as MIOs.

OnEntry:

relativeDistance = relativeDistToLeadCar;

relativeVelocity = relativeVelocityOfLeadCar;

OnRedAndYellowLightDetection:

relativeDistance = min(relativeDistToLeadCar,distanceToTrafficLight);

relativeVelocity = min(relativeVelocityOfLeadCar,longitudinalVelocity);

The longitudinalVelocity represents the longitudinal velocity of the ego vehicle.

The Compute Distance To Intersection block computes the distance to the intersection center from
the current ego position. Because the intersection has no lanes, the ego vehicle uses this distance to
fall back to the predefined reference path at the intersection.

The Lane Center Decision Logic subsystem calculates the lane center information as required by
the Path Following Control System (Model Predictive Control Toolbox). Open the Lane Center
Decision Logic subsystem.

open_system("TrafficLightDecisionLogic/Lane Center Decision Logic");

 Traffic Light Negotiation

8-955

The Lane Center Decision Logic subsystem primarily relies on the lane detections from the Vision
Detection Generator block to estimate lane center information like curvature, curvature derivative,
lateral offset, and heading angle. However, there are no lane markings to detect at the intersection.
In such cases, the lane center information can be estimated from a predefined reference path.

The Reference Path Lane Center subsystem computes lane center information based on the
current ego pose and predefined reference path. A switch is configured to use
LaneCenterFromReferencePath when DistanceToIntersection is less than
referencePathSwitchThreshold. This threshold is currently set to 20 meters and can be changed
in the helperSLTrafficLightNegotiationSetup script.

Simulate Left Turn with Traffic Light and Lead Vehicle

In this test scenario, a lead vehicle travels in the ego lane and crosses the intersection. The traffic
light state keeps green for the lead vehicle and turns red for the ego vehicle. The ego vehicle is
expected to follow the lead vehicle, negotiate the traffic light, and make a left turn.

Configure the TrafficLightNegotiationTestBench model to use the
scenario_03_TLN_left_turn_with_lead_vehicle scenario.

helperSLTrafficLightNegotiationSetup("scenario_03_TLN_left_turn_with_lead_vehicle");
% To reduce command-window output, first turn off the MPC update messages.
mpcverbosity('off');
% Simulate the model.
sim("TrafficLightNegotiationTestBench");

8 Featured Examples

8-956

Plot the simulation results.

hFigResults = helperPlotTrafficLightNegotiationResults(logsout);

 Traffic Light Negotiation

8-957

Examine the results.

• The Traffic light state - TL Sensor 1 plot shows the traffic light sensor states of TL Sensor 1. It
changes from green to yellow, then from yellow to red, and then repeats in Cycle mode.

• The Relative longitudinal distance plot shows the relative distance between the ego vehicle
and the MIO. Notice that the ego vehicle follows the lead vehicle from 0 to 4.2 seconds by
maintaining a safe distance from it. You can also observe that from 4.2 to 9 seconds, this distance
reduces because the red traffic light is detected as an MIO. Also notice the gaps representing
infinite distance when there is no MIO after the lead vehicle exceeds the maximum distance
allowed for an MIO.

• The Ego acceleration plot shows the acceleration profile from the Lane Following Controller.
Notice the negative acceleration from 4.2 to 4.7 seconds, in reaction to the detection of the red
traffic light as an MIO. You can also observe the increase in acceleration after 9 seconds, in
response to the green traffic light.

8 Featured Examples

8-958

• The Ego yaw angle plot shows the yaw angle profile of the ego vehicle. Notice the variation in
this profile after 12 seconds, in response to the ego vehicle taking a left turn.

Close the figure.

close(hFigResults);

Simulate Left Turn with Traffic Light and Cross Traffic

This test scenario is an extension to the previous scenario. In addition to the previous conditions, in
this scenario, a slow-moving cross-traffic vehicle is in the intersection when the traffic light is green
for the ego vehicle. The ego vehicle is expected to wait for the cross-traffic vehicle to pass the
intersection before taking the left turn.

Configure the TrafficLightNegotiationTestBench model to use the
scenario_02_TLN_left_turn_with_cross_over_vehicle scenario.

helperSLTrafficLightNegotiationSetup("scenario_02_TLN_left_turn_with_cross_over_vehicle");

% Simulate the model.
sim("TrafficLightNegotiationTestBench");

 Traffic Light Negotiation

8-959

Plot the simulation results.

hFigResults = helperPlotTrafficLightNegotiationResults(logsout);

Examine the results.

• The Traffic light state - TL Sensor 1 plot is same as the one from the previous simulation.
• The Relative longitudinal distance plot diverges from the previous simulation run from 10.5

seconds onward. Notice the detection of the cross-traffic vehicle as the MIO at 10 seconds at
around 10 meters.

• The Ego acceleration plot also quickly responds to the cross-traffic vehicle at 10.6. You can
notice a hard-braking profile in response to the cross-traffic vehicle at the intersection.

• The Ego yaw angle plot shows that the ego vehicle initiates a left turn after 14 seconds, in
response to the cross-traffic vehicle leaving the intersection.

Close the figure.

8 Featured Examples

8-960

close(hFigResults);

Explore Other Scenarios

In the previous sections, you explored the system behavior for the
scenario_03_TLN_left_turn_with_lead_vehicle and
scenario_02_TLN_left_turn_with_cross_over_vehicle scenarios. Below is a list of
scenarios that are compatible with TrafficLightNegotiationTestBench.

 scenario_01_TLN_left_turn
 scenario_02_TLN_left_turn_with_cross_over_vehicle [Default]
 scenario_03_TLN_left_turn_with_lead_vehicle
 scenario_04_TLN_straight
 scenario_05_TLN_straight_with_lead_vehicle

Use these additional scenarios to analyze TrafficLightNegotiationTestBench under different
conditions. For example, while learning about the interactions between the traffic light decision logic
and controls, it can be helpful to begin with a scenario that has an intersection with a traffic light but
no vehicles. To configure the model and workspace for such a scenario, use this code:

helperSLTrafficLightNegotiationSetup("scenario_04_TLN_straight");

Enable the MPC update messages.

mpcverbosity('on');

Conclusion

In this example, you implemented decision logic for traffic light negotiation and tested it with a lane
following controller in a closed-loop Simulink model.

See Also

More About
• “Highway Lane Change” on page 8-867
• “Highway Lane Following” on page 8-922

 Traffic Light Negotiation

8-961

Design Lidar SLAM Algorithm Using Unreal Engine Simulation
Environment

This example shows how to record synthetic lidar sensor data from a 3D simulation environment, and
develop a simultaneous localization and mapping (SLAM) algorithm using the recorded data. The
simulation environment uses the Unreal Engine® by Epic Games®.

Introduction

Automated Driving Toolbox™ integrates an Unreal Engine simulation environment in Simulink®.
Simulink blocks related to this simulation environment can be found in the drivingsim3d library.
These blocks provide the ability to:

• Select different scenes in the 3D simulation environment
• Place and move vehicles in the scene
• Attach and configure sensors on the vehicles
• Simulate sensor data based on the environment around the vehicle

This powerful simulation tool can be used to supplement real data when developing, testing, and
verifying the performance of automated driving algorithms, making it possible to test scenarios that
are difficult to reproduce in the real world.

In this example, you evaluate a lidar perception algorithm using synthetic lidar data generated from
the simulation environment. The example walks you through the following steps:

• Record and visualize synthetic lidar sensor data from the simulation environment.
• Develop a perception algorithm to build a map using SLAM in MATLAB®.

Set Up Scenario in Simulation Environment

First, set up a scenario in the simulation environment that can be used to test the perception
algorithm. Use a scene depicting a typical city block with a single vehicle that is the vehicle under
test. You can use this scene to test the performance of the algorithm in an urban road setting.

Next, select a trajectory for the vehicle to follow in the scene. The “Select Waypoints for Unreal
Engine Simulation” on page 8-894 example describes how to interactively select a sequence of
waypoints from a scene and generate a vehicle trajectory. This example uses a recorded drive
segment obtained using the helperSelectSceneWaypoints function, as described in the waypoint
selection example.

% Load reference path for recorded drive segment
xData = load('refPosesX.mat');
yData = load('refPosesY.mat');
yawData = load('refPosesT.mat');

% Set up workspace variables used by model
refPosesX = xData.refPosesX;
refPosesY = yData.refPosesY;
refPosesT = yawData.refPosesT;

% Display path on scene image
sceneName = 'USCityBlock';
hScene = figure;

8 Featured Examples

8-962

helperShowSceneImage(sceneName);
hold on
scatter(refPosesX(:,2), refPosesY(:,2), 7, 'filled')

% Adjust axes limits
xlim([-150 100])
ylim([-125 75])

The LidarSLAMIn3DSimulation Simulink model is configured with the US City Block scene using
the Simulation 3D Scene Configuration block. The model places a vehicle on the scene using the
Simulation 3D Vehicle with Ground Following block. A lidar sensor is attached to the vehicle using the
Simulation 3D Lidar block. In the block dialog box, use the Mounting tab to adjust the placement of

 Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment

8-963

the sensor. Use the Parameters tab to configure properties of the sensor to simulate different lidar
sensors. In this example, the lidar is mounted on the center of the roof. The lidar sensor is configured
to model a typical Velodyne® HDL-32E sensor.

close(hScene)

if ~ispc
 error(['3D Simulation is only supported on Microsoft', char(174), ' Windows', char(174), '.']);
end

% Open the model
modelName = 'LidarSLAMIn3DSimulation';
open_system(modelName);
snapnow;

The model records and visualizes the synthetic lidar data. The recorded data is available through the
simulation output, and can be used for prototyping your algorithm in MATLAB. Additionally, the
model uses a From Workspace (Simulink) block to load simulated measurements from an Inertial
Navigation Sensor (INS). The INS data was obtained by using an insSensor object, and saved in a
MAT file.

The rest of the example follows these steps:

1 Simulate the model to record synthetic lidar data generated by the sensor and save it to the
workspace.

2 Use the sensor data saved to the workspace to develop a perception algorithm in MATLAB. The
perception algorithm builds a map of the surroundings using SLAM.

3 Visualize the results of the built map.

8 Featured Examples

8-964

Record and Visualize Synthetic Lidar Sensor Data

The Record and Visualize subsystem records the synthetic lidar data to the workspace using a To
Workspace (Simulink) block. The Visualize Point Cloud MATLAB Function block uses a pcplayer
object to visualize the streaming point clouds. The Visualize INS Path MATLAB Function block
visualizes the streaming INS data.

Simulate the model. The streaming point cloud display shows the synthetic lidar sensor data. The
scene display shows the synthetic INS sensor data. Once the model has completed simulation, the
simOut variable holds a structure with variables written to the workspace. The
helperGetPointCloud function extracts the sensor data into an array of pointCloud objects. The
pointCloud object is the fundamental data structure used to hold lidar data and perform point cloud
processing in MATLAB. Additionally, INS data is loaded from a MAT file, which will later be used to
develop the perception algorithm. The INS data was obtained using the insSensor object. The INS
data has been processed to contain [x, y, theta] poses in world coordinates.

% Update simulation stop time to end when reference path is completed
simStopTime = refPosesX(end,1);
set_param(gcs, 'StopTime', num2str(simStopTime));

% Load INS data from MAT file
data = load('insMeasurement.mat');
insData = data.insMeasurement.signals.values;

% Run the simulation
simOut = sim(modelName);

% Create a pointCloud array from the recorded data
ptCloudArr = helperGetPointCloud(simOut);

Use Recorded Data to Develop Perception Algorithm

The synthetic lidar sensor data can be used to develop, experiment with, and verify a perception
algorithm in different scenarios. This example uses an algorithm to build a 3D map of the
environment from streaming lidar data. Such an algorithm is a building block for applications like
localization. It can also be used to create high-definition (HD) maps for geographic regions that can
then be used for online localization. The map building algorithm is encapsulated in the
helperLidarMapBuilder class. This class uses point cloud and lidar processing capabilities in
MATLAB. For more details, see “Point Cloud Processing”.

The helperLidarMapBuilder class takes incoming point clouds from a lidar sensor and
progressively builds a map using the following steps:

1 Preprocess point cloud: Preprocess each incoming point cloud to remove the ground plane and
ego vehicle.

2 Register point clouds: Register the incoming point cloud with the last point cloud using a
normal distribution transform (NDT) registration algorithm. The pcregisterndt function
performs the registration. To improve accuracy and efficiency of registration, pcdownsample is
used to downsample the point cloud prior to registration. An initial transform estimate can
substantially improve registration performance. In this example, INS measurements are used to
accomplish this.

3 Register point clouds: Use the estimated transformation obtained from registration to
transform the incoming point cloud to the frame of reference of the map.

 Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment

8-965

4 Update view set: Add the incoming point cloud and the estimated absolute pose as a view in a
pcviewset object. Add a connection between the current and previous view with the relative
transformation between them.

The updateMap method of the helperLidarMapBuilder class accomplishes these steps. The
helperEstimateRelativeTransformationFromINS function computes an initial estimate for
registration from simulated INS sensor readings.

Such an algorithm is susceptible to drift while accumulating a map over long sequences. To reduce
the drift, it is typical to detect loop closures and use graph SLAM to correct the drift. See “Build a
Map from Lidar Data Using SLAM” on page 8-827 example for a detailed treatment. The
configureLoopDetector method of the helperLidarMapBuilder class configures loop closure
detection. Once it is configured, loop closure detection takes place each time updateMap is invoked,
using the following functions and classes:

• pcviewset: Manages data associated with point cloud odometry like point clouds, poses and
connections.

• scanContextDescriptor: Extracts scan context descriptors from each incoming point cloud.
Scan context is a 2-D global feature descriptor that is used for loop closure detection.

• scanContextLoopDetector: Manages scan context descriptors and detects loop closures. It
uses scanContextDistance to compute the distance between scan context descriptors and
select the closest feature matches.

Then, the example uses point cloud registration to accept or reject loop closure candidates and to
find the loop closure transformation.

% Set the random seed for example reproducibility
rng(0);

% Create a lidar map builder
mapBuilder = helperLidarMapBuilder('DownsamplePercent', 0.25, ...
 'RegistrationGridStep', 3.5, 'Verbose', true);

% Configure the map builder to detect loop closures
configureLoopDetector(mapBuilder, ...
 'LoopConfirmationRMSE', 2, ...
 'SearchRadius', 0.15, ...
 'DistanceThreshold', 0.07);

% Loop through the point cloud array and progressively build a map
skipFrames = 5;
numFrames = numel(ptCloudArr);
exitLoop = false;

prevInsMeas = insData(1, :);
for n = 1 : skipFrames : numFrames

 insMeas = insData(n, :);

 % Estimate initial transformation using INS
 initTform = helperEstimateRelativeTransformationFromINS(insMeas, prevInsMeas);

 % Update map with new lidar frame
 updateMap(mapBuilder, ptCloudArr(n), initTform);

8 Featured Examples

8-966

 % Update top-view display
 isDisplayOpen = updateDisplay(mapBuilder, exitLoop);

 % Check and exit if needed
 exitLoop = ~isDisplayOpen;

 prevInsMeas = insMeas;
end

snapnow;

% Close display
closeDisplay = true;
updateDisplay(mapBuilder, closeDisplay);

Loop closure candidate found between view Id 211 and 4 with RMSE 1.135051...
Accepted

The accumulated drift progressively increases over time resulting in an unusable map.

Once sufficient loop closures are detected, the accumulated drift can be corrected using pose graph
optimization. This is accomplished by the optimizeMapPoses method of the

 Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment

8-967

helperLidarMapBuilder class, which uses createPoseGraph to create a pose graph and
optimizePoseGraph (Navigation Toolbox) to optimize the pose graph.

After the pose graph has been optimized, rebuild the map using the updated poses. This is
accomplished by the rebuildMap method of helperLidarMapBuilder using pcalign.

Use optimizeMapPoses and rebuildMap to correct for the drift and rebuild the map. Visualize the
view set before and after pose graph optimization.

% Visualize viewset before pose graph optimization
hFigViewset = figure;
hG = plot(mapBuilder.ViewSet);
view(hG.Parent, 2);
title('Viewset Display')

% Optimize pose graph and rebuild map
optimizeMapPoses(mapBuilder);
rebuildMap(mapBuilder);

% Overlay viewset after pose graph optimization
hold(hG.Parent, 'on');
plot(mapBuilder.ViewSet);
hold(hG.Parent, 'off');

legend(hG.Parent, 'before', 'after')

Optimizing pose graph...done
Rebuilding map...done

8 Featured Examples

8-968

Visualize the accumulated point cloud map computed using the recorded data.

close(hFigViewset)

hFigMap = figure;
pcshow(mapBuilder.Map)

% Customize axes labels and title
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')
title('Point Cloud Map')

helperMakeFigurePublishFriendly(hFigMap);

By changing the scene, placing more vehicles in the scene, or updating the sensor mounting and
parameters, the perception algorithm can be stress-tested under different scenarios. This approach
can be used to increase coverage for scenarios that are difficult to reproduce in the real world.

% Close windows
close(hFigMap)
close_system(modelName)

 Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment

8-969

Supporting Functions

helperGetPointCloud Extract an array of pointCloud objects.

function ptCloudArr = helperGetPointCloud(simOut)

% Extract signal
ptCloudData = simOut.ptCloudData.signals.values;

% Create a pointCloud array
ptCloudArr = pointCloud(ptCloudData(:,:,:,1));

for n = 2 : size(ptCloudData,4)
 ptCloudArr(end+1) = pointCloud(ptCloudData(:,:,:,n)); %#ok<AGROW>
end
end

helperMakeFigurePublishFriendly Adjust figure so that screenshot captured by publish is correct.

function helperMakeFigurePublishFriendly(hFig)

if ~isempty(hFig) && isvalid(hFig)
 hFig.HandleVisibility = 'callback';
end
end

Additional supporting functions or classes used in the example are included below.

helperLidarMapBuilder progressively builds a lidar map using point cloud scans. Each point cloud
is processed to remove the ground plane and the ego vehicle, and registered against the previous
point cloud. A point cloud map is then progressively built by aligning and merging the point clouds.

helperEstimateRelativeTransformationFromINS estimates a relative transformation from INS
data.

helperShowSceneImage displays top-view image of the Unreal scene.

helperUpdatePolyline updates a polyline position used in conjunction with helperShowSceneImage.

See Also
Functions
pcregisterndt | pcshow | createPoseGraph

Objects
pcviewset | rigid3d | pointCloud

Blocks
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Simulation 3D
Lidar

More About
• “Select Waypoints for Unreal Engine Simulation” on page 8-894
• “Build a Map from Lidar Data” on page 8-807

8 Featured Examples

8-970

• “Build a Map from Lidar Data Using SLAM” on page 8-827
• “Lidar Localization with Unreal Engine Simulation” on page 8-972
• “Develop Visual SLAM Algorithm Using Unreal Engine Simulation” on page 8-983

 Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment

8-971

Lidar Localization with Unreal Engine Simulation
This example shows how to develop and evaluate a lidar localization algorithm using synthetic lidar
data from the Unreal Engine® simulation environment.

One of the biggest challenges in developing a localization algorithm and evaluating its performance
in varying conditions is obtaining ground truth. Although you can capture ground truth using
expensive, high-precision inertial navigation systems (INS), virtual simulation is a cost-effective
alternative. Simulation enables you to test under a variety of scenarios and sensor configurations. It
also enables rapid development iteration and provides precise ground truth.

This example uses a prebuilt map of a parking lot scenario in the Unreal Engine simulation
environment to develop and evaluate a lidar localization algorithm based on the normal distributions
transform (NDT) approach. This example assumes a known initial pose of the vehicle.

Overview

Lidar localization is the process of estimating the lidar pose for a captured point cloud relative to a
known point cloud map of the environment. Localization is a key technology for applications such as
augmented reality, robotics, and automated driving. This example shows a lidar localization workflow
with these steps:

• Load a prebuilt map.
• Localize on a given reference path using an NDT map.
• Control the vehicle along a given reference path using the NDT localization estimate feedback.

Set Up Scenario in Simulation Environment

Parking a vehicle in a parking spot is a challenging maneuver that relies on accurate localization. Use
the prebuilt Large Parking Lot scene to create this scenario. This example uses a recorded reference
trajectory obtained by interactively selecting a sequence of waypoints from a scene. First, visualize
the reference path using a 2-D bird's-eye view of the scene.

% Load reference path
data = load("ReferencePathForward.mat");

refPosesX = data.ReferencePathForward.refPosesX;
refPosesY = data.ReferencePathForward.refPosesY;
refPosesT = data.ReferencePathForward.refPosesT;

sceneName = "LargeParkingLot";
hScene = figure;
helperShowSceneImage(sceneName);
hold on
scatter(refPosesX(:,2),refPosesY(:,2), [],"filled",DisplayName="Reference Path");
xlim([-60 40])
ylim([10 60])
hScene.Position = [100 100 1000 500]; % Resize figure
legend
hold off

8 Featured Examples

8-972

Create NDT Map from Prebuilt Point Cloud Map

These are the steps to generate the prebuilt point cloud map:

1 Record the point clouds and the ground truth poses of the lidar sensor, while the ego vehicle
moves along the known path in the environment. For more information about the path used to
generate the map for this example, see “Build Occupancy Map from 3-D Lidar Data using SLAM”
on page 8-1211.

2 Preprocess the point clouds to segment and remove the ground and the ego vehicle, and clip the
point cloud to a select radius around the vehicle.

3 Align all the recorded point clouds using the known ground-truth poses with pcalign.

This example uses a map that has been prebuilt using these steps. Load and visualize the map.

load("parkingLotPCMapPoints.mat");
figure
pcshow(ptCloudMapPoints)
view(2)
title("Pointcloud Map")
xlabel("X")
ylabel("Y")

 Lidar Localization with Unreal Engine Simulation

8-973

Superimpose the point cloud map on the top-view image of the scene to visually examine how closely
it resembles features in the scene.

hMapOnScene = helperSuperimposeMapOnSceneImage('LargeParkingLot', ptCloudMapPoints);

8 Featured Examples

8-974

Create an NDT map from the above point cloud map using pcmapndt. Visualize the NDT map.

voxelSize = 1;
ndtMap = pcmapndt(pointCloud(ptCloudMapPoints),voxelSize);
figure
show(ndtMap)
view(2)
title("NDT Map")
xlabel("X")
ylabel("Y")

 Lidar Localization with Unreal Engine Simulation

8-975

Localize Using NDT Map

You can start the localization process with an initial estimate of the pose, which you can use to select
a submap region around and begin pose estimation. This is more efficient than doing a global search
in the entire map. In a real-world scenario, you can obtain an initial pose estimate at the entrance to
the mapped environment using external sensors, such as a global navigation satellite system (GNSS)
or fiducial markers, such as april tags or QR codes. As the vehicle moves into the mapped
environment, the pose estimate obtained using localization from the previous time step is used as the
initial pose estimate for the current time step.

These steps summarize the localization workflow presented in this example:

1 At the start of the simulation, use the initial pose estimate to select a submap of interest in the
known NDT map, and obtain the actual pose estimate by localizing the point cloud in the NDT
map.

2 Use the pose estimate obtained in the previous time step to check if the estimate is too close to
the submap edge, or if it is outside the submap. If so, update the submap to a region around the
pose estimate using selectSubmap.

8 Featured Examples

8-976

3 Find the actual pose estimate by localizing the current point cloud in the NDT map using
findPose. Specify lower values for the Tolerance name-value argument for accurate results.

4 Repeat steps 2 and 3 for all subsequent timesteps along the reference trajectory.

The localizeUsingLidar model contains a hatchback vehicle moving along the specified reference
path by using the Simulation 3D Vehicle with Ground Following block. A lidar sensor is mounted on
the roof center of a vehicle using the Simulation 3D Lidar block. The Localize MATLAB Function
Block and the helperLidarLocalizerNDT function implement the localization algorithm using the
previously listed steps. Run the simulation to visualize the localization estimate and the ground truth
pose of the vehicle along the reference trajectory.

close(hScene)

if ~ispc
 error("Unreal Engine Simulation is supported only on Microsoft" ...
 + char(174) + " Windows" + char(174) + ".");
end

% Open model
modelName = "localizeUsingLidar";
open_system(modelName)
snapnow

% Run simulation
simOut = sim(modelName);

 Lidar Localization with Unreal Engine Simulation

8-977

Evaluate Localization Accuracy

To quantify the efficacy of localization, measure the deviation in translation and rotation estimates
compared to ground truth. Since the vehicle is moving on the flat ground, this example is concerned
with motion in only the XY-plane.

hFigMetrics = helperDisplayMetrics(simOut);

8 Featured Examples

8-978

Control Vehicle Using NDT Localization Estimate Feedback

Metrics such as deviation in translation and rotation estimates are not, alone, enough to ensure the
performance and accuracy of a localization system. For example, changes to the accuracy or
performance of a localization system can affect the vehicle controller, requiring you to retune
controller gains. Therefore, you must have a closed-loop verification framework that incorporates
downstream components. The localizeAndControlUsingLidar model demonstrates this
framework by incorporating a localization algorithm, vehicle controller, and suitable vehicle model.

The model has these main components:

• The Localize block is a MATLAB Function block that encapsulates the NDT map based
localization algorithm implemented using the helperLidarLocalizerNDT function. This block
takes the lidar point cloud generated by the Simulation 3D Lidar block and the initial known pose
as inputs and produces a localization estimate. The estimate is returned as [x y θ], which
represents the 2-D pose of the lidar in the map reference frame.

• The Plan subsystem loads a preplanned trajectory from the workspace using the refPoses,
directions, curvatures, and velocities workspace variables. The Path Smoother Spline

 Lidar Localization with Unreal Engine Simulation

8-979

block is used to compute the refPoses, directions, and curvatures variables. The Velocity
Profiler block computes the velocities variable.

• The Helper Path Analyzer block uses the reference trajectory and the current pose to feed the
appropriate reference signal to the vehicle controller.

• The Vehicle Controller subsystem controls the steering and velocity of the vehicle by using a
lateral and longitudinal controller to produce steering and acceleration or deceleration
commands, implemented by the Lateral Controller Stanley and Longitudinal Controller Stanley
blocks. The subsystem feeds these commands to a vehicle model to simulate the dynamics of the
vehicle in the simulation environment using the Vehicle Body 3DOF block.

% Specify vehicle dimensions
centerToFront = 1.104;
centerToRear = 1.343;
frontOverhang = 0.828;
rearOverhang = 0.589;
vehicleWidth = 1.653;
vehicleHeight = 1.513;
vehicleLength = centerToFront + centerToRear + frontOverhang + rearOverhang;
hatchbackDims = vehicleDimensions(vehicleLength,vehicleWidth,vehicleHeight, ...
FrontOverhang=frontOverhang,RearOverhang=rearOverhang);

vehicleDims = [hatchbackDims.Length hatchbackDims.Width hatchbackDims.Height];
vehicleColor = [0.85 0.325 0.098];

% Load workspace variables for preplanned trajectory
refPoses = data.ReferencePathForward.Trajectory.refPoses;
directions = data.ReferencePathForward.Trajectory.directions;
curvatures = data.ReferencePathForward.Trajectory.curvatures;
velocities = data.ReferencePathForward.Trajectory.velocities;
startPose = refPoses(1,:);

% Open model
modelName = "localizeAndControlUsingLidar";
open_system(modelName)
snapnow

8 Featured Examples

8-980

% Run simulation
sim(modelName);

close_system(modelName)

Supporting Functions

helperDisplayMetrics disaplays metrics to assess the quality of localization.

function hFig = helperDisplayMetrics(simOut)

simTimes = simOut.logsout{1}.Values.Time;

xEst = simOut.logsout{1}.Values.Data;
yEst = simOut.logsout{2}.Values.Data;
yawEst = simOut.logsout{3}.Values.Data;

xTruth = squeeze(simOut.logsout{4}.Values.Data(:,1,:));
yTruth = squeeze(simOut.logsout{4}.Values.Data(:,2,:));
yawTruth = squeeze(simOut.logsout{5}.Values.Data(:,3,:));

xDeviation = abs(xEst - xTruth);
yDeviation = abs(yEst - yTruth);
yawDeviation = abs(helperWrapToPi(yawTruth - yawEst));

lim = [-1 1];
hFig = figure(Name="Metrics - Absolute Deviation");
subplot(3,1,1)
plot(simTimes, xDeviation,LineWidth=2);
ylim(lim)
grid on
title("X")
xlabel("Time (s)")
ylabel("Deviation (m)")

subplot(3,1,2)
plot(simTimes, yDeviation,LineWidth=2);
ylim(lim)
grid on
title("Y")
xlabel("Time (s)")
ylabel("Deviation (m)")

subplot(3,1,3)
plot(simTimes, yawDeviation,LineWidth=2);
ylim([0 pi/20])
grid on
title("Yaw")
xlabel("Time (s)")
ylabel("Deviation (rad)")
end

helperSuperImposeMapOnSceneImage superimposes point cloud map on scene image.

function hFig = helperSuperimposeMapOnSceneImage(sceneName, ptCloudAccum)

hFig = figure(Name="Point Cloud Map");
hIm = helperShowSceneImage(sceneName);

 Lidar Localization with Unreal Engine Simulation

8-981

hold(hIm.Parent,"on")
pcshow(ptCloudAccum);
hold(hIm.Parent,"off")

xlim(hIm.Parent, [-10 35]);
ylim(hIm.Parent, [-23 20]);
end

helperWrapToPi wraps angles to the range [− π π].

function angle = helperWrapToPi(angle)

idx = (angle < -pi) | (angle > pi);
angle(idx) = helperWrapTo2Pi(angle(idx) + pi) - pi;
end

helperWrapTo2Pi wraps angles to the range [− 2π 2π].

function angle = helperWrapTo2Pi(angle)

pos = (angle>0);
angle = mod(angle, 2*pi);
angle(angle==0 & pos) = 2*pi;
end

See Also
Functions
pccat | pctransform | pcalign | pcviewset | pcplayer

Blocks
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Simulation 3D
Lidar

More About
• “Select Waypoints for Unreal Engine Simulation” on page 8-894
• “Build a Map from Lidar Data Using SLAM” on page 8-827
• “Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment” on page 8-962

8 Featured Examples

8-982

Develop Visual SLAM Algorithm Using Unreal Engine
Simulation

This example shows how to develop a visual Simultaneous Localization and Mapping (SLAM)
algorithm using image data obtained from the Unreal Engine® simulation environment.

Visual SLAM is the process of calculating the position and orientation of a camera with respect to its
surroundings while simultaneously mapping the environment. Developing a visual SLAM algorithm
and evaluating its performance in varying conditions is a challenging task. One of the biggest
challenges is generating the ground truth of the camera sensor, especially in outdoor environments.
The use of simulation enables testing under a variety of scenarios and camera configurations while
providing precise ground truth.

This example demonstrates the use of Unreal Engine simulation to develop a visual SLAM algorithm
for either a monocular or a stereo camera in a parking scenario. For more information about the
implementation of the visual SLAM pipelines, see the “Monocular Visual Simultaneous Localization
and Mapping” example and the “Stereo Visual Simultaneous Localization and Mapping” example.

Set Up Scenario in Simulation Environment

Use the Simulation 3D Scene Configuration block to set up the simulation environment. Select the
built-in Large Parking Lot scene, which contains several parked vehicles. The visual SLAM algorithm
matches features across consecutive images. To increase the number of potential feature matches,
you can use the Parked Vehicles subsystem to add more parked vehicles to the scene. To specify the
parking poses of the vehicles, use the helperAddParkedVehicle function. If you select a more
natural scene, the presence of additional vehicles is not necessary. Natural scenes usually have
enough texture and feature variety suitable for feature matching.

You can follow the “Select Waypoints for Unreal Engine Simulation” on page 8-894 example to
interactively select a sequence of parking locations. You can use the same approach to select a
sequence of waypoints and generate a reference trajectory for the ego vehicle. This example uses a
recorded reference trajectory and parked vehicle locations.

% Load reference path
data = load('parkingLotReferenceData.mat');

% Set reference trajectory of the ego vehicle
refPosesX = data.refPosesX;
refPosesY = data.refPosesY;
refPosesT = data.refPosesT;

% Set poses of the parked vehicles
parkedPoses = data.parkedPoses;

% Display the reference path and the parked vehicle locations
sceneName = 'LargeParkingLot';
hScene = figure;
helperShowSceneImage(sceneName);
hold on
plot(refPosesX(:,2), refPosesY(:,2), 'LineWidth', 2, 'DisplayName', 'Reference Path');
scatter(parkedPoses(:,1), parkedPoses(:,2), [], 'filled', 'DisplayName', 'Parked Vehicles');
xlim([-60 40])
ylim([10 60])
hScene.Position = [100, 100, 1000, 500]; % Resize figure

 Develop Visual SLAM Algorithm Using Unreal Engine Simulation

8-983

legend
hold off

Open the model and add parked vehicles

modelName = 'GenerateImageDataOfParkingLot';
open_system(modelName);

8 Featured Examples

8-984

helperAddParkedVehicles(modelName, parkedPoses);

 Develop Visual SLAM Algorithm Using Unreal Engine Simulation

8-985

Set Up Ego Vehicle and Camera Sensor

Set up the ego vehicle moving along the specified reference path by using the Simulation 3D Vehicle
with Ground Following block. The Camera Variant Subsystem contains two configurations of camera
sensors: monocular and stereo. In both configurations, the camera is mounted on the vehicle roof
center. You can use the Camera Calibrator or Stereo Camera Calibrator app to estimate intrinsics of
the actual camera that you want to simulate. This example shows the monocular camera workflow
first followed by the stereo camera workflow.

% Select monocular camera
useMonoCamera = 1;

% Inspect the monocular camera
open_system([modelName, '/Camera/Monocular']);

% Camera intrinsics
focalLength = [700, 700]; % specified in units of pixels
principalPoint = [600, 180]; % in pixels [x, y]

8 Featured Examples

8-986

imageSize = [370, 1230]; % in pixels [mrows, ncols]
intrinsics = cameraIntrinsics(focalLength, principalPoint, imageSize);

Visualize and Record Sensor Data

Run the simulation to visualize and record sensor data. Use the Video Viewer block to visualize the
image output from the camera sensor. Use the To Workspace block to record the ground truth
location and orientation of the camera sensor.

close(hScene)

if ~ispc
 error("Unreal Engine Simulation is supported only on Microsoft" + char(174) + " Windows" + char(174) + ".");
end

% Run simulation
simOut = sim(modelName);

% Extract camera images as an imageDatastore
imds = helperGetCameraImages(simOut);

 Develop Visual SLAM Algorithm Using Unreal Engine Simulation

8-987

% Extract ground truth as an array of rigid3d objects
gTruth = helperGetSensorGroundTruth(simOut);

Develop Monocular Visual SLAM Algorithm Using Recorded Data

Use the images to evaluate the monocular visual SLAM algorithm. The function helperVisualSLAM
implements the monocular ORB-SLAM pipeline:

• Map Initialization: ORB-SLAM starts by initializing the map of 3-D points from two images. Use
relativeCameraPose to compute the relative pose based on 2-D ORB feature correspondences
and triangulate to compute the 3-D map points. The two frames are stored in an
imageviewset object as key frames. The 3-D map points and their correspondences to the key
frames are stored in a worldpointset object.

• Tracking: Once a map is initialized, for each new image, the function
helperTrackLastKeyFrame estimates the camera pose by matching features in the current
frame to features in the last key frame. The function helperTrackLocalMap refines the
estimated camera pose by tracking the local map.

• Local Mapping: The current frame is used to create new 3-D map points if it is identified as a key
frame. At this stage, bundleAdjustment is used to minimize reprojection errors by adjusting the
camera pose and 3-D points.

• Loop Closure: Loops are detected for each key frame by comparing it against all previous key
frames using the bag-of-features approach. Once a loop closure is detected, the pose graph is
optimized to refine the camera poses of all the key frames using the optimizePoseGraph
(Navigation Toolbox) function.

For the implementation details of the algorithm, see the “Monocular Visual Simultaneous Localization
and Mapping” example.

[mapPlot, optimizedPoses, addedFramesIdx] = helperVisualSLAM(imds, intrinsics);

Map initialized with frame 1 and frame 3

8 Featured Examples

8-988

Loop edge added between keyframe: 5 and 104
Loop edge added between keyframe: 4 and 104

Evaluate Against Ground Truth

You can evaluate the optimized camera trajectory against the ground truth obtained from the
simulation. Since the images are generated from a monocular camera, the trajectory of the camera
can only be recovered up to an unknown scale factor. You can approximately compute the scale factor
from the ground truth, thus simulating what you would normally obtain from an external sensor.

% Plot the camera ground truth trajectory
scaledTrajectory = plotActualTrajectory(mapPlot, gTruth(addedFramesIdx), optimizedPoses);

% Show legend
showLegend(mapPlot);

 Develop Visual SLAM Algorithm Using Unreal Engine Simulation

8-989

You can also calculate the root mean square error (RMSE) of trajectory estimates.

helperEstimateTrajectoryError(gTruth(addedFramesIdx), scaledTrajectory);

Absolute RMSE for key frame trajectory (m): 2.758

Stereo Visual SLAM Algorithm

In a monocular visual SLAM algorithm, depth cannot be accurately determined using a single
camera. The scale of the map and of the estimated trajectory is unknown and drifts over time.
Additionally, because map points often cannot be triangulated from the first frame, bootstrapping the
system requires multiple views to produce an initial map. Using a stereo camera solves these
problems and provides a more reliable visual SLAM solution. The function
helperVisualSLAMStereo implements the stereo visual SLAM pipeline. The key difference from
the monocular pipeline is that at the map initialization stage, the stereo pipeline creates 3-D map
points from a pair of stereo images of the same frame, instead of creating them from two images of
different frames. For the implementation details of the algorithm, see the “Stereo Visual
Simultaneous Localization and Mapping” example.

% Select stereo camera
useMonoCamera = 0;

% Inspect the stereo camera
open_system([modelName, '/Camera/Stereo']);
snapnow;

% Set stereo camera baseline
baseline = 0.5; % In meters

% Construct the reprojection matrix for 3-D reconstruction

8 Featured Examples

8-990

reprojectionMatrix = [1, 0, 0, -principalPoint(1);
 0, 1, 0, -principalPoint(2);
 0, 0, 0, focalLength(1);
 0, 0, 1/baseline, 0];

% Maximum disparity in stereo images
maxDisparity = 48;

% Run simulation
simOut = sim(modelName);

 Develop Visual SLAM Algorithm Using Unreal Engine Simulation

8-991

snapnow;

Extract Stereo Images
[imdsLeft, imdsRight] = helperGetCameraImagesStereo(simOut);

% Extract ground truth as an array of rigid3d objects
gTruth = helperGetSensorGroundTruth(simOut);

Run the stereo visual SLAM algorithm

[mapPlot, optimizedPoses, addedFramesIdx] = helperVisualSLAMStereo(imdsLeft, imdsRight, intrinsics, maxDisparity, reprojectionMatrix);

8 Featured Examples

8-992

Loop edge added between keyframe: 3 and 98
Loop edge added between keyframe: 2 and 98

% Plot the camera ground truth trajectory
optimizedTrajectory = plotActualTrajectory(mapPlot, gTruth(addedFramesIdx));

% Show legend
showLegend(mapPlot);

% Calculate the root mean square error (RMSE) of trajectory estimates
helperEstimateTrajectoryError(gTruth(addedFramesIdx), optimizedTrajectory);

Absolute RMSE for key frame trajectory (m): 0.30292

Compared with the monocular visual SLAM algorithm, the stereo visual SLAM algorithm produces a
more accurate estimation of the camera trajectory.

Dense Reconstruction from Stereo Images

Given the refined camera poses, you can perform dense reconstruction from the stereo images
corresponding to the key frames.

pointCloudsAll = helperDenseReconstructFromStereo(imdsLeft, imdsRight, ...
 imageSize, addedFramesIdx, optimizedPoses, maxDisparity, reprojectionMatrix);

% Visualize the scene
figure('Position', [1100 600 1000 500]);
ax = pcshow(pointCloudsAll,'VerticalAxis', 'y', 'VerticalAxisDir', 'down');
xlabel('X')

 Develop Visual SLAM Algorithm Using Unreal Engine Simulation

8-993

ylabel('Y')
zlabel('Z')

% Display bird's eye view of the parking lot
view(ax, [0 -1 0]);
camroll(ax, 90);

Close model and figures.

close_system(modelName, 0);
close all

Supporting Functions

helperGetCameraImages Get camera output

function imds = helperGetCameraImages(simOut)
% Save image data to a temporary folder
dataFolder = fullfile(tempdir, 'parkingLotImages', filesep);
folderExists = exist(dataFolder, 'dir');
if ~folderExists
 mkdir(dataFolder);
end

files = dir(dataFolder);
if numel(files) < 3
 numFrames = numel(simOut.images.Time);
 for i = 3:numFrames % Ignore the first two frames
 img = squeeze(simOut.images.Data(:,:,:,i));
 imwrite(img, [dataFolder, sprintf('%04d', i-2), '.png'])
 end
end

8 Featured Examples

8-994

% Create an imageDatastore object to store all the images
imds = imageDatastore(dataFolder);
end

helperGetCameraImagesStereo Get camera output

function [imdsLeft, imdsRight] = helperGetCameraImagesStereo(simOut)
% Save image data to a temporary folder
dataFolderLeft = fullfile(tempdir, 'parkingLotStereoImages', filesep, 'left', filesep);
dataFolderRight = fullfile(tempdir, 'parkingLotStereoImages', filesep, 'right', filesep);
folderExists = exist(dataFolderLeft, 'dir');
if ~folderExists
 mkdir(dataFolderLeft);
 mkdir(dataFolderRight);
end

files = dir(dataFolderLeft);
if numel(files) < 3
 numFrames = numel(simOut.imagesLeft.Time);
 for i = 3:numFrames % Ignore the first two frames
 imgLeft = squeeze(simOut.imagesLeft.Data(:,:,:,i));
 imwrite(imgLeft, [dataFolderLeft, sprintf('%04d', i-2), '.png'])

 imgRight = squeeze(simOut.imagesRight.Data(:,:,:,i));
 imwrite(imgRight, [dataFolderRight, sprintf('%04d', i-2), '.png'])
 end
end

% Use imageDatastore objects to store the stereo images
imdsLeft = imageDatastore(dataFolderLeft);
imdsRight = imageDatastore(dataFolderRight);
end

helperGetSensorGroundTruth Save the sensor ground truth

function gTruth = helperGetSensorGroundTruth(simOut)
numFrames = numel(simOut.location.Time);
gTruth = repmat(rigid3d, numFrames-2, 1);
for i = 1:numFrames-2 % Ignore the first two frames
 gTruth(i).Translation = squeeze(simOut.location.Data(:, :, i+2));
 % Ignore the roll and the pitch rotations since the ground is flat
 yaw = double(simOut.orientation.Data(:, 3, i+2));
 gTruth(i).Rotation = [cos(yaw), sin(yaw), 0; ...
 -sin(yaw), cos(yaw), 0; ...
 0, 0, 1];
end
end

helperEstimateTrajectoryError Calculate the tracking error

function rmse = helperEstimateTrajectoryError(gTruth, scaledLocations)
gLocations = vertcat(gTruth.Translation);

rmse = sqrt(mean(sum((scaledLocations - gLocations).^2, 2)));
disp(['Absolute RMSE for key frame trajectory (m): ', num2str(rmse)]);
end

helperDenseReconstructFromStereo Perform dense reconstruction from stereo images with
known camera poses

 Develop Visual SLAM Algorithm Using Unreal Engine Simulation

8-995

function pointCloudsAll = helperDenseReconstructFromStereo(imdsLeft, imdsRight, ...
 imageSize, addedFramesIdx, optimizedPoses, maxDisparity, reprojectionMatrix)

ptClouds = repmat(pointCloud(zeros(1, 3)), numel(addedFramesIdx), 1);

for i = 1: numel(addedFramesIdx)
 I1 = readimage(imdsLeft, addedFramesIdx(i));
 I2 = readimage(imdsRight, addedFramesIdx(i));
 disparityMap = disparitySGM(im2gray(I1), im2gray(I2), 'DisparityRange', [0, maxDisparity],'UniquenessThreshold',20);
 xyzPoints = reconstructScene(disparityMap, reprojectionMatrix);

 % Ignore the upper half of the images which mainly show the sky
 xyzPoints(1:100, :, :) = NaN;

 xyzPoints = reshape(xyzPoints, [imageSize(1)*imageSize(2), 3]);

 validIndex = xyzPoints(:, 3) > 0 & xyzPoints(:, 3) < 40/reprojectionMatrix(4, 3);

 xyzPoints = xyzPoints(validIndex, :);
 colors = reshape(I1, [imageSize(1)*imageSize(2), 3]);
 colors = colors(validIndex, :);

 currPose = optimizedPoses.AbsolutePose(i);
 xyzPoints = xyzPoints * currPose.Rotation + currPose.Translation;
 ptCloud = pointCloud(xyzPoints, 'Color', colors);
 ptClouds(i) = pcdownsample(ptCloud, 'random', 0.2);
end

% Concatenate the point clouds
pointCloudsAll = pccat(ptClouds);
end

See Also
imageviewset | triangulate | optimizePoses | relativeCameraPose | bundleAdjustment

More About
• “Monocular Visual Simultaneous Localization and Mapping”
• “Structure From Motion From Multiple Views”
• “Select Waypoints for Unreal Engine Simulation” on page 8-894
• “Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment” on page 8-962

8 Featured Examples

8-996

Automatic Scenario Generation
This example shows how to automate scenario generation by using a drivingScenario object. In
this example, you will automate:

• Vehicle placements in a scenario by defining their start and goal positions
• Waypoint selection and trajectory generation for the vehicles to traverse from their start positions

to goal positions.
• Speed adjustment such that the vehicles accelerate or decelerate to avoid colliding between other

vehicles that travel in the same lane.

You can use this example to synthesize a number of random scenarios for testing driving algorithms.

Introduction

The drivingScenario object and the Driving Scenario Designer app in Automated Driving
Toolbox™ are efficient tools for generating synthetic driving scenarios. You can create a road network
or import a road network from OpenDRIVE®, HERE HD Live Map, and OpenStreetMap®. Then, you
can add actors or vehicles to the road network and define their trajectories to synthesize a driving
scenario. The waypoints required for generating the trajectories must be selected carefully such that
the trajectories of the vehicles lie within the road network and the vehicles does not collide as they
travel along their trajectories. Defining such vehicle placements and trajectories often requires
multiple trials and is time consuming if you have large road networks and many vehicles to configure.

This example provides helper functions and demonstrates the steps to automate vehicle placements
and trajectory generation by using the drivingScenario object. You can also export the generated
scenario to the Driving Scenario Designer app. The rest of the example demonstrates these steps
involved in automating scenario generation.

1 Import road network - Import OpenStreetMap® road network into a driving scenario object by
using the helper function helperOSMimport.

2 Define start and goal positions - Specify regions of interest (ROIs) in the road network to
select the start and goal positions for vehicles by using the helper function
helperSamplePositions.

3 Generate vehicle trajectories - Generate waypoints and trajectories by using the helper
function helperGenerateWaypoints and the trajectory function.

4 Modify speed profiles to avoid collision - Modify the speed profiles of the vehicles in the
scenario by using the Simulink® model CollisionFreeSpeedManipulator. The model checks
the speed profile of each vehicle and prevents them from colliding with each other as they travel
along their trajectories. The output from the model is an updated scenario that is free from
collision between vehicles. You can convert the output from the
CollisionFreeSpeedManipulator Simulink model to a driving scenario object by using the
helper function helpergetCFSMScenario.

5 Simulate and visualize generated scenario - Simulate and display the automatically
generated scenario by using the plot function. You can also read and simulate the scenario by
using the Driving Scenario Designer app.

Import Road Network

You can download a road network from https://www.openstreetmap.org, which provides access to
crowd-sourced map data all over the world. The data is licensed under the Open Data Commons Open
Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

 Automatic Scenario Generation

8-997

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

Specify the bounding box coordinates to import the MCity test facility map from
openstreetmap.org by using the helperOSMImport function. The function returns a driving
scenario object that contains the road network from the imported map data. You can also use the
roadNetwork function to import a road network from OpenDRIVE®, HERE HD Live Map, or
OpenStreetMap® files.

% Import the road network of MCity
minLat = 42.2990;
maxLat = 42.3027;
minLon = -83.6996;
maxLon = -83.6965;
bbox = [minLat maxLat;minLon maxLon];
scenario = helperOSMImport(bbox);
% Create another scenario object for plotting purposes
scenario_in = helperOSMImport(bbox);

Display the MCity road network by using the plot function.

figure
plot(scenario_in)
title('Imported Road Network')
xlim([-50 190])
ylim([-85 330])

Define Start and Goal Positions

To create a driving scenario, you must first define specific points on the road network that can serve
as start and goal positions for the vehicles in the scenario. Use the helperSamplePositions

8 Featured Examples

8-998

https://www.openstreetmap.org/

function to generate a random set of these points in the road network. You can use one or more of
these name-value pair arguments of helperSamplePositions functions to configure the start and
goal positions in different ways"

• Use 'Seed' to specify the random generator settings to be used for generating random points. You
can select any points in the generated set as start and goal positions.

• Use 'ROI' to specify one or more ROIs in the road network within which you want to define the
start and goal positions. The ROIs can be circular, rectangular, or a polygon region with any
number of vertices. The value for ROI is an N-by-2 matrix specifying the spatial coordinates of a
closed region. If this value is not specified, the function generates random points across the entire
road network.

• Use 'Lanes' to specify the lanes in which you want to define the start and goal positions. To select
a single lane, specify the lane number as a scalar value. For multiple lanes, the value of 'Lanes'
must be a vector containing the desired lane numbers. If this value is not specified, the function
selects the lanes randomly.

• Use 'LongitudinalDistance' to set the longitudinal distance between two consecutive points. If
this value is not specified, the function imposes at least 5 meters of distance between two
consecutive points in the same lane. This implies that the longitudinal distance between two
consecutive vehicles placed in the same lane is at least 5 meters.

During simulation, the vehicles spawn at the start points and then travel to reach the goal points.

1. Select Start Positions

Generate 10 random points to use as potential start positions. Specify a flag for setting the random
number generator. Set the value for setSeed to 1 to specify the seed for random number generator.
Pass the random generator settings as input to the helperSamplePositions function by using the
'Seed' name-value pair argument.

The helperSamplePositions function outputs the 3-D spatial coordinates of the randomly selected
points in the imported road network. The function also outputs the yaw angles relative to the selected
points. The yaw angle obtained relative to a point defines the orientation for the vehicle to be placed
at that point.

numPoints = 10;
setSeed = 1;
if setSeed == 1
 seed = 2;
 rng(seed);
 s = rng;
 [points,yaw] = helperSamplePositions(scenario,numPoints,'Seed',s);
else
 [points,yaw] = helperSamplePositions(scenario,numPoints);
end

Specify the number of vehicles to be placed in the scenario as 3. Select any three points in the
generated set as the start positions for the vehicles.

numVehicles = 3;
startSet1 = [points(2,:);points(4,:);points(7,:)];
yaw1 = [yaw(2);yaw(4);yaw(7)];

Place vehicles in the selected points by using the vehicle function.

 Automatic Scenario Generation

8-999

for idx = 1 : numVehicles
 vehicle(scenario,'Position',startSet1(idx,:),'Yaw',yaw1(idx),'ClassID',1);
end

Generate another set of points by defining the ROIs. Compute the coordinates to specify a circular
ROI.

xCor = 0;
yCor = 0;
radius = 50;
theta = 0: pi/10: 2*pi;
roiCircular(:,1) = xCor+radius*cos(theta);
roiCircular(:,2) = yCor+radius*sin(theta);

Specify the number of points to be generated within the ROI and the number of vehicles to place
within the ROI as 3. Select all the points within the circular ROI as the start positions for the vehicles.

numPoints = 3;
numVehicles = numPoints;
[startSet2,yaw2] = helperSamplePositions(scenario,numPoints,'ROI',roiCircular);
for idx = 1 : size(startSet2,1)
 vehicle(scenario,'Position',startSet2(idx,:),'Yaw',yaw2(idx),'ClassID',1);
end

Specify the coordinates for a rectangular ROI. Set the number of points to be generated within the
ROI and the number of vehicles to place within the ROI as 3. Set the longitudinal distance between
two consecutive points in the same lane to 30 meters. If the ROI is not large enough to accommodate
the specified number of points at the specified longitudinal distance, then the
helperSamplePositions function returns only those number of points that can be accommodated
within the ROI. To get the desired number of points, you must either reduce the longitudinal distance
or increase the area of the ROI.

roiRectangular = [0 0;100 100];
numPoints = 3;
[startSet3,yaw3] = helperSamplePositions(scenario,numPoints,'ROI',roiRectangular,'LongitudinalDistance',30);

Place vehicles at the selected points by using the vehicle function.

for idx = 1 : size(startSet3,1)
 vehicle(scenario,'Position',startSet3(idx,:),'Yaw',yaw3(idx),'ClassID',1);
end

Plot the generated sample points and the ROIs.

figScene = figure('Name','AutomaticScenarioGeneration');
set(figScene,'Position',[0,0,900,500]);

hPanel1 = uipanel(figScene,'Position',[0 0 0.5 1]);
hPlot1 = axes(hPanel1);
plot(scenario_in,'Parent',hPlot1);
title('Points for Selecting Start Positions')
hold on
plot(points(:,1),points(:,2),'ro','MarkerSize',5,'MarkerFaceColor','r');

plot(roiCircular(:,1),roiCircular(:,2),'LineWidth',1.2,'Color','k')
plot(startSet2(:,1),startSet2(:,2),'ko','MarkerSize',5,'MarkerFaceColor','k');

plot([roiRectangular(1,1);roiRectangular(1,1);roiRectangular(2,1);roiRectangular(2,1);roiRectangular(1,1)],...

8 Featured Examples

8-1000

 [roiRectangular(1,2);roiRectangular(2,2);roiRectangular(2,2);roiRectangular(1,2);roiRectangular(1,2)],...
 'LineWidth',1.2,'Color','b');
plot(startSet3(:,1),startSet3(:,2),'bo','MarkerSize',5,'MarkerFaceColor','b');
xlim([-50 190])
ylim([-85 330])
hold off

Display the start positions and the vehicles in the scenario.

• The 3 start positions in red were selected from the 10 random points defined throughout the
scenario.

• The 3 start positions in black were selected from the 3 random points defined in the circular ROI.
• The 3 start positions in blue were selected from the 3 random points defined in the rectangular

ROI.

hPanel2 = uipanel(figScene,'Position',[0.5 0 0.5 1]);
hPlot2 = axes(hPanel2);
plot(scenario,'Parent',hPlot2);
title('Start Positions and Vehicle Placement')
hold on
plot(startSet1(:,1),startSet1(:,2),'rs','MarkerSize',15,'LineWidth',1.2);
plot(startSet2(:,1),startSet2(:,2),'ks','MarkerSize',15,'LineWidth',1.2);
plot(startSet3(:,1),startSet3(:,2),'bs','MarkerSize',15,'LineWidth',1.2);
xlim([-50 190])
ylim([-85 330])
hold off

Merge all the start positions into a single matrix. The number of start positions implies the total
number of vehicles in the driving scenario.

 Automatic Scenario Generation

8-1001

startPositions = [startSet1;startSet2;startSet3];

2. Inspect Scenario Object

Display the scenario object and inspect its properties. The Actors property of the scenario object
is a 1-by-9 array that stores information about the 9 vehicles that are added to the driving scenario.
Access the details of each vehicle in Actors property by using dot indexing. Display the details about
the first vehicle in the driving scenario. The Position property contains the start position of the
vehicle.

scenario

scenario =
 drivingScenario with properties:

 SampleTime: 0.0100
 StopTime: Inf
 SimulationTime: 0
 IsRunning: 1
 Actors: [1×9 driving.scenario.Vehicle]
 Barriers: [0×0 driving.scenario.Barrier]
 ParkingLots: [0×0 driving.scenario.ParkingLot]

scenario.Actors(1)

ans =
 Vehicle with properties:

 FrontOverhang: 0.9000
 RearOverhang: 1
 Wheelbase: 2.8000
 EntryTime: 0
 ExitTime: Inf
 ActorID: 1
 ClassID: 1
 Name: ""
 PlotColor: [0 0.4470 0.7410]
 Position: [130.7903 -12.2335 -2.0759e-04]
 Velocity: [0 0 0]
 Yaw: 96.6114
 Pitch: 0
 Roll: 0
 AngularVelocity: [0 0 0]
 Length: 4.7000
 Width: 1.8000
 Height: 1.4000
 Mesh: [1×1 extendedObjectMesh]
 RCSPattern: [2×2 double]
 RCSAzimuthAngles: [-180 180]
 RCSElevationAngles: [-90 90]

3. Select Goal Positions

Generate the goal positions for the vehicles in the scenario by using the helperSamplePositions
function. The total number of goal positions must be the same as the total number of start positions.

numGoalPositions = length(startPositions)

8 Featured Examples

8-1002

numGoalPositions = 9

Specify the coordinates for a polygon ROI and find 5 random points within the polygon ROI. Select
these points as the goal positions for the first 5 vehicles in the scenario.

roiPolygon = [-50 170;30 250;72 170;-50 170];
numPoints1 = 5;
goalSet1 = helperSamplePositions(scenario,numPoints1,'ROI',roiPolygon);

Generate the remaining set of goal positions in such a way that they all lie in a specific lane. Use the
'Lanes' name-value pair argument to specify the lane number for goal positions.

numPoints2 = 4;
goalSet2 = helperSamplePositions(scenario,numPoints2,'Lanes',1);

Display the scenario and the selected goal positions.

• The 5 points in red show the goal positions defined in the polygon ROI.
• The 4 points in blue show the goal positions defined across the entire scenario.

figure
plot(scenario);
title('Goal Positions')
hold on
plot(roiPolygon(:,1), roiPolygon(:,2),'LineWidth',1.2,'Color','r')
plot(goalSet1(:,1), goalSet1(:,2),'ro','MarkerSize',5,'MarkerFaceColor','r')
plot(goalSet2(:,1),goalSet2(:,2),'bo','MarkerSize',5,'MarkerFaceColor','b')
xlim([-50 190])
ylim([-85 310])
hold off

 Automatic Scenario Generation

8-1003

Merge all the goal positions into a single matrix.

goalPositions = [goalSet1;goalSet2];

Display the start positions and the goal positions with respect to each vehicle in the scenario.

vehicleNum = 1:length(startPositions);
table(vehicleNum(:),startPositions,goalPositions,'VariableNames',{'Vehicle','Start positions','Goal positions'})

ans=9×3 table
 Vehicle Start positions Goal positions
 _______ _____________________________________ _____________________________________

 1 130.79 -12.233 -0.00020759 49.544 173.51 0.0009993
 2 113.86 -44.576 -0.00076866 53.168 198.75 0.00070254
 3 143.37 297.8 -0.00188 3.5187 187.51 0.00057965
 4 -25.863 37.977 0.00020468 30.912 175.81 0.00087745
 5 24.74 -28.221 -0.00031535 -3.3494 178.66 0.00055764
 6 -29.047 -7.817 -0.00053606 108.15 -34.789 -0.00049719
 7 26.393 62.042 0.00095438 118.42 192.5 0.00054377
 8 73.989 42.717 0.00094018 110.09 248.17 -0.00032446
 9 73.996 64.436 0.0011401 177.2 267.68 -0.0015615

Generate Vehicle Trajectories

Use the helperGenerateWaypoints function to compute waypoints that connect the start and goal
positions. The function returns a structure array that contains the road centers, computed waypoints,

8 Featured Examples

8-1004

and yaw angle for each vehicle in the scenario. Read the vehicle information from the scenario
object and specify random speed values for each vehicle. Use the trajectory function to generate
the trajectories for each vehicle by using the computed waypoints and random speed values.

info = helperGenerateWaypoints(scenario,startPositions,goalPositions);
for indx = 1:length(startPositions)
 vehicleData = scenario.Actors(indx);
 speed = randi([10,25],1,1);
 waypts = info(indx).waypoints;
 trajectory(vehicleData,waypts,speed);
end

Set the stop time for the scenario.

scenario.StopTime = 50;

Create a custom figure and display the simulated driving scenario.

close all;
figScene = figure;
set(figScene,'Position',[0,0,600,600]);
movegui(figScene,'center');
hPanel = uipanel(figScene,'Position',[0 0 1 1]);
hPlot = axes(hPanel);
plot(scenario,'Parent',hPlot);
title('Generated Scenario')
% Run the simulation
while advance(scenario)
 pause(0.01)
end

 Automatic Scenario Generation

8-1005

In the generated scenario, all the vehicles traverse along their trajectories at a particular speed to
reach their goal positions. You can also observe collision between two actors as they traverse along
their trajectories. While you synthesize a scenario for testing driving algorithms, it is important that
the vehicles in the scenario do not collide. To prevent collision, you must adjust the velocity of the
vehicles so that they do not collide with each other while traveling along their paths.

Modify Speed Profile to Avoid Collision

Use the Simulink model CollisionFreeSpeedManipulator to correct the velocity of the vehicles
such that they do not collide as they traverse along their trajectories. The model uses nonlinear time
scaling to reactively accelerate or decelerate a vehicle without altering its trajectory [1].

% Open the Simulink system block
open_system('CollisionFreeSpeedManipulator');

8 Featured Examples

8-1006

% Pass the scenario object as input
set_param('CollisionFreeSpeedManipulator/VelocityUpdate',...
 'ScenarioName','scenario')

% Run the simulation and log the output
out = sim('CollisionFreeSpeedManipulator','StopTime','50');

% Clear all the temporary variables and close the Simulink block
bdclose

Simulate and Visualize Generated Scenario

Use the helpergetCFSMScenario function to convert the Simulink model output to a driving
scenario object. Simulate and display the driving scenario. You can see that the vehicles travel along
the specified trajectories to reach their goal positions.

newScenario = helpergetCFSMScenario(out,scenario);
close all;
figScene = figure;
set(figScene,'Position',[0,0,600,600]);
movegui(figScene,'center');
hPanel = uipanel(figScene,'Position',[0 0 1 1]);
hPlot = axes(hPanel);
plot(newScenario,'Parent',hPlot);
title('Updated Scenario')
hold on
h1 = plot(goalPositions(:,1),goalPositions(:,2),'gs','MarkerSize',15,'LineWidth',1.2);
h2 = plot(startPositions(:,1),startPositions(:,2),'rs','MarkerSize',15,'LineWidth',1.2);
legend([h2 h1],{'Start Positions';'Goal Positions'},'Location','southoutside','Orientation','horizontal')
hold off
% Run the simulation
while advance(newScenario)
 pause(0.01)
end

 Automatic Scenario Generation

8-1007

You can also export the scenario to Driving Scenario Designer app and run the simulation.

drivingScenarioDesigner(newScenario)

8 Featured Examples

8-1008

Tips To Avoid Collisions

The Simulink model CollisionFreeSpeedManipulator adjusts only the speed profile of the active
vehicles. Once the vehicle reaches the goal position and becomes inactive in the scenario, it is not
considered for checking collisions. If you want to generate a driving scenario with non-colliding
vehicles, select points at less proximities and in different lanes as the start and the goal positions. If
there is another vehicle whose goal position is close to the non-active vehicle and trajectory is same
as the non-active vehicle's trajectory then there will be collision between these vehicles. Similarly,
collision occurs when two vehicles travelling in same or different lanes come in close proximity at the
road intersections. Also, the chances for collision is more if two or more goal positions lie in the same
lane.

 Automatic Scenario Generation

8-1009

1

 2.

References
[1] Singh, Arun Kumar, and K. Madhava Krishna. “Reactive Collision Avoidance for Multiple Robots by

Non Linear Time Scaling.” In 52nd IEEE Conference on Decision and Control, 952–58.
Firenze: IEEE, 2013. https://doi.org/10.1109/CDC.2013.6760005.

See Also
roadNetwork | vehicle | plot | drivingScenario

Related Examples
• “Create Driving Scenario Variations Programmatically” on page 5-125
• “Scenario Generation from Recorded Vehicle Data” on page 8-518
• “Automatic Scenario Variant Generation for Testing AEB Systems” on page 8-1011
• “Generate Scenario from Recorded GPS and Lidar Data” on page 8-1034

8 Featured Examples

8-1010

Automatic Scenario Variant Generation for Testing AEB
Systems

This example shows how to automatically generate variants of a seed scenario in which two actors
collide. You can generate random variants of a collision scenario that you can use for the design and
validation of autonomous driving applications such as automated emergency braking (AEB) systems.
In this example, you generate the scenario variants by modifying the speed of the ego vehicle, actor
dimensions, and the collision point. The collision point is a position on the ego vehicle at which the
ego vehicle and target actor collide. This example assumes that the ego vehicle and the target actor
always collide at 90 degrees, and the target actor collides with a point on the front edge of the ego
vehicle. However, the collision time remains the same as in the seed scenario.

• If the ego vehicle collides with a target actor multiple times, this example generates scenario
variants based on only the first collision instance.

• If the ego vehicle collides with multiple target actors at different times in a scenario, this example
generates scenario variants for only one target actor. You can specify which target actor to
consider for generating the scenario variants.

This example uses the drivingScenario object to create a seed scenario and provides helper
functions to generate the variants from the seed scenario. The rest of the example demonstrates the
steps involved in generating the scenario variants.

Generate Seed Scenario — Create a collision scenario by using a drivingScenario object. The
scenario can contain any number of actors and collision instances. However, this example generates a
variant based on only the first collision instance that occurs between the ego vehicle and the
specified target actor.

Validate and Store Seed Scenario Data — To generate the variants, the seed scenario must meet
these requirements:

• The ego vehicle and the target actor in the seed scenario must have three waypoints along their
trajectories.

• The speeds of the ego vehicle and the target actor at the first waypoint must be zero. For the rest
of the waypoints, the speed values of the ego vehicle and the target actor must remain constant in
reference to themselves.

Use the helperValidateScenario function to validate that the input seed scenario meets the
requirements. To get information from the seed scenario about the collision time instant and recorded
states of the ego vehicle and target actor during simulation, as well as the ego and target actor poses,
trajectories, and waypoints, use the helperValidateScenario and
helperComputeCollisionData functions. Store the information from the seed scenario to a
scenarioData object, a custom object class returned by the helperScenarioData function. You
can then use the scenarioData object to generate variants of the seed scenario.

Generate Variant of Seed Scenario — Modify the seed scenario by using the helper functions
helperChangeActorDimensions, helperChangeCollisionPoint, and
helperChangeEgoSpeed. These helper functions enable you to generate variants of the seed
scenario by altering the dimensions of the actors in the scenario, the collision point, and the speed of
the ego actor.

• Specify New Actor Dimensions and Modify Seed Scenario — Use the
helperChangeActorDimensions function to specify new dimensions for the ego vehicle, the

 Automatic Scenario Variant Generation for Testing AEB Systems

8-1011

target actor, or both in the variant scenario. You can specify new values for the length, width,
height, front overhang, rear overhang, and wheelbase of the actors in the scenario. However, the
collision point in the generated scenario variant remains the same as that of the seed scenario. If
the new actor dimensions cause the ego vehicle to arrive at the collision point ahead of the target
actor, then the function makes the ego vehicle wait at its first waypoint long enough to preserve
the expected collision time. Similarly, if the target actor arrives at the collision point ahead of the
ego vehicle, the function makes the target actor wait at its first waypoint.

• Specify New Collision Point and Modify Seed Scenario — Specify a new collision point
relative to the width of the ego vehicle. Use the helperChangeCollisionPoint function to
generate a variant of the seed scenario by modifying the collision point in the seed scenario to the
new value.

• Specify New Ego Speed and Modify Seed Scenario — Specify the new ego speed value and the
parameter to alter for generating the variant. Use the helperChangeEgoSpeed function to
compute the parameters required for altering the arrival times of the ego and the target actor at
each waypoint along their trajectories. The helperChangeEgoSpeed function uses the collision
information in the scenarioData object to generate a scenario variant with the new ego speed
value.

Visualize Generated Scenario — Simulate and display the generated scenario variants by using the
plot function.

Generate Seed Scenario

The seed scenario must be a collision scenario in which collision occurs between the ego vehicle and
at least one of the target actors in the scenario. In this example, you generate the
AEB_PedestrianTurning_Farside_50width test scenario of the European New Car Assessment
Programme (Euro NCAP) test protocol as the seed scenario. The actor dimensions, positions, speed
values, and trajectories are set as per the Euro NCAP test protocol requirements.

The scenario has an ego vehicle and an actor. The actor is a pedestrian, which is the moving target
with which the ego vehicle collides. The collision occurs only once during the simulation time. The
ego vehicle and the target actor must have at least three waypoints along their trajectories and travel
at constant speeds starting from their second waypoint. The speed value for the ego vehicle and the
target actor must be zero at their first waypoint.

Create a driving scenario object.

scenario = drivingScenario;

Specify the width and the road centers to create a road by using the road function. Add two driving
lanes to the road by using the lanespec function.

roadCenters = [30 30 0;
 30 -30 0];
marking = [laneMarking("Solid")
 laneMarking("Dashed")
 laneMarking("Solid")];
laneSpecification = lanespec([1 1],Width=3.5,Marking=marking);
road(scenario,roadCenters,Lanes=laneSpecification,Name="Road");

roadCenters = [10 0 0;
 50 0 0];
marking = [laneMarking("Solid")
 laneMarking("Dashed")

8 Featured Examples

8-1012

 laneMarking("Solid")];
laneSpecification = lanespec([1 1],Width=3.5,Marking=marking);
road(scenario,roadCenters,Lanes=laneSpecification,Name="Road1");

Add an ego vehicle to the scenario and set its trajectory by specifying the waypoints and speed.
Because this example uses the Name field to identify the ego vehicle in a scenario, the name for the
ego vehicle must contain the word "Ego" or "Test". Set the name of the ego vehicle to "Vehicle
Under Test". Set the speed of the ego vehicle to 21.24 km/h.

egoVehicle = vehicle(scenario,ClassID=1,Position=[28.25 12.5 0], ...
 FrontOverhang=0.9,Mesh=driving.scenario.carMesh, ...
 Name="Vehicle under Test");
egoWaypoints = [29 15 0; 29 4 0; 29.93 1 0;
 32 -0.9 0; 34 -1.24 0.01; 49 -1.24 0];
egoSpeed = 21.24;
% Convert speed value to m/s
egoSpeed = (egoSpeed*1000)/3600;
egoSpeedVector = [0; egoSpeed; egoSpeed; egoSpeed; egoSpeed; egoSpeed];
egoYaw = [-90; -90; NaN; -20.93; 0; 0];
trajectory(egoVehicle,egoWaypoints,egoSpeedVector,Yaw=egoYaw);

Add an actor of class Pedestrian to the scenario, and set its trajectory by specifying the waypoints
and the speed. Specify waypoints and the speed such that it collides with the ego vehicle. Because
this example uses the Name field to identify the moving target in a scenario, the name for the target
actor must contain the word "Target". Set the name for the target vehicle to "Target Pedestrian".
Set the speed of the target actor to 5 km/h.

movingTarget = actor(scenario,ClassID=4, ...
 Length=0.24, ...
 Width=0.5, ...
 Height=1.8, ...
 Position=[39.575 -7.71 0], ...
 RCSPattern=[-8 -8; -8 -8], ...
 Mesh=driving.scenario.pedestrianMesh, ...
 Name="Target Pedestrian");
targetWaypoints = [39.575 -7.71 0; 39.575 -6.71 0; 39.575 10 0];
targetSpeed = 5;
% Convert speed value to m/s
targetSpeed = (targetSpeed*1000)/3600;
targetSpeedVector = [0; targetSpeed; targetSpeed];
targetYaw = [90; NaN; 90];
trajectory(movingTarget,targetWaypoints,targetSpeedVector,Yaw=targetYaw);

Display the seed scenario.

figScene = figure;
set(figScene,Position=[50 50 500 500]);
hPanel1 = uipanel(figScene,Position=[0 0 1 1]);
hPlot1 = axes(hPanel1);
plot(scenario,Waypoints="on",Parent=hPlot1)
title("Seed Scenario")
while advance(scenario)
 pause(0.01)
end

 Automatic Scenario Variant Generation for Testing AEB Systems

8-1013

Validate and Store Seed Scenario Data

Specify the ActorID values of the ego vehicle and the target actor. You can find the ActorID values
and the names of the ego vehicle and the target actor by inspecting the Actors property of the
scenario object.

egoID = 1;
targetID = 2;
table([scenario.Actors.ActorID],[scenario.Actors.Name],VariableNames={'ActorID','Name'})

ans=1×2 table
 ActorID Name
 _______ ___

 1 2 "Vehicle under Test" "Target Pedestrian"

Store the speed, waypoints, yaw, and ActorID data of the ego vehicle and the target actor as
structures. If you do not know the ActorID and yaw information for the ego vehicle and the target
actor, you can leave the id and yaw fields, respectively, while creating the structures.

egoData = struct(id=egoID,speed=egoSpeedVector, ...
 waypoints=egoWaypoints,yaw=egoYaw);
targetData = struct(id=targetID,speed=targetSpeedVector, ...
 waypoints=targetWaypoints,yaw=targetYaw);

Use the helperValidateScenario function to validate the ego data egoData and the target data
targetData collected from the seed scenario. If the id field specifying the ActorID value is not
present in a structure, the helperValidateScenario function checks the input drivingScenario
object for actors with names that contain the words Ego or Test and Target. If the actor names are
not available, the function selects the vehicle with an ActorID value 1 as the ego vehicle, and the
actor with an ActorID value 2 as the target actor.

The helperValidateScenario function checks if the ego vehicle and the target actor have at least
three waypoints along their trajectories, a speed value of zero at the first waypoint, and travel at a
constant speed starting from the second waypoint.

• If the ego vehicle or target actor has only two waypoints, the helperValidateScenario
function adds a third waypoint at the midpoint between them and sets its speed value to that of
the last waypoint.

• If the speed value of the ego vehicle or target actor at its first waypoint is not zero, the
helperValidateScenario function changes the value to zero.

• If the ego vehicle or target actor does not travel with a constant speed starting from the second
waypoint, the helperValidateScenario function sets its speed value to a constant. In the case
of ego vehicle, it sets the speed value to 60 km/h. For target actor, it sets the speed value to 65
km/h.

The helperValidateScenario function returns information about the validated ego vehicle and
target actor data.

[egoID,targetID,egoData,targetData] = helperValidateScenario(scenario,egoData,targetData);

To generate variants of the seed scenario, you must compute information about the first collision
event that occurs in the seed scenario. Use the helperComputeCollisionData function to
compute the collision information. The helperComputeCollisionData function returns a
collisionData object with these properties:

8 Featured Examples

8-1014

• Time — Specifies the time instant at which collision occurs between the ego vehicle and the target
actor in the seed scenario. Unit is in seconds.

• EgoFrontEdge — Specifies position values of the top-left Exl, Eyl and top-right Exr, Eyr corners
of the ego vehicle at the time of collision.

• TargetFrontEdge — Specifies position values of the left Txl, Tyl and right Txr, Tyr corners on
the front edge of the target actor at the time of collision.

• EgoPosition — Specifies the centroid of the ego vehicle at the time of collision.
• TargetPosition — Specifies the centroid of the target actor at the time of collision.
• CollisionPoint — Specifies the relative position on the front edge of the ego vehicle that

collides first with the left corner Txl, Tyl on the front edge of the target actor. The collision point
(CP) and Txl, Tyl is related by the equation,

CP =
Exl− Txl + Eyl− Tyl

Ego width .

• EgoCollisionSideLength — Specifies the width of the ego vehicle.

 Automatic Scenario Variant Generation for Testing AEB Systems

8-1015

[collisionInformation] = helperComputeCollisionData(scenario,egoID,targetID)

collisionInformation =
 collisionData with properties:

 Time: 5.3800
 EgoFrontEdge: [2x3 double]
 TargetFrontEdge: [2x3 double]
 EgoPosition: [35.6595 -1.2400 0.0100]
 TargetPosition: [39.5750 -1.2378 0]
 CollisionPoint: 0.4343
 EgoCollisionSideLength: 1.8000

Use the helperScenarioData function to store the seed scenario, information about the first
collision event, and the recorded actor poses to a scenarioData object.

seedData = helperScenarioData(scenario,egoData,targetData,collisionInformation);

8 Featured Examples

8-1016

Generate Variants of Seed Scenario

Use the seed scenario and the collision information to generate scenario variants. You can:

• Change the dimensions of the colliding actors in the scenario.
• Change the collision point, which is the position at which the actors collide.
• Change the speed of the ego vehicle. You can also set new speed values for the ego vehicle while it

travels along the turns on the road.

Change Actor Dimensions

Modify the dimensions of the ego vehicle and the target actor in the seed scenario by specifying new
values for one or more of these vehicle parameters: length, width, height, front overhang, rear
overhang, and wheelbase. You can also compute the length of a vehicle as the sum of its front
overhang, rear overhang, and wheelbase.

Specify the new dimension values for the ego vehicle and the target actor. Store the values as a
structure.

egoDimensions = struct(FrontOverhang=2,RearOverhang=2,Width=3,Height=3);
targetDimensions = struct(Length=3,Width=2,Height=2);

 Automatic Scenario Variant Generation for Testing AEB Systems

8-1017

Use the helperChangeActorDimensions function to modify the dimensions of the actors in the
seed scenario.

• If you specify a new value for the length parameter, the helperChangeActorDimensions
function adjusts only the front overhang parameter to modify the length of the vehicle to the new
value.

• If you specify a new value for the rear overhang or wheelbase parameter, the
helperChangeActorDimensions function, in addition, will adjust the front overhang value to
maintain the specified length of the actor.

• If you specify a new value for the front overhang parameter, the
helperChangeActorDimensions function adjusts only the wheelbase parameter to maintain the
specified length of the actor.

The collision time instant and the collision point in the new scenario remain the same as those of the
seed scenario. To achieve this, the helperChangeActorDimensions function modifies the wait time
of the ego vehicle, the target actor, or both at the first waypoint. If the new ego dimension causes the
ego vehicle to arrive at the collision point ahead of the target actor, then the function makes the ego
vehicle wait at its first waypoint. Similarly, if the target actor arrives at the collision point ahead of
the ego vehicle, the function makes the target actor wait at its first waypoint.

The function returns the modified scenario as a drivingScenario object. You can also get the
details of the collision information, actor poses, and trajectories in the new scenario as a second
output, which the function returns as a structure. In this example, this structure is stateAD.

[scenarioAD,stateAD] = helperChangeActorDimensions(seedData, ...
 egoDimensions,TargetDimensions=targetDimensions)

scenarioAD =
 drivingScenario with properties:

 SampleTime: 0.0100
 StopTime: Inf
 SimulationTime: 0
 IsRunning: 1
 Actors: [1x2 driving.scenario.Actor]
 Barriers: [0x0 driving.scenario.Barrier]
 ParkingLots: [0x0 driving.scenario.ParkingLot]

stateAD = struct with fields:
 scenario: [1x1 drivingScenario]
 collisionData: [1x1 collisionData]
 egoMotionData: [1x1 struct]
 targetMotionData: [1x1 struct]

To instead modify the dimensions of only the ego vehicle, you can use this syntax:
helperChangeActorDimensions(seedData,egoDimensions).

Inspect the details of the collision event in the modified scenario. Note that the collision time and the
collision point in the modified scenario are the same as those of the seed scenario and the ego vehicle
width is modified to 3.

stateAD.collisionData

ans =
 collisionData with properties:

8 Featured Examples

8-1018

 Time: 5.4200
 EgoFrontEdge: [2x3 double]
 TargetFrontEdge: [2x3 double]
 EgoPosition: [35.8955 -1.2400 0.0100]
 TargetPosition: [39.5750 -2.4878 0]
 CollisionPoint: 0.4242
 EgoCollisionSideLength: 3

Inspect the waypoints and the speed values of the ego vehicle in the modified scenario.

stateAD.egoMotionData

ans = struct with fields:
 id: 1
 speed: [6x1 double]
 waypoints: [6x3 double]
 yaw: [6x1 double]

Inspect the waypoints and the speed values of the target actor in the modified scenario. Note that the
function makes the target actor wait at its first waypoint for 0.94 s.

stateAD.targetMotionData.waittime

ans = 3×1

 0.9400
 0
 0

Display the scenario generated for the new actor dimensions.

figScene = figure;
set(figScene,Position=[50 50 500 500]);
hPanel1 = uipanel(figScene,Position=[0 0 1 1]);
hPlot1 = axes(hPanel1);
plot(scenarioAD,Waypoints="on",Parent=hPlot1)
title("Scenario Variant with New Actor Dimensions")
while advance(scenarioAD)
 pause(0.01)
end

 Automatic Scenario Variant Generation for Testing AEB Systems

8-1019

Change Collision Point

The collision point is the point on the front edge of the ego vehicle with which the left corner on the
front edge of the target actor first collides. The value of collision point must be in the range 0 to 1.

• If you specify the collision point value as 0.5, the left corner of the front edge of the target actor
first collides with the center of the ego vehicle's front edge.

• If the collision point value is less than 0.5, the left corner of the front edge of the target actor first
collides with a position on the ego vehicle's front edge closer to the top-left corner of the ego
vehicle.

• If the collision point value is greater than 0.5, the left corner of the front edge of the target vehicle
first collides with a position on the ego vehicle's front edge closer to the top-right corner of the
ego vehicle.

Specify the new collision point value as 0.95. Use the helperChangeCollisionPoint function to
generate a scenario with the modified collision point. The function returns the modified scenario as a
drivingScenario object and also returns a structure that stores the collision information and the
actor data of the modified scenario. The collision time instant in the new scenario remains the same
as that of the seed scenario. To achieve this, the helperChangeCollisionPoint function makes
the target actor wait at its first waypoint.

8 Featured Examples

8-1020

newCP = 0.95;
[scenarioCP,stateCP] = helperChangeCollisionPoint(seedData,newCP);

Inspect the details of the collision event in the modified scenario.

stateCP.collisionData

ans =
 collisionData with properties:

 Time: 5.3800
 EgoFrontEdge: [2x3 double]
 TargetFrontEdge: [2x3 double]
 EgoPosition: [35.6595 -1.2400 0.0100]
 TargetPosition: [39.5750 -2.1660 0]
 CollisionPoint: 0.9495
 EgoCollisionSideLength: 1.8000

Display the scenario generated for the new collision point. Note that the collision point is shifted
toward the right of the ego vehicle's front edge and the collision time remains the same as that of the
seed scenario. To inspect the ego vehicle and target actor data, check the egoMotionData and
targetMotionData fields in the output structure, stateCP.

figScene = figure;
set(figScene,Position=[50 50 500 500]);
hPanel1 = uipanel(figScene,Position=[0 0 1 1]);
hPlot1 = axes(hPanel1);
plot(scenarioCP,Waypoints="on",Parent=hPlot1)
title("Scenario Variant with New Collision Point")
while advance(scenarioCP)
 pause(0.01)
end

 Automatic Scenario Variant Generation for Testing AEB Systems

8-1021

Change Ego Speed

Use the helperChangeEgoSpeed helper function to compute modifications to the arrival times of
the ego vehicle and the target actor at each waypoint along their trajectories. You can compute the
modifications using one of these three processes: "WaitTime", "EntryTime", or
"StartingPosition". The function estimates new collision time for the new ego speed value using
the process you select.

Specify the new speed value for the ego vehicle as 15 km/h.

egoNewSpeed = 15;
% Convert the speed value to m/s
egoNewSpeed = (egoNewSpeed*1000)/3600;

Alter "WaitTime" to generate scenario variant

If you use "WaitTime" to generate the scenario variant, either the ego vehicle or the target actor
waits at its first waypoint for a particular amount of time. If the new ego speed value causes the ego
vehicle to arrive at the collision point ahead of the target actor, then the function makes the ego
vehicle wait at its first waypoint. The function accomplishes this by assigning a waittime value to

8 Featured Examples

8-1022

the first waypoint. Similarly, if the target actor arrives at the collision point ahead of the ego vehicle,
the function makes the target actor wait at its first waypoint.

Specify the modification method as "WaitTime".

method = "WaitTime";
[scenarioWT,stateWT] = helperChangeEgoSpeed(seedData,egoNewSpeed,Method=method);

Display the scenario generated with the new ego speed.

figScene = figure;
set(figScene,Position=[50 50 500 500]);
hPanel1 = uipanel(figScene,Position=[0 0 1 1]);
hPlot1 = axes(hPanel1);
plot(scenarioWT,Waypoints="on",Parent=hPlot1)
title("Scenario Variant — WaitTime Method")
while advance(scenarioWT)
 pause(0.01)
end

Inspect the details of the collision event and the target actor data in the modified scenario. Note that
the collision point and the collision time remain the same as those of the seed scenario. The function

 Automatic Scenario Variant Generation for Testing AEB Systems

8-1023

makes the target actor wait at its first waypoint to adjust the collision event to the new ego speed
value.

stateWT.collisionData

ans =
 collisionData with properties:

 Time: 7.6100
 EgoFrontEdge: [2x3 double]
 TargetFrontEdge: [2x3 double]
 EgoPosition: [35.6259 -1.2400 0.0100]
 TargetPosition: [39.5750 -1.2317 0]
 CollisionPoint: 0.4343
 EgoCollisionSideLength: 1.8000

stateWT.targetMotionData.waittime

ans = 3×1

 2.2256
 0
 0

Check the ego speed value in the modified scenario.

stateWT.egoMotionData.speed

ans = 6×1

 0
 4.1667
 4.1667
 4.1667
 4.1667
 4.1667

Alter "EntryTime" to generate scenario variant

If you use "EntryTime" to generate the scenario variant, the function modifies the entry time of
either the ego vehicle or target actor.

• The function modifies the entry time of the ego vehicle if the ego vehicle is estimated to reach the
collision point ahead of the target actor.

• The function modifies the entry time of the target actor if the target actor is estimated to reach
the collision point ahead of the ego vehicle.

Specify the modification method as "EntryTime".

method = "EntryTime";
[scenarioET,stateET] = helperChangeEgoSpeed(seedData,egoNewSpeed,Method=method);

Check the ego speed value in the modified scenario.

stateET.egoMotionData.speed

8 Featured Examples

8-1024

ans = 6×1

 0
 4.1667
 4.1667
 4.1667
 4.1667
 4.1667

Display the scenario generated with the new ego speed. Note that the target actor appears in the
scenario only after a particular time.

figScene = figure;
set(figScene,Position=[50 50 500 500]);
hPanel1 = uipanel(figScene,Position=[0 0 1 1]);
hPlot1 = axes(hPanel1);
plot(scenarioET,Waypoints="on",Parent=hPlot1)
title("Scenario Variant — EntryTime Method")
while advance(scenarioET)
 pause(0.01)
end

 Automatic Scenario Variant Generation for Testing AEB Systems

8-1025

Alter "StartingPosition" to generate scenario variant

If you use "StartingPosition" to generate the scenario variant, the function modifies the starting
position of the target actor. To use this method, the new ego speed value must be greater than the
ego speed in the seed scenario.

Specify the ego speed value as 70 km/h. Specify the modification method as "StartingPosition".
The function alters the starting position of the target actor based on the time difference.

egoSpeedSP = 70;
% Convert value to m/s
egoSpeedSP = (egoSpeedSP*1000)/3600;
method = "StartingPosition";
[scenarioSP,stateSP] = helperChangeEgoSpeed(seedData,egoSpeedSP,Method=method);

Check the ego speed value in the modified scenario.

stateSP.egoMotionData.speed

ans = 6×1

 0
 19.4444
 19.4444
 19.4444
 19.4444
 19.4444

Read the values of the target actor waypoints in the modified scenario.

modifiedValue = stateSP.targetMotionData.waypoints;

Read the values of the target actor waypoints in the seed scenario.

originalValue = targetData.waypoints;

Compare the values of the target actor waypoints in the modified scenario with those in the seed
scenario. Note the change in the first and the second waypoints of the target actor in the modified
scenario.

table(modifiedValue,originalValue,VariableNames={'Target Actor Waypoints in Modified Scenario','Target Actor Waypoints in Seed Scenario'})

ans=3×2 table
 Target Actor Waypoints in Modified Scenario Target Actor Waypoints in Seed Scenario
 ___ _______________________________________

 39.575 -2.5017 0 39.575 -7.71 0
 39.575 -1.4878 0 39.575 -6.71 0
 39.575 10 0 39.575 10 0

Display the scenario generated with the new ego speed.

figScene = figure;
set(figScene,Position=[50 50 500 500]);
hPanel1 = uipanel(figScene,Position=[0 0 1 1]);
hPlot1 = axes(hPanel1);

8 Featured Examples

8-1026

plot(scenarioSP,Waypoints="on",Parent=hPlot1)
title("Scenario Variant — StartingPosition Method")
while advance(scenarioSP)
 pause(0.01)
end

Change Ego Speed on Road Turn

If the trajectory of the ego vehicle is a curved path, the radius of curvature of the trajectory can vary
depending on the speed of the ego vehicle. The radius of curvature of the ego trajectory increases for
higher speed values and decreases for lower speed values. In this case, the collision time and the
collision point do not remain the same as those of the seed scenario for large changes in the radius of
curvature.

Specify the new ego speed value. Use the helperChangeEgoTrajectoryAtTurn helper function to
generate a variant of the seed scenario by modifying the radius of curvature of the ego trajectory for
a given ego speed value.

egoNewSpeed = 10;
% Convert the speed value to m/s
egoNewSpeed = (egoNewSpeed*1000)/3600;
[scenarioAtTurn,stateAtTurn] = helperChangeEgoTrajectoryAtTurn(seedData,egoNewSpeed);

 Automatic Scenario Variant Generation for Testing AEB Systems

8-1027

Check the speed value in the modified scenario.

stateAtTurn.egoMotionData.speed

ans = 8×1

 0
 2.7778
 2.7778
 2.7778
 2.7778
 2.7778
 2.7778
 2.7778

Read the values of the ego vehicle waypoints in the modified scenario and the seed scenario. Note the
change in the number of ego vehicle waypoints and their values in the modified scenario.

stateAtTurn.egoMotionData.waypoints

ans = 8×3

8 Featured Examples

8-1028

 29.0000 15.0000 0
 29.0000 4.0000 0
 29.0247 1.3453 0
 29.4062 0.1678 0
 30.1839 -0.7938 0
 31.3399 -1.2134 0.0073
 34.0000 -1.2400 0.0100
 49.0000 -1.2400 0

egoData.waypoints

ans = 6×3

 29.0000 15.0000 0
 29.0000 4.0000 0
 29.9300 1.0000 0
 32.0000 -0.9000 0
 34.0000 -1.2400 0.0100
 49.0000 -1.2400 0

Display the generated scenario. Note that the radius of curvature of the ego trajectory has decreased
for the given ego speed value.

figScene = figure;
set(figScene,Position=[50,50,500,500]);
hPanel1 = uipanel(figScene,Position=[0 0 1 1]);
hPlot1 = axes(hPanel1);
plot(scenarioAtTurn,Waypoints="on",Parent=hPlot1)
title("Scenario Variant — New Ego Speed and Trajectory at Turns")
while advance(scenarioAtTurn)
 pause(0.01)
end

 Automatic Scenario Variant Generation for Testing AEB Systems

8-1029

Further Exploration

You can also generate a scenario variant by modifying actor dimensions, the collision point, and ego
speed at the same time by iterating through them.

Create a vector specifying which parameters of the scenario to modify. The vector must contain a
combination of these values: "dimensions", "point", or "speed".

• To modify the actor dimensions, specify a value in the array as "dimensions".
• To modify the collision point, specify a value in the array as "point".
• To modify the speed of the ego vehicle and radius of curvature of ego's trajectory at road turns,

specify a value in the array as "speed".

parameters = ["dimensions"; "point"; "speed"];

Specify new dimensions for the ego vehicle. If you want to change the dimensions of the target actor,
specify a value for the targetDimensions variable. Otherwise, set the variable value to [].

egoDimensions = struct(Length=2,Width=1,Height=3);
targetDimensions = [];

8 Featured Examples

8-1030

Specify the new collision point.

newCP = 0.2;

Specify the new ego speed and the method to use for modifying the ego speed. To modify the radius
of curvature of the ego vehicle trajectory at turns, set the egoSpeedAtTurn parameter to true.
Otherwise, set the value to false.

egoNewSpeed = 5;
% Convert the speed value to m/s
egoNewSpeed = (egoNewSpeed*1000)/3600;
method = "WaitTime";
egoSpeedAtTurn = false;

Generate a scenario variant by modifying the specified parameters in sequence using a loop. The
helperChangeState function sets the state of the seed scenario to the newly generated scenario
variant. Then, the next iteration of the loop uses parameters of the updated seed scenario to generate
another variant.

tempSeedData = seedData;
for i = 1:size(parameters,1)
 switch parameters(i)
 case "point"
 [newScenario,newState] = helperChangeCollisionPoint(tempSeedData,newCP);
 tempSeedData = helperChangeState(tempSeedData,newState);
 case "dimensions"
 if isempty(targetDimensions) == 0
 [newScenario,newState] = helperChangeActorDimensions(tempSeedData, ...
 egoDimensions,TargetDimensions=targetDimensions);
 else
 [newScenario,newState] = helperChangeActorDimensions(tempSeedData,egoDimensions);
 end
 tempSeedData = helperChangeState(tempSeedData,newState);
 case "speed"
 [newScenario,newState] = helperChangeEgoSpeed(tempSeedData, ...
 egoNewSpeed,Method=method);
 tempSeedData = helperChangeState(tempSeedData,newState);
 if egoSpeedAtTurn == true
 [newScenario,newState] = helperChangeEgoTrajectoryAtTurn(tempSeedData,egoNewSpeed);
 tempSeedData = helperChangeState(tempSeedData,newState);
 end
 end
end

Display the generated scenario.

figScene = figure;
set(figScene,Position=[50 50 500 500]);
hPanel1 = uipanel(figScene,Position=[0 0 1 1]);
hPlot1 = axes(hPanel1);
plot(newScenario,Waypoints="on",Parent=hPlot1)
title(["Scenario Variant", "New Ego Dimension, Collision Point, and Ego Speed"])
while advance(newScenario)
 pause(0.01)
end

 Automatic Scenario Variant Generation for Testing AEB Systems

8-1031

Helper Function

The helperChangeState helper function sets the state of the seed scenario to the state of the
generated variant scenario. Use this function to update the state of the seed scenario when
generating a scenario variant by modifying multiple parameters at the same time by iterating through
them. The helperScenarioVariantUpdateState adds the road information, states of the ego
vehicle and target actor during simulation to the updated seed scenario.

function tempSeedData = helperChangeState(tempSeedData,newState)
tempSeedData.SeedScenario = newState.scenario;
tempSeedData.CollisionInformation = newState.collisionData;
tempSeedData.EgoMotionData = newState.egoMotionData;
tempSeedData.TargetMotionData = newState.targetMotionData;
tempSeedData = helperScenarioVariantUpdateState(tempSeedData);
end

References
[1] EURO NCAP AEB VRU Test Protocol v3.0.4. Available from: https://cdn.euroncap.com/media/

62795/euro-ncap-aeb-vru-test-protocol-v304.pdf.

8 Featured Examples

8-1032

https://cdn.euroncap.com/media/62795/euro-ncap-aeb-vru-test-protocol-v304.pdf
https://cdn.euroncap.com/media/62795/euro-ncap-aeb-vru-test-protocol-v304.pdf

See Also
Apps
Driving Scenario Designer

Functions
drivingScenario | laneType | lanespec | trajectory | plot | advance | restart

Related Examples
• “Automatic Scenario Generation” on page 8-997
• “Scenario Generation from Recorded Vehicle Data” on page 8-518

 Automatic Scenario Variant Generation for Testing AEB Systems

8-1033

Generate Scenario from Recorded GPS and Lidar Data
This example shows how to generate a driving scenario by extracting recorded data from global
positioning systems (GPS) and lidar sensors mounted on an ego vehicle. In this example, you use
prerecorded sensor data and follow these steps to generate the scenario:

Read data from the GPS sensor. Use the GPS data to:

• Import the map data from OpenStreetMap®.
• Extract the road information and driving route from the imported map data.
• Compute the waypoints for the ego vehicle.
• Estimate the ego speed and trajectory.

Read data from the lidar sensor. Use the lidar data to:

• Find the dimension and the type of non-ego actors in the driving scene.
• Estimate the entry times, exit times, positions, velocities, speeds, yaws, and trajectories of non-

ego actors by using the lidar data.

Generate the driving scenario by using the extracted road network and the estimated ego and non-
ego data.

Read GPS Sensor Data

Create a folder in the temporary directory on your computer to store the sensor data.

sensorData = fullfile(tempdir,"AutomotiveDataset");
if ~isfolder(sensorData)
 mkdir(sensorData)
end

Download the .mat file containing the recorded GPS sensor data and save it to a specified folder in
the temporary directory. Load the GPS sensor data from the .mat file into the MATLAB® workspace.

if ~exist("data","var")
 url = "https://ssd.mathworks.com/supportfiles/driving/data/highwayLaneChangeDatase/ins2.mat";
 filePath = fullfile(sensorData,"ins.mat");
 if ~isfile(filePath)
 websave(filePath,url);
 end
 data = load(filePath);
end

Display the GPS sensor data. The data is stored as a structure with fields timeStamp, velocity,
yawRate, latitude, longitude, and altitude. The latitude and the longitude coordinates specify
the driving route of the ego vehicle.

data.ins

ans=1×1158 struct array with fields:
 timeStamp
 velocity
 yawRate
 latitude
 longitude

8 Featured Examples

8-1034

 altitude

Select a part of the recorded sensor data by specifying start and end timestamp values. Units are in
microseconds. Typically, the units depend on the data logging configuration of the sensors.

sim.startTime = 1461634424950000;
sim.endTime = 1461634434950000;

Compute the number of data points within the specified start and end timestamps. Also, find the start
and end indices of the timestamps by using the helperTimestampIndex function.

[count.gps,sim.gps.startstep,sim.gps.endstep] = helperTimestampIndex([data.ins.timeStamp].',sim.startTime,sim.endTime);

Extract the timestamp, latitude, longitude, and elevation parameters of all data points between the
start and end indices. Store the extracted parameters in a table.

data.ins = data.ins(sim.gps.startstep : sim.gps.endstep);
gps = table([data.ins.timeStamp].',[data.ins.latitude].',[data.ins.longitude].',[data.ins.altitude].',VariableNames=["timestamp","lat","lon","elevation"]);

Extract Road Network Using GPS Sensor Data

Specify the minimum and maximum values of the latitude and longitude coordinates, for the selected
data, to download a road network using the OpenStreetMap® website. You can also specify an offset
value in order to extract extended map data that lies within the range of the GPS sensor.

map.gpsExtend = 0.0001;
map.minLat = min(gps.lat) - map.gpsExtend;
map.maxLat = max(gps.lat) + map.gpsExtend;
map.minLon = min(gps.lon) - map.gpsExtend;
map.maxLon = max(gps.lon) + map.gpsExtend;

Download the map data from the OpenStreetMap® website https://www.openstreetmap.org, which
provides access to crowd-sourced map data from all over the world. The data is licensed under the
Open Data Commons Open Database License (ODbL), https://opendatacommons.org/licenses/odbl/.

Extract the map data from within the minimum and maximum latitude and longitude coordinates.
Specify a file name to save the downloaded map data. In this example, the file name is set as the
name of a road in the driving route.

url = ['https://api.openstreetmap.org/api/0.6/map?bbox=' ...
 num2str(map.minLon, '%.10f') ',' num2str(map.minLat,'%.10f') ',' ...
 num2str(map.maxLon, '%.10f') ',' num2str(map.maxLat,'%.10f')];
fileName = "BanfieldFreeway.osm";
websave(fileName,url,weboptions(ContentType="xml"));

Plot the driving route on a map by using the geoPlayer function.

map.midLat = (map.minLat + map.maxLat)/2;
map.midLon = (map.minLon + map.maxLon)/2;
zoomLevel = 17;
player = geoplayer(map.midLat,map.midLon,zoomLevel);
figure
plotRoute(player,gps.lat,gps.lon);
for i = 1:count.gps
 plotPosition(player,gps.lat(i),gps.lon(i));
end

 Generate Scenario from Recorded GPS and Lidar Data

8-1035

https://www.openstreetmap.org/
https://opendatacommons.org/licenses/odbl/

Get Road Information from Extracted Road Network

To get information from the extracted road network, you must first import the map data to a
drivingScenario object. Then, use the helperGetRoadHistoryAttributes function to extract
the road information.

Compute the total simulation time by using the start and end timestamps of the GPS data. Units are
in seconds.

sim.TotalTime = (sim.endTime - sim.startTime)/10^6;

Specify the sample time for the driving scenario. The sample time is the time interval between
scenario simulation steps, and also defines the sample time for the ego vehicle. Units are in seconds.

sim.egoSampleTime = 0.01;

Create an empty driving scenario object by using the drivingScenario function.

importedScenario = drivingScenario(SampleTime=sim.egoSampleTime,StopTime=sim.TotalTime);

Import the extracted map data to the driving scenario by using the roadNetwork function.

roadNetwork(importedScenario,OpenStreetMap=fileName);

8 Featured Examples

8-1036

Read the road information stored in the scenario object by using the
helperGetRoadHistoryAttributes function. The road properties include the road centers, road
width, banking angles, lane specifications, and road names.

[roadCenters,roadWidth,bankingAngles,laneSpec,roadNames] = helperGetRoadHistoryAttributes(importedScenario);

Create Driving Scenario and Add Roads to Scenario

Create a new drivingScenario object and add roads to the new scenario. Set the properties of
these roads by using the extracted road information.

Specify the sample time for the new scenario.

sim.sampleTime = 0.1;
scenario = drivingScenario(SampleTime=sim.sampleTime,StopTime=sim.TotalTime);

Specify a georeference point and use the latlon2local function to convert the GPS sensor data
from GPS coordinates to local east-north-up Cartesian coordinates.

refPoint = [map.midLat map.midLon,0];
[gps.x,gps.y,gps.elevation] = latlon2local(gps.lat,gps.lon,gps.elevation,refPoint);
filteredData = smoothdata([gps.x,gps.y gps.elevation],'sgolay');
gps.x = filteredData(:,1);
gps.y = filteredData(:,2);
gps.elevation = filteredData(:,3);

Specify a bounding box that define the range for the map coordinates.

map.localExtend = 50;
map.xmin = min(gps.x) - map.localExtend;
map.xmax = max(gps.x) + map.localExtend;
map.ymin = min(gps.y) - map.localExtend;
map.ymax = max(gps.y) + map.localExtend;

Specify the names of the roads in the exported road network to be added to the scenario. You can find
the names of the roads in the roadNames output of the helperGetRoadHistoryAttributes
function.

map.keepRoads = "Banfield Freeway";

Check if the desired roads are within the bounding box and, if they are, add them to the driving
scenario.

for i = 1:size(roadNames,1)
 flag = 0;
 for j = 1: size(map.keepRoads,1)
 if contains(roadNames{i,1},map.keepRoads(j,1),IgnoreCase=true)
 flag = 1;
 end
 end
 if flag
 k = 0;
 for l = 1:size(roadCenters{i,1},1)
 k = k+1;
 % Remove road centers that lie outside the bounding box.
 if roadCenters{i,1}(k,1) < map.xmin || ...
 roadCenters{i,1}(k,1) > map.xmax || ...
 roadCenters{i,1}(k,2) < map.ymin || ...

 Generate Scenario from Recorded GPS and Lidar Data

8-1037

 roadCenters{i,1}(k,2) > map.ymax
 roadCenters{i,1}(k,:) = [];
 k = k-1;
 end
 end
 if k > 1
 % Add roads by using the road centers. Set the road width to 12.
 roadwidth = 12;
 road(scenario,roadCenters{i,1},roadwidth,Name=roadNames{i,1});
 end
 end
end

Compute Ego Data Using GPS Sensor Data

The GPS sensor data corresponds to the ego vehicle, so you can use the GPS measurements to
compute the ego vehicle waypoints and speed.

The latitude and longitude values specify the waypoints for the ego vehicle in GPS coordinates.
Compute the GPS time relative to the start time of the simulation and find the ego speed value at
each waypoint.

gps.relativeTime = double(gps.timestamp - sim.startTime)/10^6;
gps.speed = helperComputeSpeed(gps.x,gps.y,gps.relativeTime);

Add the ego vehicle to the imported road network and compute its trajectory.

egoVehicleGPS = vehicle(importedScenario,ClassID=1,Position=[gps.x(1),gps.y(1),0]);
trajectory(egoVehicleGPS,[gps.x,gps.y,zeros(count.gps,1)],gps.speed);

Extract information about the position, velocity, and yaw of the ego vehicle from the imported
scenario by using the actorPoses function.

positionIndex = [1 3 6];
velocityIndex = [2 4 7];
i = 1;
while advance(importedScenario)
 position(1,:) = actorPoses(importedScenario).Position;
 simEgo.data(i,positionIndex) = position;
 velocity(1,:) = actorPoses(importedScenario).Velocity;
 simEgo.data(i,velocityIndex) = velocity;
 simEgo.data(i,5) = i;
 yaw = actorPoses(importedScenario).Yaw;
 simEgo.data(i,8) = yaw;
 simEgo.data(i,9) = importedScenario.SimulationTime;
 i = i + 1;
end

The computed ego data values include the time, waypoints, velocity, and yaw of the ego vehicle. Store
the ego data to a table and inspect the values.

table(simEgo.data(:,9),simEgo.data(:,positionIndex), ...
 simEgo.data(:,velocityIndex),simEgo.data(:,8), ...
 VariableNames=["Time","Waypoints","Velocity","Yaw"])

ans=995×4 table
 Time Waypoints Velocity Yaw
 ____ _____________________________ ____________________________ _______

8 Featured Examples

8-1038

 0.01 -106.57 64.44 0 24.011 -8.6344 0 -19.779
 0.02 -106.33 64.354 0 24.02 -8.6419 0 -19.787
 0.03 -106.09 64.267 0 24.029 -8.6517 0 -19.802
 0.04 -105.85 64.181 0 24.036 -8.664 0 -19.822
 0.05 -105.6 64.094 0 24.043 -8.6787 0 -19.848
 0.06 -105.36 64.007 0 24.028 -8.6866 0 -19.876
 0.07 -105.12 63.92 0 24.013 -8.6937 0 -19.903
 0.08 -104.88 63.833 0 23.998 -8.7003 0 -19.928
 0.09 -104.64 63.746 0 23.984 -8.7061 0 -19.951
 0.1 -104.4 63.659 0 23.969 -8.7111 0 -19.973
 0.11 -104.16 63.572 0 23.935 -8.7088 0 -19.994
 0.12 -103.93 63.485 0 23.901 -8.7067 0 -20.015
 0.13 -103.69 63.398 0 23.868 -8.7047 0 -20.037
 0.14 -103.45 63.311 0 23.833 -8.7029 0 -20.06
 0.15 -103.21 63.224 0 23.801 -8.7017 0 -20.083
 0.16 -102.97 63.137 0 23.845 -8.7289 0 -20.106
 ⋮

Add Ego and Non-Ego Actors to Scenario

To add ego and non-ego actors to the scenario:

• Read data recorded by lidar sensor.
• Estimate the position, velocity, speed, and yaw for the ego vehicle by considering both GPS and

lidar timestamps. Compute the ego trajectory.
• Find the number of non-ego actors in the scenario. Compute their waypoints, velocities, speeds,

and yaws by using the recorded lidar sensor. Compute the trajectories of the non-ego actors.
• Convert the waypoints of the non-ego actors from the ego frame to the scenario frame.
• Add the ego and non-ego actors to the driving scenario.

Read Lidar Sensor Data

Download the .mat file containing the recorded lidar sensor data and save it to a specified folder in
the temporary directory. Load the lidar sensor data from the .mat file into the MATLAB workspace.

if ~exist("newData","var")
 url = "https://ssd.mathworks.com/supportfiles/driving/data/highwayLaneChangeDatase/lidar2.mat";
 filePath = fullfile(sensorData,'lidar.mat');
 if ~isfile(filePath)
 websave(filePath,url);
 end
 newData = load(filePath);
end

Compute the number of data points within the specified start and end timestamps. Also, find start and
end indices of the timestamps by using the helperTimestampIndex function.

[count.lidar,sim.lidar.startstep,sim.lidar.endstep] = helperTimestampIndex([newData.lidar.timeStamp].',sim.startTime,sim.endTime);

Extract the timestamp and point cloud data that lies between the start and end indices. Store the
extracted parameters in a table.

newData.lidar = newData.lidar(sim.lidar.startstep : sim.lidar.endstep);
lidar = table([newData.lidar.timeStamp].',{newData.lidar.ptCloud}.',VariableNames=["timestamp","ptCloud"])

 Generate Scenario from Recorded GPS and Lidar Data

8-1039

lidar=100×2 table
 timestamp ptCloud
 ________________ ________________

 1461634425028360 {1×1 pointCloud}
 1461634425128114 {1×1 pointCloud}
 1461634425228122 {1×1 pointCloud}
 1461634425327849 {1×1 pointCloud}
 1461634425427574 {1×1 pointCloud}
 1461634425528347 {1×1 pointCloud}
 1461634425627513 {1×1 pointCloud}
 1461634425728613 {1×1 pointCloud}
 1461634425828486 {1×1 pointCloud}
 1461634425928594 {1×1 pointCloud}
 1461634426028230 {1×1 pointCloud}
 1461634426128400 {1×1 pointCloud}
 1461634426228515 {1×1 pointCloud}
 1461634426327968 {1×1 pointCloud}
 1461634426427685 {1×1 pointCloud}
 1461634426527961 {1×1 pointCloud}
 ⋮

Estimate Ego Data With Regard to GPS and Lidar Timestamps

Find the lidar timestamps relative to the start time of the simulation. Units are in seconds.

lidar.relativeTime = double(lidar.timestamp - sim.startTime)/10^6;

Find the ego position, velocity, speed, and yaw by using the ego data from the GPS measurements as
reference.

temp = zeros(1,9);
i = 1;
for j = 2 : size(simEgo.data,1)
 t = simEgo.data(j,9);
 if i <= count.lidar && lidar.relativeTime(i) <= t
 tratio = (t - lidar.relativeTime(i)) / (t - simEgo.data(j-1,9));
 for k = [1:4,8]
 temp(1,k) = simEgo.data(j,k) - ...
 ((simEgo.data(j,k) - simEgo.data(j-1,k))*tratio);
 end
 ego.position(i,:) = temp(1,positionIndex);
 ego.velocity(i,:) = temp(1,velocityIndex);
 ego.speed(i,:) = sqrt(temp(1,2)^2 + temp(1,4)^2);
 ego.yaw(i,:) = temp(1,8);
 i = i + 1;
 elseif i == count.lidar && size(simEgo.data,1) == j
 ego.position(i,:) = simEgo.data(j,positionIndex);
 ego.velocity(i,:) = simEgo.data(j,velocityIndex);
 ego.speed(i,:) = sqrt(simEgo.data(j,2)^2 + simEgo.data(j,4)^2);
 ego.yaw(i,:) = simEgo.data(j,8);
 end
end
ego.position = smoothdata(ego.position,'sgolay');
ego.yaw = smoothdata(ego.yaw);

8 Featured Examples

8-1040

Add Ego Vehicle to Scenario

Add the ego vehicle to the driving scenario and compute its trajectory.

egoVehicle = vehicle(scenario,ClassID=1,Position=ego.position(1,:),Yaw=ego.yaw(1), ...
 Mesh=driving.scenario.carMesh);
trajectory(egoVehicle,ego.position,ego.speed,Yaw=ego.yaw);

Estimate Non-Ego Data

Create a track list from the lidar point cloud data by using the helperPointCloudToTracks
function. The track list contains information about the objects detected in the point cloud data.

if ~exist("trackList","var")
 trackList.object = helperPointCloudToTracks(lidar.ptCloud);
 trackList.timestamp = lidar.timestamp;
 trackList.relativeTime = lidar.relativeTime;
 for i = 1:count.lidar
 trackList.nObj(i,1) = size(trackList.object{i,1},1);
 end
end

Convert the track list data to non-ego data by using the helperComputeNonEgoData function. The
function computes the dimensions, entry times, exit times, yaws, and speeds of the non-ego actors in
the scenario. The function also converts the positions of the non-ego actors computed in the ego
frame to scenario or map frame, and then smooths the position values.

[count.nonEgo,nonEgo] = helperComputeNonEgoData(trackList,count,ego)

count = struct with fields:
 gps: 200
 lidar: 100
 nonEgo: 5

nonEgo=5×17 table
 trackCount id length width height age entryIndex entryTime exitIndex exitTime classID mesh posInEgoFrame yaw posInMapFrame speed smoothPos
 __________ ___ ______ ______ ______ ___ __________ _________ _________ ________ _______ ______________________ _____________ _____________ _____________ _____________ _____________

 94 37 4.6931 1.7953 1.4497 100 7 0.7 100 10 1 1×1 extendedObjectMesh {94×3 double} {94×1 double} {94×3 double} {94×1 double} {94×3 double}
 94 38 4.6931 1.7932 1.4506 100 7 0.7 100 10 1 1×1 extendedObjectMesh {94×3 double} {94×1 double} {94×3 double} {94×1 double} {94×3 double}
 94 49 4.6942 1.7974 1.4007 100 7 0.7 100 10 1 1×1 extendedObjectMesh {94×3 double} {94×1 double} {94×3 double} {94×1 double} {94×3 double}
 28 99 4.6924 1.7942 1.399 34 8 0.8 35 3.5 1 1×1 extendedObjectMesh {28×3 double} {28×1 double} {28×3 double} {28×1 double} {28×3 double}
 44 941 4.6938 1.7981 1.4171 50 54 5.4 97 9.7 1 1×1 extendedObjectMesh {44×3 double} {44×1 double} {44×3 double} {44×1 double} {44×3 double}

Add Non-Ego Actors to Scenario

Add the non-ego actors to the driving scenario and compute their trajectories.

for i= 1:count.nonEgo
 if nonEgo.classID(i) == 1
 nonEgoVehicle(i) = vehicle(scenario, ...
 ClassID=nonEgo.classID(i),Name=nonEgo.id(i,:), ...
 Position=nonEgo.smoothPos{i,1}(1,:), ...
 Length=nonEgo.length(i,1),Width=nonEgo.width(i,1), ...
 Height=nonEgo.height(i,1),Mesh=nonEgo.mesh(i,1), ...
 EntryTime=nonEgo.entryTime(i,1), ...

 Generate Scenario from Recorded GPS and Lidar Data

8-1041

 ExitTime=nonEgo.exitTime(i,1));
 else
 nonEgoVehicle(i) = actor(scenario, ...
 ClassID=nonEgo.classID(i),Name=nonEgo.id(i,:), ...
 Position=nonEgo.smoothPos{i,1}(1,:), ...
 Length=nonEgo.length(i,1),Width=nonEgo.width(i,1), ...
 Height=nonEgo.height(i,1),Mesh=nonEgo.mesh(i,1), ...
 EntryTime=nonEgo.entryTime(i,1), ...
 ExitTime=nonEgo.exitTime(i,1));
 end
 trajectory(nonEgoVehicle(i),nonEgo.smoothPos{i,1},nonEgo.speed{i,1});
end

Simulate and Visualize Generated Scenario

Plot the map data and the scenario generated using GPS and lidar sensor data.

scfig = figure(Position=[0,0,800,500]);
hfig = uipanel(scfig,Title="Imported Map Data",Position=[0 0 0.5 1]);
plaxis = axes(hfig);
plot(importedScenario,Parent=plaxis)
hfig1 = uipanel(scfig,Title="Extracted Road Network and Generated Scenario",Position=[0.5 0 0.5 1]);
plaxis1 = axes(hfig1);
plot(scenario,Parent=plaxis1);
xlim([-100,100])
while advance(scenario)
 pause(sim.sampleTime);
end

8 Featured Examples

8-1042

You can also visually inspect the accuracy of the generated scenario by plotting it alongside the
camera sensor and lidar sensor data.

Read the data recorded by camera sensor.

if ~exist("camera","var")
 url = "https://ssd.mathworks.com/supportfiles/driving/data/highwayLaneChangeDatase/camera2.mat";
 filePath = fullfile(sensorData,"camera.mat");
 if ~isfile(filePath)
 websave(filePath,url);
 end
 img = load(filePath,"imageData");
 [count.camera,sim.camera.startstep,sim.camera.endstep] = ...
 helperTimestampIndex([img.imageData.timeStamp].', ...
 sim.startTime,sim.endTime);
 img.imageData = img.imageData(sim.camera.startstep:sim.camera.endstep);
 camera = table([img.imageData.timeStamp].',{img.imageData.mov}.', ...
 VariableNames=["timestamp","img"]);
 for i = 1 : count.camera
 camera.img{i,1} = camera.img{i,1}.cdata;
 end
 camera.relativeTime = double(camera.timestamp - sim.startTime)/10^6;
end

Display the top-view and chase-view plots of the generated scenario.

 Generate Scenario from Recorded GPS and Lidar Data

8-1043

restart(scenario)
close all
fig = figure;
set(fig,Position=[40 40 1000 800]);
% Ego Top View
hPanel = uipanel(fig, ...
 Title="Top-View of Generated Scenario",Position=[0 0.5 0.5 0.5]);
hPlot = axes(hPanel);
chasePlot(egoVehicle,Parent=hPlot, ...
 ViewPitch=90,ViewHeight=120,ViewLocation=[0, 0]);

% Ego ChasePlot
hPanel2 = uipanel(fig, ...
 Title="Chase-View of Generated Scenario",Position=[0.5 0.5 0.5 0.5]);
hPlot2 = axes(hPanel2);
chasePlot(egoVehicle,Parent=hPlot2,Meshes='on');

Specify an axes for displaying the camera data.

% Image from camera
hPanel3 = uipanel(fig, ...
 Title="Recorded Camera Data",Position=[0 0 0.5 0.5]);
hPlot3 = axes(hPanel3);

% Initialize last used indices of the sensor
last.lidarIndex = 0;
last.cameraIndex = 0;

Plot the lidar point cloud data.

hPanel4 = uipanel(fig, ...
 Title ="Recorded Lidar Data",Position=[0.5 0 0.5 0.5]);
hPlot4 = axes(hPanel4);

% Initialize Display
xlimits = [-60 60];
ylimits = [-30 30];
zlimits = [-5 20];
player = pcplayer(xlimits,ylimits,zlimits,Parent=hPlot4);

Call the advance function in a loop to advance the simulation one time step at a time.

while advance(scenario)
 if last.cameraIndex + 1 <= count.camera && ...
 scenario.SimulationTime >= camera.relativeTime(last.cameraIndex+1)
 condition = true;
 while condition
 last.cameraIndex = last.cameraIndex + 1;
 condition = scenario.SimulationTime < ...
 camera.relativeTime(last.cameraIndex);
 end
 image(camera.img{last.cameraIndex,1},Parent=hPlot3);
 end
 %
 if last.lidarIndex + 1 <= count.lidar && ...
 scenario.SimulationTime >= lidar.relativeTime(last.lidarIndex + 1)
 condition = true;
 while condition

8 Featured Examples

8-1044

 last.lidarIndex = last.lidarIndex + 1;
 condition = scenario.SimulationTime < ...
 lidar.relativeTime(last.lidarIndex);
 end

 % Plot point cloud with bounding box and label
 ptCloud = lidar.ptCloud{last.lidarIndex,1};
 confirmedTracks = trackList.object{last.lidarIndex,1};
 view(player,ptCloud);
 % The helperParseTracks function returns position, dimension, and orientation of the 3-D bounding boxes.
 posIndex = [1 3 6];
 velocityIndex = [2 4 7];
 yawIndex = 8;
 dimIndex = [9 10 11];
 if ~isempty(confirmedTracks)
 [pos,dims,orients,labels] = helperParseTracks(confirmedTracks,posIndex,dimIndex,yawIndex);
 yaw = zeros(size(pos,1),3);
 yaw(:,3) = orients';
 bboxes = [pos,dims,yaw];
 showShape(cuboid=bboxes,Label=labels',Parent=hPlot4);
 end
 end
 pause(sim.sampleTime)
end

 Generate Scenario from Recorded GPS and Lidar Data

8-1045

8 Featured Examples

8-1046

References
[1] Park, Seo-Wook, Kunal Patil, Will Wilson, Mark Corless, Gabriel Choi, and Paul Adam. “Creating

Driving Scenarios from Recorded Vehicle Data for Validating Lane Centering System in
Highway Traffic,” 2020-01–0718, 2020. https://doi.org/10.4271/2020-01-0718.

See Also
road | roadNetwork | vehicle | actor | trajectory | drivingScenario | advance | restart |
plot

Related Examples
• “Detect, Classify, and Track Vehicles Using Lidar” (Lidar Toolbox)
• “Automatic Scenario Generation” on page 8-997

 Generate Scenario from Recorded GPS and Lidar Data

8-1047

• “Scenario Generation from Recorded Vehicle Data” on page 8-518
• “Generate Lane Information from Recorded Data” on page 8-533

8 Featured Examples

8-1048

Highway Lane Following with RoadRunner Scene
This example shows how to configure and simulate a highway lane following application using a scene
created in RoadRunner 3D scene editing tool. This example closely follows the “Highway Lane
Following” on page 8-922 example.

Introduction

A highway lane following system steers a vehicle to travel within a marked lane. It also maintains a
set velocity or safe distance to a preceding vehicle in the same lane. The system typically includes
vision processing, sensor fusion, decision logic, and controls components. To ensure functional safety
and interoperability, this system requires testing on a variety of road conditions. For example, testing
on a scene that has varying shadows, lane marking types, and road materials can make it easier to
identify edge cases.

RoadRunner is an interactive editor that enables you to design 3D scenes for simulating and testing
automated driving systems. You can use RoadRunner to create roads, lane markings, road signs,
vegetation, and scenes with varied complexities in a 3D environment.

The “Highway Lane Following” on page 8-922 example that this example is based on shows how to
simulate scenarios for curved and straight road scenes. This example demonstrates how to simulate
scenarios with a scene created in RoadRunner. The scene contains variations in shadows, lane
marking types, and road materials designed to test the impact of the vision processing on system
functionality. In this example, you will:

1 Review scene: Explore the scene and road segments that were created in RoadRunner.
2 Integrate scene into driving scenario: Export the road network from the RoadRunner scene

to an OpenDRIVE® file, and then import this file into a driving scenario. Then, add a vehicle to
the scenario and simulate the scenario.

3 Integrate scene into Unreal Engine scenario: Export the RoadRunner scene to an Unreal
Engine® game and connect a Simulink® model to this scene. The imported driving scenario
specifies vehicle poses. Add sensors to the vehicle and the simulate the scenario.

4 Integrate scene into lane following application: Using the techniques described in the
previous sections, you integrate the RoadRunner scene into a scenario for highway lane
following. Then, you add additional target vehicles to the scenario and simulate the system in a
scenario that transitions from no shadows to shadows.

5 Explore additional scenarios: Simulate additional scenarios for lane marking and road type
variations. Apply these techniques to your own design.

You can use the modeling patterns and techniques used in this example to import your own scenes
and test your algorithms.

In this example, you enable system-level simulation through integration with the Unreal Engine from
Epic Games®. This simulation environment requires a Windows® 64-bit platform.

if ~ispc
 error(['3D Simulation is only supported on Microsoft', char(174),...
 ' Windows', char(174), '.']);
end

To ensure reproducibility of the simulation results, set the random seed.

rng(0);

 Highway Lane Following with RoadRunner Scene

8-1049

https://www.mathworks.com/products/roadrunner.html

This example also requires you to download the Automated Driving Toolbox™ Interface for Unreal
Engine 4 Projects support package.

pathToUnrealExe = fullfile(...
 matlabshared.supportpkg.getSupportPackageRoot,...
 "toolbox","shared","sim3dprojects","driving","RoadRunnerScenes",....
 "WindowsPackage", "RRScene.exe");
if (~exist(pathToUnrealExe, 'file'))
 error('This example requires you to download and install Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package');
end

Review Scene

This example includes a scene (RRHighway.rrscene) that was designed in RoadRunner. If you have
RoadRunner installed, you can follow the workflow in the “RoadRunner Project and Scene System”
(RoadRunner) topic to open the RRHighway.rrscene scene.

This scene is designed to pose challenges to the lane following system. This image shows that the
road network is divided into six sections. Each section incrementally adds variations to the scene as
follows:

• Section 1 contains dashed lanes without guard rails.
• Section 2 contains dashed lanes with guard rails.
• Section 3 adds trees that do cast shadows on the lane markings.
• Section 4 contains trees that do not cast shadows on lane markings.
• Section 5 contains solid lane markings instead of dashed lane markings.
• Section 6 road material with lighter texture in comparison with other sections of the road.

8 Featured Examples

8-1050

For example, the following image shows the transition between Section-3 (with trees that do not cast
shadows on the lane markings) and Section-4 (with trees that do cast shadows on lane markings).

 Highway Lane Following with RoadRunner Scene

8-1051

The following image shows the transition between Section-4 (with dashed lane markings) and
Section-5 (with solid lane markings).

8 Featured Examples

8-1052

The following image shows the transition between Section-5 (with darker road material) and
Section-6 (with lighter road material).

Integrate Scene into Driving Scenario

A common motivation for importing scenes into a driving scenario is to enable the addition of vehicles
and trajectories, either interactively or programmatically. You can integrate a road network from a
RoadRunner scene into a driving scenario by using these steps:

1 Export OpenDRIVE file from RoadRunner.
2 Import OpenDRIVE file into driving scenario.
3 Add vehicle and trajectory to driving scenario.
4 Simulate driving scenario.

Export OpenDRIVE File from RoadRunner

RoadRunner enables you to export scenes to many file formats, include OpenDRIVE®. To learn more
about the OpenDRIVE export workflow, see “Export to ASAM OpenDRIVE” (RoadRunner). This
example includes an OpenDRIVE file (RRHighway.xodr) that was exported from the RoadRunner
scene (RRHighway.rrscene) using the process described in that topic.

Import OpenDRIVE File into Driving Scenario

 Highway Lane Following with RoadRunner Scene

8-1053

OpenDRIVE files can be imported into cuboid driving scenarios. To learn more about this workflow,
see “Highway Trajectory Planning Using Frenet Reference Path” on page 8-744.

Create a driving scenario and import the OpenDRIVE road network. For the purposes of this example,
turn off the warnings from the OpenDRIVE importer.

scenario = drivingScenario;

Turn off warning from OpenDRIVE importer for example purpose

warning('off','driving:scenario:OpenDRIVEWarnings');
roadNetwork(scenario,"OpenDrive","RRHighway.xodr");

Add Vehicle and Trajectory to Driving Scenario

You can add vehicles to a scenario either programmatically or interactively. This example shows the
programmatic workflow. To add vehicles interactively, use the Driving Scenario Designer app.

Add a vehicle to the road network using a set of predefined waypoints. These waypoints are attached
as a supporting file, manualwaypoints.mat.

v = vehicle(scenario,"ClassID", 1);
load("manualWaypoints.mat","waypoints");
speed = 20; % m/s
trajectory(v, waypoints, speed);

Simulate Driving Scenario

Plot the driving scenario in world coordinates. Also plot the scenario from the vehicle perspective by
using a chase plot.

hFigScenario = figure;
p1 = uipanel("Position",[0 0 0.5 1]);
h1 = axes("Parent",p1);
plot(scenario,"Waypoints","On","Parent",h1);
p2 = uipanel("Position",[0.5 0 0.5 1]);
h2 = axes("Parent",p2);
chasePlot(v,"Parent",h2);

8 Featured Examples

8-1054

Set the visibility of the figure to off.

set(hFigScenario, 'Visible', 'Off');

You can optionally continue to explore, simulate, and edit the scenario in Driving Scenario Designer
drivingScenarioDesigner(scenario).

Integrate Scene into Unreal Engine Scenario

A common motivation for importing scenes into Unreal Engine is to enable simulation systems with
camera, radar, and lidar sensor models. You can integrate a RoadRunner scene with an Unreal Engine
driving scenario simulation using these steps:

1 Export Unreal Engine scene from RoadRunner.
2 Configure Unreal Engine scene.
3 Create test bench model.
4 Simulate test bench model.

Export Unreal Engine Scene from RoadRunner

RoadRunner enables exporting to Unreal Engine scene. To learn more about this workflow, see
“Export to Unreal Using Filmbox (.fbx) File” (RoadRunner). The workflow includes exporting Filmbox
(.fbx) and XML files, which can be imported into the Unreal Editor. After you open a scene in the
Unreal Engine editor, you might want to adjust other scene aspects such as lighting.

 Highway Lane Following with RoadRunner Scene

8-1055

This example uses an Unreal Engine scene (RRHighway) that was exported from the RoadRunner
scene (RRHighway.rrscene).

Configure Unreal Engine Scene

The Unreal Engine scene can co-simulate with Simulink using a MathWorksSimulation plugin from
the Automated Driving Toolbox Interface for Unreal Engine 4 Projects support package. To install the
support package, follow the steps in “Install Support Package for Customizing Scenes” on page 6-45.

The Unreal Engine scene (RRHighway) used in this example has been compiled with the
MathWorksSimulation plugin.

Create Test Bench Model

You can connect a Simulink model to the Unreal Engine for co-simulation. To learn more about this
workflow, see “Simulate Simple Driving Scenario and Sensor in Unreal Engine Environment” on page
6-21. The open-loop test bench model (RRHighwayTestBench.slx) uses this workflow to connect to
the Unreal Engine scene (RRHighway).

Open the test bench model for the scenario.

open_system("RRHighwayTestBench");

8 Featured Examples

8-1056

https://www.mathworks.com/matlabcentral/fileexchange/74555-automated-driving-toolbox-interface-for-unreal-engine-4-projects

Opening this model runs the helperSLRRHighwaySetup script. This script configures the
Simulation 3D Scene Configuration block in the RRHighwayTestBench model.

This model contains blocks that enable simulating a driving scenario with Unreal Engine.

• Scenario Reader reads the driving scenario from the base workspace and outputs the ego vehicle
pose.

• Simulation 3D Scene Configuration enables connection to the RRHighway scene.
• Simulation 3D Vehicle with Ground Following controls the pose of a vehicle in the scene
• Vehicle To World converts actor poses from the coordinates of the input ego vehicle to the world

coordinates of the scenario.
• Simulation 3D Camera synthesizes camera images.
• Simulation 3D Probabilistic Radar synthesizes radar detections.
• Simulation 3D Lidar synthesizes lidar point cloud data.

The model also contains blocks to visualize the camera and lidar sensors. You can use the Bird's-Eye
Scope to visualize radar and vision detections from a bird's-eye view. To learn how to configure this
scope, see “Visualize Sensor Data from Unreal Engine Simulation Environment” on page 6-36.

Simulate Test Bench Model

Simulate the model. The vehicle follows the trajectory defined in the driving scenario.

sim("RRHighwayTestBench");

Integrate Scene into Lane Following Application

You can reuse the techniques described in the previous sections to simulate and assess a closed-loop
system such as the highway lane following application. This section reuses models, helper functions,
and techniques described in the “Highway Lane Following” on page 8-922 example.

 Highway Lane Following with RoadRunner Scene

8-1057

To explore the test bench model, open a working copy of the project example files. MATLAB™ copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot, "toolbox", "driving", "drivingdemos"));
helperDrivingProjectSetup("HighwayLaneFollowing.zip", "workDir", pwd);

Open and configure the system level test bench model.

open_system("HighwayLaneFollowingTestBench");
scenarioFcnName = "scenario_RRHighway_01_NoShadowToShadow";
helperSLHighwayLaneFollowingSetup("scenarioFcnName", scenarioFcnName);

Integrate Scene into Driving Scenario

The first argument to the helperSLHighwayLaneFollowingSetup is the name of a function that
creates a driving scenario that is compatible with the HighwayLaneFollowingTestBench. The
scenario_RRHighway_01_NoShadowToShadow function creates this driving scenario. It imports
the RRHighway.xodr OpenDRIVE file and adds vehicles around the road segment that transitions
from no shadow to shadow. You can explore this function to learn more about programmatic
techniques for creating scenarios. It leverages several helper functions that you can use to simplify
adding vehicle and their trajectories to the imported road network. Explore the
scenario_RRHighway_01_NoShadowToShadow to know more about the helper functions and their
usage.

The helperSLHighwayLaneFollowingSetup function creates a variable scenario in the base
workspace. Plot this scenario and notice the region of the scene that will be simulated.

hFigScenario = figure;
p1 = uipanel("Position",[0 0 0.5 1]);
h1 = axes("Parent",p1);
plot(scenario,"Waypoints","On","Parent",h1);
p2 = uipanel("Position",[0.5 0 0.5 1]);
h2 = axes("Parent",p2);
chasePlot(scenario.Actors(1),"Parent",h2)

8 Featured Examples

8-1058

Set the visibility of the figure to off.

set(hFigScenario, "Visible", "Off");

Integrate Scene into Unreal Engine Scenario

The HighwayLaneFollowingTestBench model contains algorithm components for vision detection,
forward vehicle sensor fusion, and controls. The Simulation 3D Scenario subsystem integrates the
model with the driving scenario and the corresponding Unreal Engine game.

Open the Simulation 3D Scenario subsystem.

open_system("HighwayLaneFollowingTestBench/Simulation 3D Scenario")

 Highway Lane Following with RoadRunner Scene

8-1059

Notice that this subsystem reuses the modeling techniques and blocks described previously in this
example.

8 Featured Examples

8-1060

The primary differences are:

• The ego vehicle is under closed-loop control.
• Target vehicles are added to the scenario.
• The lane following example does not use a lidar sensor.

Simulate the model to see the ego vehicle behavior for the scenario.

sim("HighwayLaneFollowingTestBench");

The system is able to detect and follow lanes in the conditions where shadows are present. For more
details on how to analyze the simulation results, refer to the “Highway Lane Following” on page 8-
922 example.

Close the figure.

close(hFigScenario);

Explore Additional Scenarios

This example provides additional scenarios that you can use to test the system behavior.

• scenario_RRHighway_02_DashedToSolidMarkings function configures the test scenario
such that the ego vehicle navigates from Section 4 to Section 5 of the scene. This enables testing
the lane following application for the transition from dashed lane markings to solid lane markings.

• scenario_RRHighway_03_DarkToLightRoadMaterial function configures the test scenario
such that the ego vehicle navigates from Section 5 to Section 6 of the scene. This enables testing
the lane following application for the transition from darker textured road material to lighter
textured road material.

 Highway Lane Following with RoadRunner Scene

8-1061

You can configure the model and workspace with these scenarios by using the
helperSLHighwayLaneFollowingSetup function. For example, this code configures the test bench
to simulate a scenario in the region where the road material changes.

helperSLHighwayLaneFollowingSetup("scenarioFcnName",...
 "scenario_RRHighway_03_DarkToLightRoadMaterial");

Enable the warnings from OpenDRIVE importer.

warning('on','driving:scenario:OpenDRIVEWarnings');

You can apply these techniques to integrate RoadRunner scenes into driving scenarios for simulation
and testing of your systems.

See Also
Blocks
Simulation 3D Scene Configuration | Simulation 3D Probabilistic Radar | Simulation 3D Camera |
Simulation 3D Probabilistic Radar | Scenario Reader | Simulation 3D Vehicle with Ground Following

Functions
drivingScenario | vehicle | roadNetwork

Apps
Driving Scenario Designer

More About
• “Highway Lane Following” on page 8-922
• “Highway Lane Following with Intelligent Vehicles” on page 8-1103

8 Featured Examples

8-1062

Export Multiple Scenes Using MATLAB
This example shows how to bulk-export scenes from a RoadRunner project to one of the file formats
supported by RoadRunner. In this example, you export scenes to the ASAM OpenDRIVE® file format
using MATLAB® functions.

To run this example, you must:

• Have an Automated Driving Toolbox® license.
• Have a RoadRunner® license and the product is installed.
• Have created a RoadRunner project folder.

Start RoadRunner Programmatically

To use MATLAB functions to control RoadRunner programmatically, use the roadrunner object. By
default, roadrunner opens RoadRunner from the default installation folder for the platform you are
using (either Windows® or Linux®). These are the default installation locations by platform:

• Windows – C:\Program Files\RoadRunner R20NNx\bin\win64
• Linux, Ubuntu® – /usr/local/RoadRunner_R20NNx/bin/glnxa64

R20NNx is the MATLAB fallback for tm_matlab release you are using.

If your RoadRunner installation is at a different location than the default location, use MATLAB
settings API to customize the default value of the RoadRunner installation folder.

Export Scene from RoadRunner to ASAM OpenDRIVE

Export a scene from a RoadRunner project to the ASAM OpenDRIVE format using MATLAB.

Open a project in RoadRunner using the roadrunner function by specifying the location in which to
create a project. This example assumes that RoadRunner is installed in its default location in
Windows.

Specify the path to an existing project. For example, this code shows the path to a project located on
C:\RR\MyProject. The function returns a roadrunner object, rrApp, that provides functions for
performing basic workflow tasks such as opening, closing, and saving scenes and projects.

projectFolder = "C:\RR\MyProject";
rrApp = roadrunner(projectFolder);

Open a scene in the project by using the openScene function with the roadrunner object and the
RoadRunner scene you wish to open as input arguments. This example uses the
FourWaySignal.rrscene scene, which is one of the scenes included by default in RoadRunner
projects, and is located in the Scenes folder of the project.

sceneName = "FourWaySignal.rrscene";
openScene(rrApp,sceneName);

Set export options by creating an openDriveExportOptions object to enable export of signals and
objects from the file.

options = openDriveExportOptions(OpenDriveVersion=1.5,ExportSignals=true,ExportObjects=true);

 Export Multiple Scenes Using MATLAB

8-1063

Use the exportScene function to export the scene to ASAM OpenDRIVE. Specify your roadrunner
object, the name of the file to which you want to export the scene, the export format, and the export
options as input arguments to the exportScene function.

filename = "FourWaySignal.xodr";
formatname = "OpenDRIVE";
exportScene(rrApp,filename,formatname,options);

Export Multiple Scenes from RoadRunner to ASAM OpenDRIVE Format

Export multiple scenes in a RoadRunner project to ASAM OpenDRIVE® format using MATLAB.

Open a project in RoadRunner using the roadrunner function by specifying the location in which to
create a project. This example assumes that RoadRunner is installed in its default location in
Windows.

Specify the path to an existing project. For example, this code shows the path to a project located on
C:\RR\MyProject. The function returns a roadrunner object, rrApp, that provides functions for
performing basic workflow tasks such as opening, closing, and saving scenes and projects.

demoProj = fullfile('C:','DemoProject');
rrApp = roadrunner(demoProj);

Specify the path to the scene files you wish to export. You must specify the path to the Scenes folder
in your RoadRunner project, which contains all the scenes in that project.

sceneFiles = dir(fullfile(demoProj,'Scenes','*.rrscene'));
scenes = {sceneFiles.name};

Specify the path to your export folder. this is the folder into which RoadRunner exports all your scene
files. Iterate through all the scene files, opening each scene using the openScene function and then
calling the exportScene function to export the open scene to the ASAM OpenDRIVE format.

exportFolder = fullfile('C:','OpenDRIVE');
for sndx = 1:numel(scenes)
 openScene(rrApp,scenes{sndx});
 [~,fileName] = fileparts(scenes{sndx});
 exportFilePath = [fullfile(exportFolder,fileName) '.xodr'];
 exportScene(rrApp,exportFilePath,'OpenDRIVE');
end

Once all the scene files have been exported, close the RoadRunner application by using the close
function.

close(rrApp);

Extend RoadRunner Export Options

To customize the script further, you can specify non-default export settings or specify other file
formats. For more details on supported formats, see the exportScene function. For additional
flexibility in exporting scenes, consider exporting the scene using custom export options. For more
details, see the exportCustomFormat function.

See Also
roadrunner | openScene | exportScene | close

8 Featured Examples

8-1064

Related Examples
• “Export to ASAM OpenDRIVE” (RoadRunner)
• “Convert Asset Data Between RoadRunner and ASAM OpenDRIVE” (RoadRunner)

 Export Multiple Scenes Using MATLAB

8-1065

Convert Scenes Between Formats Using MATLAB Functions
This example shows how to import RoadRunner scenes from one file format and export those scenes
to a different format. In this example, you import ASAM OpenDRIVE® files into scenes, save them to
a project, and export the scenes to export them to Filmbox® FBX® files using MATLAB® functions.

To run this example, you must:

• Have an Automated Driving Toolbox® license.
• Have a RoadRunner® license and the product is installed.
• Have created a RoadRunner project folder.

Start RoadRunner Programmatically

To use MATLAB functions to control RoadRunner programmatically, use the roadrunner object. By
default, roadrunner opens RoadRunner from the default installation folder for the platform you are
using (either Windows® or Linux®). These are the default installation locations by platform:

• Windows – C:\Program Files\RoadRunner R20NNx\bin\win64
• Linux, Ubuntu® – /usr/local/RoadRunner_R20NNx/bin/glnxa64

R20NNx is the MATLAB fallback for tm_matlab release you are using.

If your RoadRunner installation is at a different location than the default location, use MATLAB
settings API to customize the default value of the RoadRunner installation folder.

Import and Export of Multiple Scenes

Import multiple scenes from the ASAM OpenDRIVE format and export them to the FBX format.

Open a project in RoadRunner using the roadrunner function by specifying the location in which to
create a project. This example assumes that RoadRunner is installed in its default location in
Windows.

Specify the path to an existing project. For example, this code shows the path to a project located on
C:\RR\MyProject. The function returns a roadrunner object, rrApp, that provides functions for
performing basic workflow tasks such as opening, closing, and saving scenes and projects.

demoProj = fullfile('C:','DemoProject');
rrApp = roadrunner(demoProj);

Specify the paths to the ASAM OpenDRIVE files you want to import and to the folder into which you
want to export the Filmbox files.

odrFolder = fullfile('C:','OpenDRIVE');
odrFiles = dir(fullfile(odrFolder,'*.xodr'));
exportFolder = fullfile('C:','Filmbox');

Import the ASAM OpenDRIVE files and export them to the FBX format. Import each ASAM
OpenDRIVE file into a new scene by using the newScene function to create a new scene in your
project, then specifying the file path for each scene to import to the importScene function. Then,
export the imported scene to a file by using the exportScene function.

for fndx = 1:length(odrFiles)
 newScene(rrApp);

8 Featured Examples

8-1066

 importFilePath = fullfile(odrFolder,odrFiles(fndx).name);
 importScene(rrApp,importFilePath,"OpenDRIVE");
 [~,fileName] = fileparts(odrFiles(fndx).name);
 exportFilePath = [fullfile(exportFolder,fileName) '.fbx'];
 exportScene(rrApp,exportFilePath,"Filmbox");
end

Once all the scenes have been exported, close the RoadRunner application by using the close
function.

close(rrApp);

Extend RoadRunner Export Options

To customize the script further, you can specify non-default import and export settings or specify
other file formats. For more details on supported formats, see the importScene and exportScene
functions. For additional flexibility in exporting scenes, consider exporting the scene using custom
export options. For more details, see the exportCustomFormat function.

See Also
roadrunner | newScene | exportScene | exportCustomFormat | importScene | close

Related Examples
• “Importing ASAM OpenDRIVE Files” (RoadRunner)
• “Export to FBX” (RoadRunner)

 Convert Scenes Between Formats Using MATLAB Functions

8-1067

Simulate a RoadRunner Scenario Using MATLAB Functions
This example shows how to run and visualize scenarios in RoadRunner Scenario using MATLAB
functions. You can use MATLAB functions to control RoadRunner Scenario programmatically.
Common programmatic tasks that you can perform include:

• Open and close the RoadRunner Scenario application.
• Open, close, and save scenes, scenarios, and projects.
• Import and export scenarios.

RoadRunner Scenario enables you to interactively design and simulate agents in scenarios. To verify
the behavior of these agents, it is often helpful to automate the process of running and analyzing the
results of scenario simulations. In this example, you learn how to use Automated Driving Toolbox® to
launch RoadRunner Scenario, configure and run a simulation, and then plot simulation results.

To run this example, you must:

• Have an Automated Driving Toolbox® license.
• Have a RoadRunner license and the product is installed.
• Have a RoadRunner Scenario license and the product is installed.
• Have created a RoadRunner project folder.

Set Up Environment to Launch RoadRunner Scenario

To use MATLAB functions to control RoadRunner Scenario programmatically, use the roadrunner
object. By default, roadrunner opens RoadRunner from the default installation folder for the
platform you are using (either Windows® or Linux®). These are the default installation locations by
platform:

• Windows – C:\Program Files\RoadRunner R20NNx\bin\win64
• Linux, Ubuntu® – /usr/local/RoadRunner_R20NNx/bin/glnxa64

R20NNx is the MATLAB fallback for tm_matlab release you are using.

If your RoadRunner Scenario installation is at a different location than the default location, use the
MATLAB settings API to customize the default value of the RoadRunner Scenario installation
folder.

Open RoadRunner Scenario Session

You can use the roadrunner function to create a roadrunner object and launch a RoadRunner
Scenario session. The roadrunner function requires an argument that specifies the location of a
RoadRunner project. A RoadRunner project folder typically contains these subfolders: Assets,
Exports, Project, Scenarios, and Scenes.

Open a project in RoadRunner using the roadrunner function by specifying the location in which to
create a project. This example assumes that RoadRunner is installed in its default location in
Windows.

Specify the path to an existing project. For example, this code shows the path to a project located on
C:\RR\MyProject. The function returns a roadrunner object, rrApp, that provides functions for
performing basic workflow tasks such as opening, closing, and saving scenes and projects.

8 Featured Examples

8-1068

rrProj = "C:\RR\MyProject";
rrApp = roadrunner(rrProj);

Open an existing scenario in RoadRunner Scenario by using the openScenario function and
specifying the rrApp object and the specific scenario filename that you want to open. For example,
open the TrajectoryCutIn scenario file, which is a scenario included by default in RoadRunner
projects. This function opens the desired scenario in the RoadRunner Scenario application through
MATLAB.

openScenario(rrApp,"TrajectoryCutIn.rrscenario");

Simulate Scenario

Once the scenario is loaded into RoadRunner Scenario, automate the simulation tasks by using the
createSimulation function to create a simulation object. The simulation object enables you to
programatically interact with the scenario simulation.

Specify the rrApp object as an input argument to the createSimulation function. The function
creates a simulation object, rrSim.

rrSim = createSimulation(rrApp);

Connection status: 1
Connected to RoadRunner Scenario server on localhost:60985, with client id {da0e2b31-17db-4d18-b5cb-f20b0e95d87f}

Set a maximum simulation time of 10 seconds. Use the set function and specify the rrSim object,
name of the variable to set, and the value for that variable as input arguments.

maxSimulationTimeSec = 10;
set(rrSim,'MaxSimulationTime',maxSimulationTimeSec);

Enable simulation result logging so that you can plot the results later.

set(rrSim,"Logging","on");

Start the simulation. Use a while loop to monitor the status of the simulation, and wait for the
simulation to complete.

set(rrSim,"SimulationCommand","Start");
while strcmp(get(rrSim,"SimulationStatus"),"Running")
 pause(1);
end

Plot Agent Velocities

In this section, you retrieve the logged velocities of the actors from the simulation and plot their
magnitudes against simulation time.

Get the logged results from the scenario. Use the get function and specify the rrSim object and
"SimulationLog" as input arguments. The function returns the simulation logs in rrLog, which
contains information about the simulation of the scenario.

rrLog = get(rrSim,"SimulationLog");

The TrajectoryCutIn scenario contains two actors. The red sedan has Actor ID set to 1, and
the white sedan has Actor ID set to 2. Get the logged velocities of these actors from simulation log.
Also, get the corresponding simulation times from the simulation logs.

 Simulate a RoadRunner Scenario Using MATLAB Functions

8-1069

velocityAgent1 = get(rrLog,'Velocity','ActorID',1);
velocityAgent2 = get(rrLog,'Velocity','ActorID',2);
time = [velocityAgent1.Time];

The function returns the velocities of the red sedan and the white sedan as vectors and stores them in
the velMagAgent1 and velMagAgent2 variables, respectively. Calculate the magnitude of the
velocity for each actor by using the norm function.

velMagAgent1 = arrayfun(@(x) norm(x.Velocity,2),velocityAgent1);
velMagAgent2 = arrayfun(@(x) norm(x.Velocity,2),velocityAgent2);

Plot the agent velocities with respect to simulation time using the plot function. Label the graph and
the x and y axes.

figure
hold on
plot(time,velMagAgent1,"r")
plot(time,velMagAgent2,"b")
grid on
title("Agent Velocities from RoadRunner Scenario")
ylabel("Velocity (m/sec)")
xlabel("Time (sec)")
legend("Actor ID = 1","Actor ID = 2")

Notice that the velocities of the actors correspond to their specifications in the Logic Editor of
RoadRunner Scenario.

8 Featured Examples

8-1070

Plot Agent Velocities

Plot the lanes from the RoadRunner scene and overlay the positions of vehicles on the map.

Get the HD Map specification from RoadRunner by using the getMap function. Notice that the
function returns a structure and one of the fields contains information about the lanes.

hdMap = getMap(rrSim);
lanes = hdMap.map.lanes;

Loop through each of the lane specifications using a for loop and plot the lane coordinates.

figure
hold on
for i = 1:numel(lanes)
 control_points = lanes(i).geometry.values;
 x_coordinates = arrayfun(@(cp) cp.x,control_points);
 y_coordinates = arrayfun(@(cp) cp.y,control_points);
 plot(x_coordinates, y_coordinates, 'black');
end
axis equal

Extract the positions of the vehicles and plot them on the lanes.

poseActor1 = rrLog.get('Pose','ActorID',1);
positionActor1_x = arrayfun(@(x) x.Pose(1,4),poseActor1);
positionActor1_y = arrayfun(@(x) x.Pose(2,4),poseActor1);
plot(positionActor1_x,positionActor1_y,"r","LineWidth",2)

 Simulate a RoadRunner Scenario Using MATLAB Functions

8-1071

poseActor2 = rrLog.get('Pose','ActorID',2);
positionActor2_x = arrayfun(@(x) x.Pose(1,4),poseActor2);
positionActor2_y = arrayfun(@(x) x.Pose(2,4),poseActor2);
plot(positionActor2_x,positionActor2_y,"b","LineWidth",2)

title("Agent Positions from RoadRunner Scenario")
ylabel("Y (m)")
xlabel("X (m)")

figure(gcf)

Close Scenario Session

To stop interacting with RoadRunner Scenario, close the simulation. Then close the application.

close(rrSim)

SimClient is shutdown and event thread is stopped!

ans =
 ScenarioSimulation with no properties.

close(rrApp)

Close the open figure.

close all

8 Featured Examples

8-1072

Further Exploration

In this example you learned about the basic capabilities of connecting to RoadRunner Scenario
programmatically using MATLAB. To extend this script further, you can:

• Vary the scenario and vehicle actors in the scenario.
• Develop MATLAB and Simulink behaviors, publish actor behavior, simulate behaviors in

RoadRunner Scenario simulation, and control simulations and access simulation parameters.

See Also
roadrunner | Simulink.ScenarioLog | settings | openScenario | createSimulation | set |
close

Related Examples
• “Design and Simulate Scenarios” (RoadRunner Scenario)
• “Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink” on page 7-2

 Simulate a RoadRunner Scenario Using MATLAB Functions

8-1073

Traffic Light Negotiation with Unreal Engine Visualization
This example shows how to design and simulate a vehicle to negotiate traffic lights in the Unreal
Engine® driving simulation environment.

Introduction

Decision logic for negotiating traffic lights is a fundamental component of automated driving
applications. The decision logic interacts with a controller to steer the ego vehicle based on the state
of the traffic light and other vehicles in the ego lane. Simulating real-world traffic scenarios with
realistic conditions can provide more insight into the interactions between the decision logic and the
controller. Automated Driving Toolbox™ provides a 3D simulation environment powered by Unreal
Engine® from Epic Games®. You can use this engine to visualize the motion of a vehicle in a prebuilt
3D scene. This engine provides an intuitive way to analyze the performance of decision logic and
control algorithms when negotiating a traffic light at an intersection.

For information on how to design the decision logic and controls for negotiating traffic lights in a
cuboid environment, see the “Traffic Light Negotiation” on page 8-948 example. This example shows
how to control a traffic light in an Unreal scene and then how to simulate and visualize vehicle
behavior for different test scenarios. In this example, you will:

1 Explore the architecture of the test bench model: The model contains sensors and
environment, traffic light decision logic, controls, and vehicle dynamics.

2 Control traffic light in an Unreal scene: The Simulation 3D Traffic Light Controller
helper block configures the model to control the state of a traffic light in an Unreal scene by
using Simulink®.

3 Simulate vehicle behavior during green to red transition: The model analyzes the
interactions between the decision logic and the controller when the traffic light state transitions
from green to red and the ego vehicle is at a distance of 10 meters from the stop line.

4 Simulate vehicle behavior during red to green transition: The model analyzes the
interactions between the decision logic and the controller when the traffic light transitions from
red to green and the ego vehicle is at a distance of 11 meters from stop line. In this case, the ego
vehicle also negotiates traffic light as another vehicle crosses the intersection.

5 Explore other scenarios: These scenarios test the system under additional conditions.

You can apply the modeling patterns used in this example to test your own decision logic and controls
to negotiate traffic lights in an Unreal scene.

In this example, you enable system-level simulation through integration with the Unreal Engine. This
environment requires a Windows® 64-bit platform.

if ~ispc
 error(['3D Simulation is only supported on Microsoft', char(174), ' Windows', char(174), '.']);
end

Explore Architecture of Test Bench Model

To explore the test bench model, copy the project example files to a working folder. Use workDir
argument of the helperDrivingProjectSetup function to specify the file path. The length of file
path must be less than 25 characters to avoid maximum character limit for Windows file path.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('TLNUnreal.zip', 'workDir', pwd);

8 Featured Examples

8-1074

To explore the behavior of the traffic light negotiation system, open the simulation test bench model
for the system.

open_system("TLNWithUnrealTestBench");

Opening this model runs the helperSLTrafficLightNegotiationWithUnrealSetup script to
initialize the test scenario stored as a drivingScenario object in the base workspace. The default
test scenario, scenario_03_TLN_straight_greenToRed_with_lead_vehicle, contains one ego
vehicle and two non-ego vehicles. This setup script also configures the controller design parameters,
vehicle model parameters, and Simulink® bus signals to define the inputs and outputs for the
TLNWithUnrealTestBench model.

The test bench model contains the following subsystems:

1 Sensors and Environment: Models the road network, vehicles, camera, and radar sensors used
for simulation. The subsystem uses the Simulation 3D Traffic Light Controller helper
block to control the state of traffic lights in an Unreal scene.

2 Traffic Light Decision Logic: Arbitrates between the traffic light and other lead vehicles or
cross-traffic vehicles at the intersection.

3 Lane-Following Controller: Generates longitudinal and lateral controls for the ego vehicle.
4 Vehicle Dynamics: Models the ego vehicle using a Bicycle Model block and updates its state

using commands received from the Lane Following Controller reference model.

The Traffic Light Decision Logic, Lane Following Controller reference models, and Vehicle
Dynamics subsystem are reused from the “Traffic Light Negotiation” on page 8-948 example. This
example modifies the Sensors and Environment subsystem to make it compatible for simulation
with an Unreal scene.

The Sensors and Environment subsystem configures the road network, sets vehicle positions,
synthesizes sensors, and fuses the vehicle detections from the radar and vision sensors. Open the
Sensors and Environment subsystem.

open_system("TLNWithUnrealTestBench/Sensors and Environment");

 Traffic Light Negotiation with Unreal Engine Visualization

8-1075

Select Scenario

The scene and road network required for the test bench model are specified by the following parts of
this subsystem:

• The scene name parameter Scene name of the Simulation 3D Scene Configuration block is set to
US City Block. The US city block road network consists of fifteen one-way intersections with two
traffic lights at each intersection. This example uses a section of the US city block scene to test
the model.

• The Scenario Reader block takes the ego vehicle information as input and performs a closed-loop
simulation. This block reads the drivingScenario object scenario from the base workspace.
The scenario contains the desired road network. The road network closely matches with a section
of the US city block scene and contains one intersection.

You can display the selected section of the US city block scene by using the
helperDisplayTrafficLightScene function.

Specify the x and the y limits to select the desired scene area and plot the extracted scene.

xlimit = [-110 70];
ylimit = [-105 105];
hFigure = helperDisplayTrafficLightScene(xlimit, ylimit);
snapnow;
close(hFigure);

8 Featured Examples

8-1076

The helperGetTrafficLightScenario function specifies a reference path for the ego vehicle to
follow when the lane information is not available. The Reference Path Info block reads the
reference path stored in the base workspace variable referencePathInfo. The ego vehicle can
either go straight or take a left turn at the intersection based on the reference trajectory. You can
select one of these reference trajectories by setting the input values of
helperGetTrafficLightScenario function. Set the value to

• Straight - To make the ego vehicle travel straight through the intersection.

• Left - To make the ego vehicle take a left turn at the intersection.

The Set Velocity block reads the velocity value from the base workspace variable setVelocity and
gives as input to the controller.

 Traffic Light Negotiation with Unreal Engine Visualization

8-1077

Set Vehicle Positions

The scenario contains one ego vehicle and two non-ego vehicles. The positions for each vehicle in the
scenario are specified by these parts of the subsystem:

• The Simulation 3D Vehicle with Ground Following block provides an interface that changes the
position and orientation of the vehicle in the 3D scene.

• The Ego input port controls the position of the ego vehicle, which is specified by the Simulation
3D Vehicle with Ground Following 1 block. The ActorName mask parameter of Simulation
3D Vehicle with Ground Following 1 block is specified as EgoVehicle.

• The Cuboid To 3D Simulation block converts the ego pose coordinate system (with respect to
below the center of the vehicle rear axle) to the 3D simulation coordinate system (with respect to
below the vehicle center).

• The Scenario Reader block also outputs ground truth information of lanes and actor poses in ego
vehicle coordinates for the target vehicles. There are two target vehicles in this example, which
are specified by the other Simulation 3D Vehicle with Ground Following blocks.

• The Vehicle To World block converts the actor pose coordinates from ego vehicle coordinates to
the world coordinates.

The Tracking and Sensor Fusion subsystem fuses vehicle detections from Driving Radar Data
Generator and Vision Detection Generator blocks and tracks the fused detections using Multi-Object
Tracker block to provide object tracks surrounding the ego vehicle. The Vision Detection Generator
block also provides lane detections with respect to the ego vehicle that helps in identifying vehicles
present in the ego lane.

Control Traffic Light in Unreal Scene

This model uses the Simulation 3D Traffic Light Controller helper block to configure and control
the state of traffic lights in an Unreal scene. The Simulation 3D Traffic Light Controller helper
block controls the state of traffic lights by using Timer-Based or State-Based mode. You can
select the desired mode by using the Control mode mask parameter. By default, this model uses
State-Based mode. For information on Timer-Based mode, see the block mask description.

In State-Based mode, the block overwrites the state of a traffic light specified by the Traffic
Light ID input port. The value for the Traffic Light ID input port is set by the
intersectionInfo.trafficLightToNegotiate variable in the
helperGetTrafficLightScenario function. In this model, the value for Traffic Light ID input
port is set to 16. This implies that the block controls the traffic light with ID value 16 in the US city
block scene. The states of all the traffic lights present in the US city block scene is returned by the
Ground Truth output port of the Simulation 3D Traffic Light Controller helper block. The
model tests the decision logic and controls by using the ground truth information and does not
require perception-based traffic light detection.

The Traffic Light Select block extracts the state of the traffic light with ID value 16 from the
Ground Truth output. The Traffic Light Decision Logic reference model uses the state value to
arbitrate between the lead car and the traffic light. For more information about the Traffic Light
Decision Logic reference model, see the “Traffic Light Negotiation” on page 8-948 example.

The Traffic Light Stop Line Position block provides the stop line position at the intersection
corresponding to the selected traffic light trafficLightToNegotiate. The stop line position value
is specified by intersectionInfo.tlStopLinePosition.

8 Featured Examples

8-1078

The Intersection Center block provides the position of the intersection center of the road network
in the scenario. This is obtained using the intersectionInfo, an output from
helperGetTrafficLightScenario.

It is often important to test the decision logic and controls when the ego vehicle is close to the traffic
light and the traffic light changes its state. The model used in this example enables traffic lights to
change state when the EgoVehicle is close to the traffic light.

The Distance To Traffic Light Stop Line block calculates the Euclidean distance between the
stop line corresponding to the selected traffic light trafficLightToNegotiate and the current ego
vehicle position.

The Traffic Light Decision Logic uses the distance value to decide the most important object
(MIO), the closest object in front of the ego vehicle. It can be the lead vehicle or traffic light in the
ego lane.

The Traffic Light Switching Logic block outputs tlState, the state of the traffic light that needs
to be set. This is implemented using Stateflow® and uses the distance value to trigger a state change
when the EgoVehicle is closer to the traffic light than the specified distance.

Open the Traffic Light Switching Logic block.

open_system("TLNWithUnrealTestBench/Sensors and Environment/Traffic Light Switching Logic", 'force');

Traffic Light Switching Logic uses the Configuration params mask parameter to read the
traffic light configuration, trafficLightConfig, from the base workspace. You can use the
trafficLightConfig structure to configure different test scenarios. This structure is defined in the
test scenario function and has the following fields: stateChangeDistance, initialState, and
changeState.

 Traffic Light Negotiation with Unreal Engine Visualization

8-1079

• initialState specifies the state of the traffic light before the state change.

• stateChangeDistance specifies the threshold distance of the EgoVehicle to the traffic light at
which state change should happen.

• changeState specifies the state of the traffic light to be set after state change.

State switching happens based on the set configuration and when EgoVehicle reaches
stateChangeDistance. When the initialState is Red and changeState is Green the Stateflow
chart switches from Red state to Green state. Conversely, when the initialState is Green and
changeState is Red the Stateflow chart is modeled such that the state transition happens from
Green state to Yellow state and after one second, the traffic light switches to Red state.

Simulate Vehicle Behavior During Green To Red Transition

This section tests the decision logic when the ego vehicle is at a close distance to the traffic light and
the traffic light state changes from green to red. In this test scenario, a lead vehicle travels in the ego
lane and crosses the intersection. The traffic light state keeps green for the lead vehicle and turns red
when the ego vehicle is at a distance of 10 meters from the stop line. The ego vehicle is expected to
follow the lead vehicle, negotiate the state transition, and come to a complete halt before the stop
line.

Configure the TLNWithUnrealTestBench model to use the
scenario_03_TLN_straight_greenToRed_with_lead_vehicle test scenario.

helperSLTrafficLightNegotiationWithUnrealSetup(...
 "scenario_03_TLN_straight_greenToRed_with_lead_vehicle");

Display the trafficLightConfig structure parameters set for the test scenario.

disp(trafficLightConfig');

 initialState: 2
 stateChangeDistance: 10
 changeState: 0

Simulate the model. During the simulation, the model logs the signals required for post simulation
analysis to logsout.

To reduce command-window output, first turn off the MPC update messages.

mpcverbosity('off');
sim("TLNWithUnrealTestBench");

Plot the simulation results using helperPlotTrafficLightControlAndNegotiationResults
function.

hFigResults = helperPlotTrafficLightControlAndNegotiationResults(logsout, trafficLightConfig.stateChangeDistance);

8 Featured Examples

8-1080

Examine the results.

• The Traffic light state plot shows the state of the traffic light. The Distance to traffic light
stop line plot shows the distance between the ego vehicle and the stop line corresponding to the
traffic light. You can see that the initial state of the traffic light is green and the state changes
from green to yellow as the ego vehicle approaches the stop line. The state changes from yellow to
red when the ego vehicle is at a distance of 10 meters from the stop line.

• The Relative longitudinal distance plot shows the relative distance between the ego vehicle
and the most important object (MIO). The MIO is the closest object in front of the ego vehicle. It
can be a lead vehicle or a traffic light in the ego lane. The ego vehicle follows the lead vehicle and
maintains a safe distance when the traffic light state is green. The distance between the ego and
the lead vehicle decreases when the traffic light transitions from green to red. This is because, as
the ego vehicle approaches the stop line, the traffic light is detected as an MIO. At this point of
time, the traffic light state is either red or yellow.

 Traffic Light Negotiation with Unreal Engine Visualization

8-1081

• The Ego acceleration plot shows the acceleration profile from the Lane Following Controller.
Notice that this closely follows the dip in the relative distance, in reaction to the detection of the
red traffic light as an MIO.

• The Ego velocity plot shows the velocity profile of the ego vehicle. Notice that the ego velocity
slows down in reaction to the yellow and red traffic lights and comes to a complete halt before the
stop line. This can be verified by comparing the plot with Distance to traffic light stop line,
when the velocity is zero.

You can refer to the “Traffic Light Negotiation” on page 8-948 example to learn more about this
analysis and the interactions between the decision logic and the controller.

Close the figure.

close(hFigResults);

Simulate Vehicle Behavior During Red To Green Transition

This section tests the decision logic when the ego vehicle is at a close distance to the traffic light and
the traffic light state changes from red to green. In addition, a cross-traffic vehicle is in the
intersection when the traffic light is green for the ego vehicle. The traffic light state is initially red for
the ego vehicle and turns green when the ego vehicle is at a distance of 11 meters from the stop line.
The ego vehicle is expected to slow down as it approaches the traffic light when the state is red and
must start accelerating when the traffic light state changes from red to green. It is also expected to
wait for the cross-traffic vehicle to pass the intersection before accelerating to continue its travel.

The test scenario function scenario_04_TLN_straight_redToGreen_with_cross_vehicle
implements this scenario. Configure the TLNWithUnrealTestBench model to use this scenario.

helperSLTrafficLightNegotiationWithUnrealSetup(...
 "scenario_04_TLN_straight_redToGreen_with_cross_vehicle");

Display the trafficLightConfig structure parameters that are set for this test scenario.

disp(trafficLightConfig');

 initialState: 0
 stateChangeDistance: 11
 changeState: 2

Simulate the model.

sim("TLNWithUnrealTestBench");

Plot the simulation results.

hFigResults = helperPlotTrafficLightControlAndNegotiationResults(logsout, trafficLightConfig.stateChangeDistance);

8 Featured Examples

8-1082

Examine the results.

• The Traffic light state plot shows that the initial traffic light state is red. The traffic light state
changes from red to green when the ego vehicle is at a distance of 11 meters from the stop line.

• The Relative longitudinal distance plot closely follows the Distance to traffic light stop line
plot because there is no lead vehicle. Notice the sudden dip in the relative distance in response to
the detection of the cross-over vehicle.

• The Ego acceleration plot shows that the ego vehicle attempts to slow down on seeing the red
traffic light. However, in response to the state change to green, you can observe an increase in
acceleration. You can then notice a hard-braking profile in response to the cross-traffic vehicle at
the intersection.

• The Ego velocity plot closely follows the Ego acceleration plot and shows a decrease in velocity
as the ego vehicle approaches the intersection. You can also notice a slight increase in velocity in

 Traffic Light Negotiation with Unreal Engine Visualization

8-1083

response to green traffic light and subsequent decrease in velocity in response to the cross-traffic
vehicle.

Close the figure.

close(hFigResults);

Explore Other Scenarios

In the previous sections, you explored the system behavior for the
scenario_03_TLN_straight_greenToRed_with_lead_vehicle and
scenario_04_TLN_straight_redToGreen_with_cross_vehicle scenarios. Below is a list of
scenarios that are compatible with TLNWithUnrealTestBench.

scenario_01_TLN_left_redToGreen_with_lead_vehicle
scenario_02_TLN_straight_greenToRed
scenario_03_TLN_straight_greenToRed_with_lead_vehicle [Default]
scenario_04_TLN_straight_redToGreen_with_cross_vehicle

Use these additional scenarios to analyze TLNWithUnrealTestBench under different conditions.

Enable the MPC update messages.

mpcverbosity('on');

You can use the modeling patterns in this example to build your own traffic light negotiation
application.

See Also
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Vehicle To World
| Cuboid To 3D Simulation | Driving Radar Data Generator | Vision Detection Generator | Multi-Object
Tracker

More About
• “Traffic Light Negotiation” on page 8-948

8 Featured Examples

8-1084

Generate Code for Lane Marker Detector
This example shows how to test a monocular-camera-based lane marker detector and generate C++
code for real-time applications on a prebuilt 3D scene from the Unreal Engine® driving simulation
environment. This example validates the lane marker detector algorithm using metrics and verifies
the generated C++ code by using software-in-the-loop simulation.

Introduction

A lane marker detector is a fundamental perception component of an automated driving application.
The detector analyzes images of roads captured using a monocular camera sensor and returns
information about the curvature and marking type of each lane. You can design and simulate a lane
marker detector algorithm using MATLAB® or Simulink® and assess its accuracy using a known
ground truth. You can do C++ code generation to integrate the detector to an external software
environment and deploy to a vehicle. Performing code generation and verification of the Simulink
model ensures functional equivalence between simulation and real-time implementation.

For information about how to design a lane marker detector, see the “Design Lane Marker Detector
Using Unreal Engine Simulation Environment” on page 8-885 example. This example shows how to
test the lane marker detector in a 3D simulation environment and generate C++ code for real-time
implementation. In this example, you will:

1 Explore and simulate the lane marker detector model.
2 Assess accuracy of the lane marker detector algorithm by comparing with the ground truth.
3 Generate C++ code from the algorithm model.
4 Verify implementation with software-in-the-loop (SIL) simulation.
5 Assess execution time and perform code coverage analysis. To perform code coverage analysis,

you must use Simulink Coverage™.

This example tests the lane marker detector algorithm on a 3D simulation environment that uses
Unreal Engine® from Epic Games®. The Unreal Engine driving simulation environment requires a
Windows® 64-bit platform.

if ~ispc
 error(['Unreal driving simulation environment is only supported on Microsoft', char(174), ' Windows', char(174), '.']);
end

Set up the example files and open a working copy of the project example files. MATLAB® copies the
files to an example folder so that you can edit them.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup("LaneDetector.zip", "workDir",pwd);

To ensure reproducibility of the simulation results, set the random seed.

rng(0);

Explore the Model

The lane marker detector system in this example has a lane marker detector test bench and reference
model.

• Test Bench Model: The test bench model simulates and tests the behavior of the lane marker
detector algorithm in an open-loop.

 Generate Code for Lane Marker Detector

8-1085

• Reference Model: The Lane Marker Detector block in the test bench model invokes the
LaneMarkerDetector reference model. The reference model implements the lane marker
detection algorithm and generates the C++ code of the algorithm. This reference model can be
integrated with closed-loop systems.

Open the test bench model.

open_system('LaneMarkerDetectorTestBench');

Opening this model runs the helperSLLaneMarkerDetectorSetup script that initializes the road
scenario using the drivingScenario object in the base workspace. It also configures the lane
marker detector parameters, vehicle model parameters, and the Simulink bus signals required for
defining the inputs and outputs for the LaneMarkerDetectorTestBench model. The test bench
model contains these subsystems:

1 Simulation 3D Scenario: Specifies the scene, vehicles, and camera sensor used for simulation.
2 Lane Marker Detector: Implements the lane marker detector algorithm.
3 Metrics Assessment: Assesses the lane marker detector algorithm behavior using metrics that

include true positives, false positives, and false negatives.
4 Visualization: Displays the frame captured by the camera sensor and overlays the lane detections

during the simulation.

The Simulation 3D Scenario subsystem configures the road network, sets vehicle positions, and
synthesizes sensors. This is similar to the Simulation 3D Scenario subsystem in the “Highway Lane
Following” on page 8-922 example. However, the Simulation 3D Scenario subsystem used in this
example does not have a radar sensor. Open the Simulation 3D Scenario subsystem.

open_system('LaneMarkerDetectorTestBench/Simulation 3D Scenario');

8 Featured Examples

8-1086

Lane Marker Detector is the reference model that detects the lane boundaries in the frames. Open
the Lane Marker Detector reference model.

open_system('LaneMarkerDetector');

 Generate Code for Lane Marker Detector

8-1087

The Lane Marker Detector block uses a System object™, HelperLaneDetectorWrapper, that
configures and implements the lane marker detection algorithm. The block takes the frames captured
by a camera sensor as input and outputs the detected lane boundaries by using the LaneSensor
Simulink bus.

The Metrics Assessment subsystem evaluates the accuracy of detection results using the ground
truth information. Open the Metrics Assessment subsystem.

open_system('LaneMarkerDetectorTestBench/Metrics Assessment');

The Metrics Assessment subsystem compares the detected lane boundaries and the ground truth
lane boundaries by using the evaluateLaneBoundaries function. The function computes the
lateral distance between the detected lane boundaries and the ground truth data. If the computed
distance is within a particular threshold, then the detected boundary is considered as a valid match
(true positive) and the corresponding lane status is set to 1. Otherwise, the function evaluates
whether the boundary is a false negative or false positive and then sets the lane status to 0. The
subsystem connects the outputs left_lane_status and right_lane_status to the lamps in the
dashboard. The lamps go green when the lane status is 1 and go red when the lane status is 0. The
outputs left_lane_metrics and right_lane_metrics are 1-by-3 arrays containing the lane

8 Featured Examples

8-1088

matches (true positives), misses (false negatives) and false positives for left and right lanes
respectively. The average left lane and right lane deviations computed from the detected lane
boundaries are returned at the outputs left_lane_distance and right_lane_distance
respectively. The model uses these deviation values to verify the accuracy of the algorithm during the
simulation using Check Static Range (Simulink) blocks: Verify Left Lane Deviation and Verify
Right Lane Deviation.

Simulate the Model

Configure the LaneMarkerDetectorTestBench model to simulate in the
scenario_LD_02_Curve_SixVehicles scenario. This scenario contains six vehicles, including the
ego vehicle, and defines their trajectories.

helperSLLaneMarkerDetectorSetup("scenario_LD_02_Curve_SixVehicles");

Simulate the test bench model. Use the visualization window and the status lamps on the dashboard
to view the detection results while the simulation is running.

sim('LaneMarkerDetectorTestBench');

You can also visualize the ground truth lane boundaries by enabling the EnableTruthDisplay mask
parameter in the Visualization block.

Assess Accuracy of Algorithm

Analyze the detection results and validate the overall performance of the algorithm.

 Generate Code for Lane Marker Detector

8-1089

During simulation, the model outputs three parameters that characterize a lane boundary: curvature,
heading angle, and lateral offset. The model logs these parameters for the detected lane boundaries
and ground truth to the base workspace variable logsout. You can plot the values in logsout by
using the helperLaneBoundaryParams function.

helperPlotLaneBoundaryParams(logsout);

8 Featured Examples

8-1090

From the plots, you can infer the deviations between the ground truth and the detected lane
boundaries. A large deviation between the plots indicates that the detected lane boundary is
significantly away from the ground truth.

You can also verify the performance of the lane marker detector algorithm by validating and plotting
the metrics separately for the left lane and the right lane. The model also logs the detection results
for the left and right lanes computed by the Metrics Assessment subsystem to the base workspace
variable logsout. The Metrics Assessment subsystem outputs:

1 Left lane metrics: Returned as an array that contains the number of matches (true positives),
misses (false negatives), and false positives computed from detections for the left lane of the
road.

2 Left lane status: Returned as true or false. The value is true for matches in the left lane and
false for misses and false positives in the left lane.

 Generate Code for Lane Marker Detector

8-1091

3 Left lane distance: A scalar specifying the average value of distances between detected left
lane boundary points and the ground truth for the left lane.

4 Right lane metrics: Returned as an array that contains the number of matches (true positives),
misses (false negatives), and false positives computed from detections for the right lane of the
road.

5 Right lane status: Returned as true or false. The value is true for matches in the right lane and
false for misses and false positives in the right lane.

6 Right lane distance: A scalar specifying the average value of distances between detected right
lane boundary points and the ground truth for the right lane.

Plot the detection results for left and right lanes by using the helperPlotLaneMetrics script:

[numLaneMatches, numLaneMisses, numFalsePositives] = helperPlotLaneMetrics(logsout);

8 Featured Examples

8-1092

From the plots you can infer that all the detected left lane and the right lane boundaries match with
the ground truth and that there are no false positives or false negatives.

During simulation, the model records the output of the camera sensor to
forwardFacingCamera.mp4. You can overlay the deviation results on the lanes detected in the
frames and record to a video file by using helperPlotLaneDetectionResults function.

hVideoViewer = helperPlotLaneDetectionResults(...
logsout, "forwardFacingCamera.mp4" , scenario, camera,scenarioFcnName,...
"RecordVideo", true,"RecordVideoFileName", scenarioFcnName,...
"OpenRecordedVideoInVideoViewer", true,"VideoViewerJumpToTime", 9.3);

 Generate Code for Lane Marker Detector

8-1093

You can also compute overall precision and sensitivity of the lane marker detection algorithm as
below:

Precision: Compute as the percentage of true positives in the total number of detected lane
boundaries.

precision = (numLaneMatches./(numLaneMatches+numFalsePositives))*100;
disp(precision);

 100

Sensitivity: Compute as the percentage of true positives in total number of actual lane boundaries.

sensitivity = (numLaneMatches./(numLaneMatches+numLaneMisses))*100;
disp(sensitivity);

 100

The precision and the sensitivity values of a robust lane marker detector must be close to 100 for
different test scenarios and test conditions.

8 Featured Examples

8-1094

Generate C++ Code

You can now generate C++ code for the algorithm, apply common optimizations, and generate a
report to facilitate exploring the generated code.

Configure the LaneMarkerDetector model to generate C++ code for real-time implementation of
the algorithm. Set the model parameters to enable code generation and display the configuration
values.

Set and view model parameters to enable C++ code generation.

helperSetModelParametersForCodeGeneration('LaneMarkerDetector');
save_system('LaneMarkerDetector');

 Model configuration parameters:

 Parameter Value Description
 ___________________________________ _______________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'SolverType' } {'Fixed-step' } {'Solver>Type' }
 {'FixedStep' } {'auto' } {'Solver>Fixed-step size (fundamental sample time)' }
 {'EnableMultiTasking' } {'on' } {'Solver>Treat each discrete rate as a separate task' }
 {'ProdLongLongMode' } {'on' } {'Hardware Implementation>Support long long' }
 {'BlockReduction' } {'on' } {'Simulation Target>Block reduction' }
 {'MATLABDynamicMemAlloc' } {'on' } {'Simulation Target>Simulation Target>Dynamic memory allocation in MATLAB functions' }
 {'OptimizeBlockIOStorage' } {'on' } {'Simulation Target>Signal storage reuse' }
 {'InlineInvariantSignals' } {'on' } {'Simulation Target>Inline invariant signals' }
 {'BuildConfiguration' } {'Faster Runs'} {'Code Generation>Build configuration' }
 {'RTWVerbose' } {'off' } {'Code Generation>Verbose build' }
 {'CombineSignalStateStructs' } {'on' } {'Code Generation>Interface>Combine signal/state structures' }
 {'SupportVariableSizeSignals' } {'on' } {'Code Generation>Interface>Support variable-size signals' }
 {'CodeInterfacePackaging' } {'C++ class' } {'Code Generation>Interface>Code interface packaging' }
 {'GenerateExternalIOAccessMethods'} {'Method' } {'Code Generation>Interface>Data Member Visibility>External I/O access' }
 {'EfficientFloat2IntCast' } {'on' } {'Code Generation>Optimization>Remove code from floating-point to integer conversions that wraps out-of-range values'}
 {'ZeroExternalMemoryAtStartup' } {'off' } {'Code Generation>Optimization>Remove root level I/O zero initialization (inverse logic)' }
 {'CustomSymbolStrGlobalVar' } {'NM' } {'Code Generation>Symbols>Global variables' }
 {'CustomSymbolStrType' } {'NM_T' } {'Code Generation>Symbols>Global types' }
 {'CustomSymbolStrField' } {'NM' } {'Code Generation>Symbols>Field name of global types' }
 {'CustomSymbolStrFcn' } {'APV_NM$F' } {'Code Generation>Symbols>Subsystem methods' }
 {'CustomSymbolStrTmpVar' } {'NM' } {'Code Generation>Symbols>Local temporary variables' }
 {'CustomSymbolStrMacro' } {'NM' } {'Code Generation>Symbols>Constant macros' }

Generate code and review the code generation report from the reference model.

slbuild('LaneMarkerDetector');

Starting build procedure for: LaneMarkerDetector
Successful completion of build procedure for: LaneMarkerDetector

Build Summary

Top model targets built:

Model Action Rebuild Reason

 Generate Code for Lane Marker Detector

8-1095

===
LaneMarkerDetector Code generated and compiled Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 1m 35.615s

Use the code generation report to explore the generated code. To learn more about the code
generation report, see “Reports for Code Generation” (Embedded Coder). Use the Code Interface
Report link in the Code Generation Report to explore these generated methods:

• LaneMarkerDetector_initialize: Call once on initialization.
• LaneMarkerDetector_step: Call periodically every step to execute the lane marker detection

algorithm.
• LaneMarkerDetector_terminate: Call once on termination.

Additional get and set methods for signal interface are declared in LaneMarkerDetector.h and
defined in LaneMarkerDetector.cpp.

Assess Functionality of Code

After generating C++ code for the lane marker detector, you can now assess the code functionality
using software-in-the-loop (SIL) simulation. It provides early insight into the behavior of a deployed
application. To learn more about SIL simulation, refer to “SIL and PIL Simulations” (Embedded
Coder).

SIL simulation enables you to verify that the compiled generated code on the host is functionally
equivalent to the normal mode.

Configure algorithm and test bench model parameters to support SIL simulation and log execution
profiling information.

helperSetModelParametersForSIL('LaneMarkerDetector');
helperSetModelParametersForSIL('LaneMarkerDetectorTestBench');

LaneMarkerDetector configuration parameters:

 Parameter Value Description
 ________________________________ ____________________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'CodeExecutionProfiling' } {'on' } {'Code Generation>Verification>Measure task execution time'}
 {'CodeProfilingSaveOptions' } {'AllData' } {'Code Generation>Verification>Save options' }
 {'CodeExecutionProfileVariable'} {'executionProfile'} {'Code Generation>Verification>Workspace variable' }

LaneMarkerDetectorTestBench configuration parameters:

 Parameter Value Description
 ________________________________ ____________________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'CodeExecutionProfiling' } {'on' } {'Code Generation>Verification>Measure task execution time'}
 {'CodeProfilingSaveOptions' } {'AllData' } {'Code Generation>Verification>Save options' }

8 Featured Examples

8-1096

 {'CodeExecutionProfileVariable'} {'executionProfile'} {'Code Generation>Verification>Workspace variable' }

Configure the test bench model to simulate Lane Marker Detector in software-in-the-loop (SIL)
mode.

set_param('LaneMarkerDetectorTestBench/Lane Marker Detector','SimulationMode','Software-in-the-loop (SIL)');
sim('LaneMarkerDetectorTestBench');

Starting build procedure for: LaneMarkerDetector
Generated code for 'LaneMarkerDetector' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of build procedure for: LaneMarkerDetector

Build Summary

0 of 1 models built (1 models already up to date)
Build duration: 0h 0m 1.988s
Preparing to start SIL simulation ...
Building with 'MinGW64 Compiler (C)'.
MEX completed successfully.
Starting SIL simulation for component: LaneMarkerDetector
Application stopped
Stopping SIL simulation for component: LaneMarkerDetector

You can compare the outputs from normal simulation mode and software-in-the-loop (SIL) simulation
mode. You can verify if the differences between these runs are in the tolerance limits by using the
following code. Plot the differences of the detected lane boundary parameters between the normal
simulation mode and SIL simulation mode.

runIDs = Simulink.sdi.getAllRunIDs;
normalSimRunID = runIDs(end - 1);
SilSimRunID = runIDs(end);
diffResult = Simulink.sdi.compareRuns(normalSimRunID ,SilSimRunID);

Plot the differences between lane boundary parameters computed from normal mode and SIL mode.

helperPlotDiffSignals(diffResult);

 Generate Code for Lane Marker Detector

8-1097

8 Featured Examples

8-1098

Notice that the differences between the lane boundary parameter values between normal mode of
simulation and SIL mode of simulation are approximately zero. However, there are slight differences
because of different rounding off techniques used by different compilers.

Assess Execution Time and Coverage of Code

During the software-in-the-loop (SIL) simulation, log the execution time metrics for the generated
code on the host computer to the variable executionProfile in the MATLAB base workspace.
These times can be an early indicator for performance of the generated code. For accurate execution
time measurements, profile the generated code when it is integrated into the external environment or
when using with processor-in-the-loop (PIL) simulation. To learn more about SIL profiling, refer to
“Code Execution Profiling with SIL and PIL” (Embedded Coder).

Plot the execution time taken for LaneMarkerDetector_step function using
helperPlotExecutionProfile function.

helperPlotExecutionProfile(executionProfile);

 Generate Code for Lane Marker Detector

8-1099

Notice that you can deduce the average time taken per frame for the lane marker detector from this
plot. For more information on generating execution profiles and analyzing them during SIL
simulation, refer to “Execution Time Profiling for SIL and PIL” (Embedded Coder).

If you have a Simulink Coverage™ license, you can also perform the code coverage analysis for the
generated code to measure the testing completeness. You can use missing coverage data to find gaps
in testing, missing requirements, or unintended functionality. Configure the coverage settings and
simulate the test bench model to generate coverage analysis report. Find the generated report
CoverageResults/LaneMarkerDetector.html in the working directory.

if(license('test','Simulink_Coverage'))
 helperCoverageSettings('LaneMarkerDetectorTestBench');
 cvDataObj = cvsim('LaneMarkerDetectorTestBench');
 cvhtml('CoverageResults/LaneMarkerDetector',cvDataObj);
end

Starting build procedure for: LaneMarkerDetector
Generated code for 'LaneMarkerDetector' is up to date because no structural, parameter or code replacement library changes were found.
Successful completion of build procedure for: LaneMarkerDetector

Build Summary

Top model targets built:

Model Action Rebuild Reason
==
LaneMarkerDetector Code compiled Compilation artifacts were out of date.

8 Featured Examples

8-1100

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 35.859s
Preparing to start SIL simulation ...
Building with 'MinGW64 Compiler (C)'.
MEX completed successfully.
Starting SIL simulation for component: LaneMarkerDetector
Stopping SIL simulation for component: LaneMarkerDetector
Completed code coverage analysis

You can find the decision coverage, statements coverage and function coverage results while
simulating the generated code for this test scenario, scenario_LD_02_Curve_SixVehicles. You
can test this model with different scenarios to get full coverage of the generated code. For more
information on how to analyze coverage results during software-in-the-loop simulation, refer “Code
Coverage for Models in Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL) Mode”
(Embedded Coder)

Explore Additional Scenarios

This example provides additional scenarios that you can use with the
LaneMarkerDetectorTestBench model:

 scenario_LF_01_Straight_RightLane
 scenario_LF_02_Straight_LeftLane
 scenario_LF_03_Curve_LeftLane
 scenario_LF_04_Curve_RightLane
 scenario_LD_01_Curve_ThreeVehicles
 scenario_LD_02_Curve_SixVehicles [Default]

• Use scenarios with the prefix scenario_LF in the filename to test the lane marker detection
algorithm without obstruction by other vehicles. The vehicles still exist in the scenario but are
positioned such that they are not within the visible range of the ego vehicle.

• Use scenarios with the prefix scenario_LD in the filename to test the lane marker detection
algorithm while other vehicles on the road are within the visible range of the ego vehicle.

 Generate Code for Lane Marker Detector

8-1101

While designing and testing the lane marker detection algorithm in open loop, it is helpful to begin
with a scenario that has only the ego vehicle. To configure the model and workspace for such a
scenario, use the following code.

helperSLLaneMarkerDetectorSetup("scenario_LF_04_Curve_RightLane");

You can use this model to integrate RoadRunner™ scenes into driving scenarios for simulation and
testing.

See Also
Functions
evaluateLaneBoundaries

Blocks
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Cuboid To 3D
Simulation | Vehicle To World

More About
• “Visual Perception Using Monocular Camera” on page 8-107
• “Design Lane Marker Detector Using Unreal Engine Simulation Environment” on page 8-885
• “Evaluate and Visualize Lane Boundary Detections Against Ground Truth” on page 8-94

8 Featured Examples

8-1102

Highway Lane Following with Intelligent Vehicles
This example shows how to simulate a lane following application in a scenario that contains
intelligent target vehicles. The intelligent target vehicles are the non-ego vehicles in the scenario and
are programmed to adapt their trajectories based on the behavior of its neighboring vehicles. In this
example, you will:

1. Model the behavior of the target vehicles to dynamically adapt their trajectories in order to
perform one of the following behaviors: velocity keeping, lane following, or lane change.

2. Simulate and test the lane following application in response to the dynamic behavior of the target
vehicles on straight road and curved road scenarios.

You can also apply the modeling patterns used in this example to test your own lane following
algorithms.

Introduction

The highway lane following system developed in this example steers the ego vehicle to travel within a
marked lane. The system tests the lane following capability in the presence of other non-ego vehicles,
which are the target vehicles. For regression testing, it is often sufficient for the target vehicles to
follow a predefined trajectory. To randomize the behavior and identify edge cases like aggressive lane
change in front of the ego vehicle, it is beneficial to add intelligence to the target vehicles.

This example builds on the “Highway Lane Following” on page 8-922 example that demonstrates lane
following in the presence of target vehicles that follow predefined trajectories. This example modifies
the scenario simulation framework of the “Highway Lane Following” on page 8-922 example by
adding functionalities to model and simulate intelligent target vehicles. The intelligent target vehicles
added to this example adapt their trajectories based on the behavior of the neighboring vehicles and
the environment. In response, the lane following system automatically reacts to ensure that the ego
vehicle stays in its lane.

In this example, you achieve system-level simulation through integration with the Unreal Engine®
from Epic Games®. The 3D simulation environment requires a Windows® 64-bit platform.

if ~ispc
 error(['Unreal simulation is only supported on Microsoft', char(174), ' Windows', char(174), '.']);
end

To ensure reproducibility of the simulation results, set the random seed.

rng(0);

In the rest of the example, you will:

1 Explore the test bench model: Explore the functionalities in the system-level test bench model
that you use to assess lane following with intelligent target vehicles.

2 Vehicle behaviors: Explore vehicle behaviors that you can use to model the intelligent target
vehicles.

3 Model the intelligent target vehicles: Model the target vehicles in the scenario for three
different behaviors: velocity keeping, lane following, and lane changing.

4 Simulate lane following with intelligent target vehicles on a straight road: Simulate
velocity keeping, lane following, and lane change behaviors of a target vehicle while testing lane
following on a straight road.

 Highway Lane Following with Intelligent Vehicles

8-1103

5 Simulate lane following with intelligent target vehicles on a curved road: Simulate
velocity keeping, lane following, and lane change behaviors of a target vehicle while testing lane
following on a curved road.

6 Test with other scenarios: Test the model with other scenarios available with this example.

Explore Test Bench Model

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('HLFIntelligentVehicles.zip', 'workDir', pwd);

Open the system-level simulation test bench model for the lane following application.

open_system("HighwayLaneFollowingWithIntelligentVehiclesTestBench")

The test bench model contains these modules:

1 Simulation 3D Scenario: Subsystem that specifies road, ego vehicle, intelligent target vehicles,
camera, and radar sensors used for simulation.

2 Lane Marker Detector: Algorithm model to detect the lane boundaries in the frame captured by
camera sensor.

3 Vehicle Detector: Algorithm model to detect to detect vehicles in the frame captured by camera
sensor.

4 Forward Vehicle Sensor Fusion: Algorithm model that fuses the detections of vehicles in front
of the ego vehicle that were obtained from vision and radar sensors.

5 Lane Following Decision Logic: Algorithm model that specifies lateral, longitudinal decision
logic and provides lane center information and MIO related information to controller.

6 Lane Following Controller: Algorithm model that specifies the controls.

8 Featured Examples

8-1104

7 Vehicle Dynamics: Specifies the dynamics model for the ego vehicle.
8 Metrics Assessment: Assesses system-level behavior.

The Lane Marker Detector, Vehicle Detector, Forward Vehicle Sensor Fusion, Lane Following Decision
Logic, Lane Following Controller, Vehicle Dynamics, and Metrics Assessment subsystems are based
on the subsystems used in “Highway Lane Following” on page 8-922 (Automated Driving Toolbox). If
you have license to Simulink® Coder™ and Embedded Coder™, you can generate deployable-ready
embedded real-time code for the Lane Marker Detector, Vehicle Detector, Forward Vehicle Sensor
Fusion, Lane Following Decision Logic, and Lane Following Controller algorithm models. This
example focuses only on the Simulation 3D Scenario subsystem. An Intelligent Target Vehicles
subsystem block is added to the Simulation 3D Scenario subsystem in order to configure the
behavior of target vehicles in the scenario. The Lane Marker Detector, Vehicle Detector, Forward
Vehicle Sensor Fusion, Lane Following Decision Logic, Lane Following Controller, Vehicle Dynamics,
and Metrics Assessment subsystems steer the ego vehicle in response to the behavior of the target
vehicles configured by the Simulation 3D Scenario subsystem.

Open the Simulation 3D Scenario subsystem and highlight the Intelligent Target Vehicles
subsystem.

open_system("HighwayLaneFollowingWithIntelligentVehiclesTestBench/Simulation 3D Scenario")
hilite_system("HighwayLaneFollowingWithIntelligentVehiclesTestBench/Simulation 3D Scenario/Intelligent Target Vehicles")

 Highway Lane Following with Intelligent Vehicles

8-1105

8 Featured Examples

8-1106

The Simulation 3D Scenario subsystem configures the road network, models the target vehicles,
sets vehicle positions, and synthesizes sensors. The subsystem is initialized by using the
helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup script. This script defines
the driving scenario for testing the highway lane following. This setup script defines the road network
and sets the behavior for each target vehicle in the scenario.

• The Scenario Reader block reads the roads and actors (ego and target vehicles) from a scenario
file specified using the helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup
script. The block outputs the poses of target vehicles and the lane boundaries with respect to the
coordinate system of the ego vehicle.

• The Intelligent Target Vehicles is a function-call subsystem block that models the behavior of
the actors in the driving scenario. The initial values for this subsystem block parameters are set by
the helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup script. The Cuboid
To 3D Simulation and the Simulation 3D Vehicle with Ground Following blocks set the actor poses
for the 3D simulation environment.

• The Simulation 3D Scene Configuration block implements a 3D simulation environment by using
the road network and the actor positions.

This setup script also configures the controller design parameters, vehicle model parameters, and the
Simulink® bus signals required for the
HighwayLaneFollowingWithIntelligentVehiclesTestBench model. This script assigns an
array of structures, targetVehicles, to the base workspace that contains the behavior type for
each target vehicle.

Vehicle Behaviors

This example enables you to use four modes of vehicle behaviors for configuring the target vehicles
using the targetVehicles structure.

• Default: In this mode, the target vehicles in the scenario follow predefined trajectories. The
target vehicles are non-adaptive and are not configured for intelligent behavior.

• VelocityKeeping: In this mode, the target vehicles are configured to travel in a lane at a
constant set velocity. Each target vehicle maintains the set velocity regardless of the presence of a
lead vehicle in its current lane and does not check for collision.

• LaneFollowing: In this mode, the target vehicles are configured to travel in a lane by adapting
their velocities in response to a lead vehicle. If a target vehicle encounters a lead vehicle in its
current lane, the model performs collision checking and adjusts the velocity of the target vehicle.
Collision checking ensures that the target vehicle maintains a safe distance from the lead vehicle.

• LaneChange: In this mode, the target vehicles are configured to travel in a lane at a particular
velocity and follow the lead vehicle. If the target vehicle gets too close to the lead vehicle, then it
performs a lane change. Before changing the lane, the model checks for potential forward and
side collisions and adapts the velocity of the target vehicle to maintain a safe distance from other
vehicles in the scenario.

Model Intelligent Target Vehicles

The Intelligent Target Vehicles subsystem dynamically updates the vehicle poses for all the target
vehicles based on their predefined vehicle behavior. As mentioned already, the
helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup script defines the scenario
and the behavior for each target vehicle in the scenario. The setup script stores the vehicle behavior
and other attributes as an array of structures, targetVehicles, to the base workspace. The
structure stores these attributes:

 Highway Lane Following with Intelligent Vehicles

8-1107

• ActorID
• Position
• Velocity
• Roll
• Pitch
• Yaw
• AngularVelocity
• InitialLaneID
• BehaviorType

The Intelligent Target Vehicles subsystem uses a mask to load the configuration in
targetVehicles from the base workspace. You can set the values of these attributes to modify the
position, orientation, velocities, and behavior of target vehicles. Open the Intelligent Target
Vehicles subsystem.

open_system("HighwayLaneFollowingWithIntelligentVehiclesTestBench/Simulation 3D Scenario/Intelligent Target Vehicles")

The Vehicle To World block converts the predefined actor (ego and target vehicle) poses and
trajectories from ego-vehicle coordinates to world coordinates. The Target Vehicle Behavior
subsystem block computes the next state of the target vehicles by using predefined target vehicles
poses, ego-vehicle pose, and current state of target vehicles. The subsystem outputs the target
vehicles poses in world coordinates for navigating the vehicles in the 3D simulation environment.

Open the Target Vehicle Behavior subsystem.

open_system("HighwayLaneFollowingWithIntelligentVehiclesTestBench/Simulation 3D Scenario/Intelligent Target Vehicles/Target Vehicle Behavior",'tab')

8 Featured Examples

8-1108

The Target Vehicle Behavior subsystem enables you to switch between the default and other
vehicle behaviors. If the behavior type for a target vehicle is set to Default, the subsystem
configures the target vehicles to follow predefined trajectories. Otherwise, the position of the vehicle
is dynamically computed and updated using the Intelligent Vehicle subsystem block. The
Intelligent Vehicle subsystem block configures the VelocityKeeping, LaneFollowing, and
LaneChange behaviors for the target vehicles.

Open Intelligent Vehicle subsystem.

open_system("HighwayLaneFollowingWithIntelligentVehiclesTestBench/Simulation 3D Scenario/Intelligent Target Vehicles/Target Vehicle Behavior/Intelligent Vehicle")

 Highway Lane Following with Intelligent Vehicles

8-1109

The Intelligent Vehicle subsystem computes the pose of a target vehicle by using information about
the neighboring vehicles and the vehicle behavior. The subsystem is similar to the Lane Change
Planner component of the “Highway Lane Change” on page 8-867 example. The Intelligent Vehicle
subsystem has these blocks:

• The Environment Updater block computes the lead and rear vehicle information, current lane
number, and existence of adjacent lanes (NoLeftLane, NoRightLane) with respect to the current
state of the target vehicle. This block is configured by the System object™
HelperEnvironmentUpdater.

• The Velocity Keeping Sampler block defines terminal states required for the VelocityKeeping
behavior. This block reads the set velocity from the mask parameter
norm(TargetVehicle.Velocity).

• The Lane Following Sampler block defines terminal states required for the LaneFollowing
behavior. This block reads the set velocity from the mask parameter
norm(TargetVehicle.Velocity).

• The Lane Change Sampler block defines terminal states required for the LaneChange behavior.
This block also defines deviation offset from the reference path to keep the vehicle in a specific
lane after a lane change. This block reads TargetVehicle.Velocity, laneInfo, and
TargetVehicle.InitialLaneID from the base workspace by using mask parameters.

The table shows the configuration of terminal states and parameters for different vehicle behaviors:

8 Featured Examples

8-1110

• The Check Collision block checks for collision with any other vehicle in the scenario. The
simulation stops if collision is detected.

• The Pulse Generator block defines the replan period for the Motion Planner subsystem. The
default value is set to 1 second. Replanning can be triggered every pulse period, or if any of the
samplers has a state update, or by the Motion Planner subsystem.

• The MotionPlanner subsystem generates trajectory for a target vehicle by using the terminal
states defined by the vehicle behavior. It uses trajectoryOptimalFrenet (Navigation Toolbox)
from Navigation Toolbox™ to generate a trajectory. The subsystem estimates the position of the
vehicle along its trajectory at every simulation step. This subsystem internally uses the
HelperTrajectoryPlanner System object™ to implement a fallback mechanism for different
vehicle behaviors when the trajectoryOptimalFrenet function is unable to generate a feasible
trajectory.

• If the vehicle behavior is set to LaneChange, the trajectory planner attempts to generate a
trajectory with LaneFollowing behavior. If it is unable to generate a trajectory, then it stops the
vehicle using its stop behavior.

• If the vehicle behavior is set to LaneFollowing or VelocityKeeping, the trajectory planner
stops the vehicle using stop behavior.

The system implements the stop behavior by constructing a trajectory with the previous state of the
vehicle, which results in an immediate stop of the target vehicle.

Simulate Intelligent Target Vehicle Behavior on Straight Road

This example uses a test scenario that has three target vehicles (red sedan, black muscle car, and
orange hatchback) and one ego vehicle (blue sedan) traveling on a straight road with two lanes.

• The red sedan is the first target vehicle and travels in the lane adjacent to the ego lane.
• The orange hatchback is a lead vehicle for the ego vehicle in the ego lane.
• The black muscle car is slow moving and a lead vehicle for the red sedan in the adjacent lane of

the ego vehicle. The figure shows the initial positions of these vehicles.

 Highway Lane Following with Intelligent Vehicles

8-1111

You can run the simulation any number of times by changing the behavior type for each vehicle
during each run. This example runs the simulation three times and at each run the behavior type for
the first target vehicle is modified.

Configure All Target Vehicles Behavior to Velocity Keeping and Run Simulation

Run the setup script to configure VelocityKeeping behavior for all target vehicles.

helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup(...
 "scenarioFcnName",...
 "scenario_LFACC_01_Straight_IntelligentVelocityKeeping");

Display the BehaviorType of all the target vehicles.

disp([targetVehicles(:).BehaviorType]');

 VelocityKeeping
 VelocityKeeping
 VelocityKeeping
 Default
 Default

Run the simulation and visualize the results. The target vehicles in the scenario travel in their
respective lanes at a constant velocity. The red sedan and the black muscle car maintain their velocity
and do not check for collisions.

To reduce command-window output, turn off the model predictive control (MPC) update messages.

8 Featured Examples

8-1112

mpcverbosity('off');
% Run the model
simout = sim("HighwayLaneFollowingWithIntelligentVehiclesTestBench","StopTime","9");

Plot the velocity profiles of ego and first target vehicle (red sedan) to analyze the results.

hFigVK = helperPlotEgoAndTargetVehicleProfiles(simout.logsout);

Close figure

close(hFigVK);

• The Yaw Angle of Target Vehicle (Red sedan) plot shows the yaw angle of the red sedan. There
is no variation in the yaw angle as the vehicle travels on a straight lane road.

 Highway Lane Following with Intelligent Vehicles

8-1113

• The Absolute Velocity of Target Vehicle (Red sedan) plot shows the absolute velocity of the
red sedan. The velocity profile of the vehicle is constant as the vehicle is configured to
VelocityKeeping behavior.

• The Absolute Velocity of Ego Vehicle (Blue sedan) plot shows that there is no effect of the red
sedan on the ego vehicle as both vehicles travel in adjacent lanes.

Configure First Target Vehicle Behavior to Lane Following and Run Simulation

Configure the behavior type for the first target vehicle (red sedan) to perform lane following. Display
the updated values for the BehaviorType of target vehicles.

targetVehicles(1).BehaviorType = VehicleBehavior.LaneFollowing;
disp([targetVehicles(:).BehaviorType]');

 LaneFollowing
 VelocityKeeping
 VelocityKeeping
 Default
 Default

Run the simulation and visualize the results. The target vehicles in the scenario are traveling in their
respective lanes. The first target vehicle (red sedan) slows down to avoid colliding with the slow-
moving black muscle car in its lane.

sim("HighwayLaneFollowingWithIntelligentVehiclesTestBench");

Plot the velocity profiles of the ego and first target vehicle (red sedan) to analyze the results.

hFigLF = helperPlotEgoAndTargetVehicleProfiles(logsout);

8 Featured Examples

8-1114

Close figure

close(hFigLF);

• The Yaw Angle of Target Vehicle (Red sedan) plot is the same as the one obtained in the
previous simulation. There is no variation in the yaw angle as the vehicle travels on a straight lane
road.

• The Absolute Velocity of Target Vehicle (Red sedan) plot diverges from the previous
simulation. The velocity of the red sedan gradually decreases from 13 m/s to 5 m/s to avoid
colliding with the black muscle car and maintains a safety gap.

• The Absolute Velocity of Ego Vehicle (Blue sedan) plot is same as the one in the previous
simulation. The ego vehicle is not affected by the change in the behavior of the red sedan.

Configure First Target Vehicle Behavior to Lane Changing and Run Simulation

 Highway Lane Following with Intelligent Vehicles

8-1115

targetVehicles(1).BehaviorType = VehicleBehavior.LaneChange;

Display the BehaviorType of all the target vehicles.

disp([targetVehicles(:).BehaviorType]');

 LaneChange
 VelocityKeeping
 VelocityKeeping
 Default
 Default

Run the simulation and visualize the results. The orange hatchback and black muscle car are
traveling at constant velocity in their respective lanes. The first target vehicle (red sedan) performs a
lane change as it gets close to the black muscle car. It also does another lane change when it gets
close to the orange hatchback.

sim("HighwayLaneFollowingWithIntelligentVehiclesTestBench");

Plot the velocity profiles of the ego and the first target vehicle (red sedan) to analyze the results.

hFigLC = helperPlotEgoAndTargetVehicleProfiles(logsout);

8 Featured Examples

8-1116

Close figure

close(hFigLC);

• The Yaw Angle of Target Vehicle (Red sedan) plot diverges from the previous simulation
results. The yaw angle profile of the first target vehicle shows deviations as the vehicle performs a
lane change.

• The Absolute Velocity of Target Vehicle (Red sedan) plot is similar to the VelocityKeeping
behavior. The red sedan maintains a constant velocity even during the lane change.

• The Absolute Velocity of Ego Vehicle (Blue sedan) plot shows the ego vehicle response to the
lane change maneuver by the first target vehicle (red sedan). The velocity of the ego vehicle
decreases as the red sedan changes lanes. The red sedan moves to the ego lane and travels in
front of the ego vehicle. The ego vehicle reacts by decreasing its velocity in order to travel in the
same lane. Close all the figures.

 Highway Lane Following with Intelligent Vehicles

8-1117

Simulate Intelligent Target Vehicle Behavior on Curved Road

Test the model on a scenario with curved roads. The vehicle configuration and position of vehicles are
similar to the previous simulation. The test scenario contains a curved road and the first target
vehicle (Red sedan) is configured to LaneChange behavior. The other two target vehicles are
configured to VelocityKeeping behavior. The figure below shows the initial positions of the
vehicles in the curved road scene.

Run the setup script to configure the model parameters.

helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup(...
 "scenarioFcnName",...
 "scenario_LFACC_04_Curved_IntelligentLaneChange");

Run simulation and visualize the results. Plot the yaw angle and velocity profiles of ego and target
vehicles.

sim("HighwayLaneFollowingWithIntelligentVehiclesTestBench");
hFigCurvedLC = helperPlotEgoAndTargetVehicleProfiles(logsout);

8 Featured Examples

8-1118

• The Yaw Angle of Target Vehicle (Red sedan) plot shows variation in the profile as the red
sedan performs lane change on a curved road. The curvature of the road also impacts the yaw
angle of the target vehicle.

• The Absolute Velocity of Target Vehicle (Red sedan) plot is similar to the VelocityKeeping
behavior, as the red sedan maintains a constant velocity during lane change on a curved road.

• The Absolute Velocity of Ego Vehicle (Blue sedan) plot shows the response of the ego vehicle
to the lane change maneuver by the red sedan. The ego vehicle reacts by decreasing its velocity in
order to travel in the same lane.

Close the figure.

close(hFigCurvedLC);

 Highway Lane Following with Intelligent Vehicles

8-1119

Explore Other Scenarios

This example provides additional scenarios that are compatible with the
HighwayLaneFollowingWithIntelligentVehiclesTestBench model. Below is a list of
compatible scenarios that are provided with this example.

• scenario_LFACC_01_Straight_IntelligentVelocityKeeping function configures the test
scenario such that all the target vehicles are configured to perform VelocityKeeping behavior
on a straight road.

• scenario_LFACC_02_Straight_IntelligentLaneFollowing function configures the test
scenario such that the red sedan performs LaneFollowing behavior while all other target
vehicles perform VelocityKeeping behavior on a straight road.

• scenario_LFACC_03_Straight_IntelligentLaneChange function configures the test
scenario such that the red sedan performs LaneChange behavior while all other target vehicles
perform VelocityKeeping behavior on a straight road.

• scenario_LFACC_04_Curved_IntelligentLaneChange function configures the test scenario
such that the red sedan performs LaneChange behavior while all other target vehicles perform
VelocityKeeping behavior on a curved road. This is configured as the default scenario.

• scenario_LFACC_05_Curved_IntelligentDoubleLaneChange function configures the test
scenario such that the red sedan performs LaneChange behavior while all other target vehicles
perform VelocityKeeping behavior on a curved road. The placement of other vehicles in this
scenario is such that the red sedan performs a double lane change during the simulation.

For more details on the road and target vehicle configurations in each scenario, view the comments in
each file. You can configure the Simulink model and workspace to simulate these scenarios using the
helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup function.

helperSLHighwayLaneFollowingWithIntelligentVehiclesSetup("scenarioFcnName","scenario_LFACC_05_Curved_IntelligentDoubleLaneChange");

Conclusion

This example demonstrates how to test the functionality of a lane following application in a scenario
with an ego vehicle and multiple intelligent target vehicles.

Enable the MPC update messages again.

mpcverbosity('on');

See Also
Scenario Reader | Cuboid To 3D Simulation | Simulation 3D Vehicle with Ground Following |
Simulation 3D Scene Configuration | Vehicle To World | trajectoryOptimalFrenet

More About
• “Highway Lane Following with RoadRunner Scene” on page 8-1049
• “Highway Lane Following” on page 8-922
• “Highway Lane Change” on page 8-867

8 Featured Examples

8-1120

Forward Vehicle Sensor Fusion
This example shows how to simulate sensor fusion and tracking in a 3D simulation environment for
automated driving applications. The example also shows how to use performance metrics to evaluate
the performance of a tracker in an open-loop environment.

Introduction

Autonomous vehicle uses multiple sensors, including cameras and radar, to perceive the surrounding
environment. However, each sensor has its own limitations. Fusing information from various sensors
can make vehicle perception more robust. Sensor fusion and tracking is central to the decision-
making process in various systems, including highway lane following and forward collision warning.
By using the sensor fusion and tracking model in this example, you can run tests on critical scenarios
that are in reality difficult to implement. In this example, you perform the following steps.

1 Explore the test bench model — The model contains sensors, sensor fusion and tracking
algorithm, and metrics to assess functionality. An equivalent Unreal Engine® scene is used to
model detections from a radar sensor and a vision sensor.

2 Configure sensors and the environment — Set up a driving scenario that includes an ego
vehicle with camera and radar sensor. Plot the coverage area of each sensor using bird's-eye
scope.

3 Perform sensor fusion and tracking — Combine information from the two sensors using a
joint probabilistic data association (JPDA) multi-object tracker to track the objects around the ego
vehicle.

4 Evaluate the tracker performance — Use the generalized optimal subpattern assignment
(GOSPA) metric to evaluate the performance of the tracker.

5 Simulate the test bench model and analyze the results — You can configure the test bench
model for different scenarios. By default, the model configures a scenario where target vehicles
come close to each other in front of the ego vehicle in three adjacent lanes and pose a challenge
for the tracking system. Simulate the model and analyze the components of the GOSPA metric to
understand the tracker performance.

This example tests the sensor fusion and tracking algorithm in a 3D simulation environment that uses
the Unreal Engine® from Epic Games®. The Unreal Engine driving simulation environment requires
a Windows® 64-bit platform.

if ~ispc
 error(['3D simulation is only supported on Microsoft', char(174), ' Windows', char(174), '.']);
end

Explore Test Bench Model

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('FVSensorFusion.zip', 'workDir', pwd);

Open the test bench model.

open_system('ForwardVehicleSensorFusionTestBench');

 Forward Vehicle Sensor Fusion

8-1121

Opening this model runs the helperSLForwardVehicleSensorFusionSetup script, which
initializes the scenario using the drivingScenario object in the base workspace. It also configures
the sensor fusion and tracking parameters, vehicle parameters, and the Simulink® bus signals
required for defining the inputs and outputs for the ForwardVehicleSensorFusionTestBench
model. The test bench model contains these subsystems:

• Sensors and Environment — This subsystem specifies the scene, vehicles, and sensors used for
simulation.

• Forward Vehicle Sensor Fusion — This subsystem implements the radar clustering, detection
concatenation, fusion, and tracking algorithms.

• Evaluate Tracker Metrics — This subsystem assesses the tracker performance using GOSPA
metric between a set of tracks and their ground truths.

Configure Sensors and Environment

The Sensors and Environment subsystem configures the road network, places vehicles, and
synthesizes sensors. For an example that uses a similar subsystem, see “Highway Lane Following” on
page 8-922. Open the Sensors and Environment subsystem.

open_system('ForwardVehicleSensorFusionTestBench/Sensors and Environment');

8 Featured Examples

8-1122

The subsystem includes two sensor blocks: Simulation 3D Probabilistic Radar and Simulation 3D
Vision Detection Generator. The parameters of these models are set by the
helperSLForwardVehicleSensorFusionSetup script when you open the test bench model. These
blocks generate detections from the 3D simulation environment.

• The Simulation 3D Probabilistic Radar block generates object detections based on a statistical
model. This sensor is mounted on the ego vehicle at an offset specified by the Position and
Rotation parameters of the radar structure.

disp(radar');

 FieldOfView: [40 5]
 DetectionRanges: [1 100]
 Position: [3.7290 0 0.8000]
 PositionSim3d: [2.4240 0 0.8000]
 Rotation: [0 0 0]

• The Simulation 3D Vision Detection Generator block generates detections from camera
measurements taken by a vision sensor mounted on the ego vehicle at an offset specified by the
Position and Rotation parameters of the camera structure.

disp(camera');

 NumColumns: 1024
 NumRows: 768
 FieldOfView: [45 45]
 ImageSize: [768 1024]

 Forward Vehicle Sensor Fusion

8-1123

 PrincipalPoint: [512 384]
 FocalLength: [512 512]
 Position: [1.8750 0 1.2000]
 PositionSim3d: [0.5700 0 1.2000]
 Rotation: [0 0 0]
 DetectionRanges: [6 50]
 LaneDetectionRanges: [6 30]
 MeasurementNoise: [3×3 double]
 MinObjectImageSize: [10 10]

The bird's-eye scope displays sensor coverages by using a cuboid representation. The radar coverage
area and detections are in red. The vision coverage area and detections are in blue.

Perform Sensor Fusion and Tracking

The Forward Vehicle Sensor Fusion model is the reference model that processes vision and radar
detections and generates the position and velocity of the tracks relative to the ego vehicle. Open the
Forward Vehicle Sensor Fusion reference model.

open_system('ForwardVehicleSensorFusion');

The Forward Vehicle Sensor Fusion reference model contains these blocks:

• Detection Clustering — Cluster multiple radar detections, since the tracker expects at most one
detection per object per sensor.

• Detection Concatenation — Combine the vision and radar detections onto a single output bus.
• JPDA Tracker — Perform fusion and manage the tracks of stationary and moving objects.

The JPDA Tracker block is a key block of the Forward Vehicle Sensor Fusion reference model. The
tracker fuses the information contained in concatenated detections and tracks the objects around the
ego vehicle. The tracker outputs a list of confirmed tracks. These tracks are updated at prediction
time, driven by a digital clock in the Sensors and Environment subsystem.

Evaluate Performance of Tracker

The Evaluate Tracker Metrics subsystem computes various metrics to assess the performance of a
tracker. Open the Evaluate Tracker Metrics subsystem.

open_system('ForwardVehicleSensorFusionTestBench/Evaluate Tracker Metrics');

8 Featured Examples

8-1124

To evaluate tracker performance, you must to remove the actors that are outside the coverage area of
the sensors from the ground truth information. For this purpose, the subsystem uses the Filter Within
Coverage block to filter only those actors that are within the coverage area of the sensors.

The subsystem contains GOSPA metric block, which computes these metrics:

• GOSPA metric — This metric measures the distance between a set of tracks and their ground
truths, and combines both assignment and state-estimation accuracy into a single cost value.

• Localization error — This error indicates the state-estimation accuracy. A higher value indicates
that the assigned tracks do not estimate the state of the truths correctly.

• Missed target error — This error indicates the presence of missed targets. A higher value
indicates that targets are not being tracked.

• False track error — This error indicates the presence of false tracks.

Simulate Test Bench Model and Analyze Results

During simulation, you can visualize the scenario in both the 3D simulation window and using bird's-
eye scope.

To open the scope, click Bird's-Eye Scope in the Review Results section of the Simulink toolstrip.
Next, click Update Signals to find and update signals that the scope can display.

Configure the ForwardVehicleSensorFusionTestBench model to simulate the
scenario_LFACC_03_Curve_StopnGo scenario. This scenario contains six vehicles, including the
ego vehicle. The scenario function also defines their trajectories. In this scenario, the ego vehicle has
a lead vehicle in its lane. In the lane to the right of the ego vehicle, target vehicles indicated in green
and blue are traveling in the same direction. In the lane to the left of the ego vehicle, target vehicles
indicated in yellow and purple are traveling in the opposite direction.

helperSLForwardVehicleSensorFusionSetup("scenarioFcnName","scenario_LFACC_03_Curve_StopnGo");

Simulate the test bench model.

sim('ForwardVehicleSensorFusionTestBench');

 Forward Vehicle Sensor Fusion

8-1125

Simulation opens the 3D Simulation window, which displays the scenario but does not display
detections or sensor coverage. Use the Bird's-Eye Scope window to visualize the ego actor, target
actors, sensor coverage and detections, and confirmed tracks. To visualize only the sensor data, turn
off the 3D Simulation window during simulation by clearing the Display 3D simulation window
parameter in the Simulation 3D Scene Configuration block.

During the simulation, the model outputs the GOSPA metric and its components. The model logs the
metrics, with the confirmed tracks and ground truth information, to the base workspace variable
logsout. You can plot the values in logsout by using the
helperPlotForwardVehicleSensorFusionResults function.

helperPlotForwardVehicleSensorFusionResults(logsout);

8 Featured Examples

8-1126

The plots show that the localization error mainly accounts for the GOSPA metric. Notice that the
missed target component initially starts from a higher value due to establishment delay of the tracker
and goes down to zero after some time. The other peaks in the missed target curve occur because of
the same delay, when the yellow and purple target vehicles enter within the coverage area of the
sensors.

Explore Other Scenarios

You can use the procedure in this example to explore these other scenarios, which are compatible
with ForwardVehicleSensorFusionTestBench :

• scenario_LFACC_01_Curve_DecelTarget
• scenario_LFACC_02_Curve_AutoRetarget
• scenario_LFACC_03_Curve_StopnGo [Default]

 Forward Vehicle Sensor Fusion

8-1127

• scenario_LFACC_04_Curve_CutInOut
• scenario_LFACC_05_Curve_CutInOut_TooClose
• scenario_LFACC_06_Straight_StopandGoLeadCar
• scenario_FVSF_01_Curve_FourVehicles
• scenario_FVSF_02_Straight_FourVehicles
• scenario_FVSF_03_Curve_SixVehicles

Use these additional scenarios to analyze ForwardVehicleSensorFusionTestBench under
different conditions.

Conclusion

This example showed how to simulate and evaluate the performance of the sensor fusion and tracking
component for automated driving application. This component-level model lets you stress test your
design in open-loop virtual environment and helps in tuning the tracker parameters by evaluating
GOSPA metrics. The next logical step is to integrate this component-level model in closed-loop system
like highway lane following.

See Also
Scenario Reader | Vehicle To World | Simulation 3D Scene Configuration | Cuboid To 3D Simulation |
Multi-Object Tracker

More About
• “Surround Vehicle Sensor Fusion” on page 8-1202
• “Highway Lane Following” on page 8-922
• “Highway Lane Change” on page 8-867

8 Featured Examples

8-1128

Generate Code for Vision Vehicle Detector
This example shows how to test a monocular-camera-based vehicle detector and generate deployable
code for real-time applications on a prebuilt 3D scene from the Unreal Engine® driving simulation
environment.

In this example, you:

• Design the test bench model to verify the functionality of a monocular-camera-based vehicle
detector using ground truth information.

• Simulate the test bench model with ACF and YOLOv2 based vehicle detectors and compare
performance.

• Generate C++ code for the ACF based detector and CUDA code for the YOLOv2 based detector,
and validate the functional equivalence with simulation.

Introduction

A vehicle detector is a fundamental perception component of an automated driving application. The
detector analyzes images of roads captured using a monocular camera sensor and returns
information about the positions of different vehicles that are in the visible range of the camera. You
can design and simulate a vehicle detector algorithm using MATLAB® or Simulink® and assess its
accuracy using known ground truth. You can use different detectors to detect vehicles, including
vehicleDetectorACF and vehicleDetectorYOLOv2. Based on the chosen detector and the target
platform, you can do C++ or CUDA code generation and integrate the detector into an external
software environment, and deploy it to a vehicle. Performing code generation and verification of the
Simulink model ensures functional equivalence between simulation and real-time implementation.

This example shows how to test the vehicle detector in an Unreal Engine driving simulation
environment and generate deployable code for real-time implementation. In this example, you:

1 Explore the test bench model — The test bench model contains the scenario and environment,
vision vehicle detector, and metrics to assess the functionality.

2 Simulate with ACF and YOLOv2 vehicle detectors — Configure the ACF and YOLOv2 variants
of the vehicle detector and assess performance using metrics.

3 Generate C++ code for ACF vehicle detector — Configure the ACF vehicle detector to
generate C++ code for CPU targets.

4 Assess the functionality of generated code using software-in-the-loop — Verify
implementation with software-in-the-loop (SIL) simulation.

5 Generate CUDA code for YOLOv2 vehicle detector — Configure the YOLOv2 vehicle detector
to generate CUDA code for GPU targets.

You can apply the modeling patterns used in this example to test your own vehicle detector
component.

This example tests the vehicle detector algorithm in a 3D simulation environment that uses the
Unreal Engine from Epic Games®. The Unreal Engine driving simulation environment requires a
Windows® 64-bit platform.

if ~ispc
 error(['3D simulation is supported only on Microsoft', char(174), ' Windows', char(174), '.'])
end

 Generate Code for Vision Vehicle Detector

8-1129

Set up the example files and open the project.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup("VisionVehicleDetector.zip", "workDir",pwd);

Explore Test Bench Model

The vision vehicle detector system in this example comprises a test bench and a reference model that
implements the vehicle detection algorithm.

• Test bench model — The test bench model simulates and tests the behavior of the vision vehicle
detector algorithm in an open-loop.

• Reference model — The Vision Vehicle Detector block in the test bench model invokes the
VisionVehicleDetector reference model. The reference model implements the vehicle
detection algorithm and generates C++ code for the ACF vehicle detector and CUDA code for the
YOLOv2 vehicle detector. This reference model can be integrated with closed-loop systems such as
Highway Lane Following system.

Open the test bench model.

open_system('VisionVehicleDetectorTestBench');

Opening this model runs the helperSLVisionVehicleDetectorSetup script, which initializes the
road scenario using the drivingScenario object in the base workspace. It also configures the
vehicle detector parameters, vehicle model parameters, and Simulink bus signals required for
defining the inputs and outputs for the VisionVehicleDetectorTestBench model. The test bench
model contains these subsystems:

• Sensors and Environment — Subsystem that specifies the scene, vehicles, and camera sensor used
for simulation and computes the ground truth vehicle bounding boxes.

• Vision Vehicle Detector — Subsystem that implements the vehicle detection algorithm.
• Metrics Assessment — Subsystem that assesses the vehicle detection algorithm using metrics that

include true positives, false positives, and false negatives.

8 Featured Examples

8-1130

The Sensors and Environment subsystem configures the road network, sets vehicle positions, and
synthesizes the camera sensor.

This subsystem is similar to the Simulation 3D Scenario subsystem in the “Highway Lane Following”
on page 8-922 example. Additionally, it also computes the ground truth vehicle bounding boxes using
the actual actor positions from the Scenario Reader and the labeled image from the Simulation 3D
Camera Forward Facing block. Open the Sensors and Environment subsystem.

open_system('VisionVehicleDetectorTestBench/Sensors and Environment');

Vision Vehicle Detector is the reference model that detects the vehicles in the camera frames. Open
the Vision Vehicle Detector reference model.

open_system('VisionVehicleDetector');

 Generate Code for Vision Vehicle Detector

8-1131

The Vision Vehicle Detector reference model contains a variant subsystem. It contains three vehicle
detector variants.

• ACF
• YOLOv2 Simulation
• YOLOv2 Code Generation

You can configure the desired variant using the helperSLVisionVehicleDetectorSetup script.
The default variant is ACF and can be configured for both interpreted execution and code generation.

Each of these variants takes the frames captured by a camera sensor as input and outputs the
detected vehicles by using the BusVision Simulink bus.

The Metrics Assessment subsystem evaluates the accuracy of detection results using the ground truth
information. Open the Metrics Assessment subsystem.

open_system('VisionVehicleDetectorTestBench/Metrics Assessment');

The Metrics Assessment subsystem computes the true positives, false negatives, and false positives
for the detections.

8 Featured Examples

8-1132

Simulate with ACF and YOLOv2 Vehicle Detectors

In this section, you assess and compare the simulation results of the ACF and YOLOv2 vehicle
detectors using a test scenario. This scenario contains five vehicles, including the ego vehicle. In this
test scenario, a lead vehicle travels in the ego lane with a constant velocity of 14 m/s, and a headway
distance of 20 meters. Another target vehicle travels in the adjacent right lane with a constant
velocity of 14 m/s. The other two vehicles travel in the opposite direction in the left lane adjacent to
the ego lane.

Simulate with ACF

Configure the Vision Vehicle Detector Test Bench model to use the
scenario_VVD_01_Curve_FiveVehicles scenario and ACF vehicle detector variant.

helperSLVisionVehicleDetectorSetup(...
 "scenarioFcnName", "scenario_VVD_01_Curve_FiveVehicles", ...
 "detectorVariantName", "ACF");

Simulate the test bench model. Use the visualization window to view the detection results while the
simulation is running.

simoutACF = sim('VisionVehicleDetectorTestBench');

You can also visualize the ground truth vehicle bounding boxes by enabling the
EnableTruthDisplay mask parameter in the Visualization block.

You can analyze the detection results and validate the overall performance of the algorithm by
comparing the values of true positives, false positives, and false negatives with the number of
vehicles in the ground truth.

• The number of vehicles (ground truth) is the number of available vehicles in the range of the
camera sensor at any given instant of time.

 Generate Code for Vision Vehicle Detector

8-1133

• The true positives are the vehicles that the algorithm was able to detect correctly.
• The false negatives are the vehicles that the algorithm was unable to detect.
• The false positives are the vehicles that the algorithm detected when no vehicle was present.

During simulation, the model logs these values to the simoutACF.logsout workspace variable. You
can plot the values in simoutACF.logsout by using the helperPlotDetectionMetrics function.

hFigACFResults = helperPlotDetectionMetrics("ACF", simoutACF.logsout);

Note that the sum of true positives and false negatives is always equal to the ground truth number of
vehicles.

Simulate with YOLOv2

If you have a Deep Learning Toolbox™ license, you can run the YOLOv2 vehicle detector variant.

8 Featured Examples

8-1134

isDLTAvailable = license('test', 'Neural_Network_Toolbox');

Configure the Vision Vehicle Detector Test Bench model to use the
scenario_VVD_01_Curve_FiveVehicles scenario and YOLOv2 Simulation vehicle detector
variant and simulate the test bench model. For the purposes of this example, turn off the warnings
related to compute capability of GPU device.

warning('off', 'parallel:gpu:device:DeviceDeprecated');
if(isDLTAvailable)
 helperSLVisionVehicleDetectorSetup(...
 "scenarioFcnName", "scenario_VVD_01_Curve_FiveVehicles", ...
 "detectorVariantName", "YOLOv2 Simulation");
 simoutYOLOv2 = sim('VisionVehicleDetectorTestBench');

 hFigYOLOV2Results = helperPlotDetectionMetrics("YOLOv2", simoutYOLOv2.logsout);
end

 Generate Code for Vision Vehicle Detector

8-1135

The plots indicate that the vehicle detections from the YOLOv2 vehicle detector are more consistent.

Close the figures.

close(hFigACFResults);
close(hFigYOLOV2Results);

You can also compare the overall performance of the ACF and YOLOv2 vehicle detectors by plotting
the recall against the precision, and the false positives per image against the miss rate. You can plot
these curves using the helperPlotPrecisionAndMissrate function.

if(isDLTAvailable)
 detectionMetricsACF = helperComputePrecisionAndMissrate(simoutACF.logsout);
 detectionMetricsYOLOv2 = helperComputePrecisionAndMissrate(simoutYOLOv2.logsout);
 helperPlotPrecisionAndMissrate(detectionMetricsACF, "ACF", detectionMetricsYOLOv2, "YOLOv2");
end

8 Featured Examples

8-1136

The plot indicates that YOLOv2 performs slightly better than ACF for this test scenario.

You can also use this test bench to generate code for the ACF and YOLOv2 vehicle detectors.

Generate C++ Code for ACF Vehicle Detector

You can generate C++ code for the ACF algorithm, apply common optimizations, and generate a
report to facilitate exploring the generated code. Configure the test bench model to use the ACF
variant.

helperSLVisionVehicleDetectorSetup("detectorVariantName","ACF");

Configure the VisionVehicleDetector model to generate C++ code for real-time implementation
of the algorithm. Set the model parameters to enable code generation and display the configuration
values.

Set and view model parameters to enable C++ code generation.

 Generate Code for Vision Vehicle Detector

8-1137

helperSetModelParametersForCodeGeneration('VisionVehicleDetector');
save_system('VisionVehicleDetector');

 Model configuration parameters:

 Parameter Value Description
 ___________________________________ _______________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'SolverType' } {'Fixed-step' } {'Solver>Type' }
 {'FixedStep' } {'auto' } {'Solver>Fixed-step size (fundamental sample time)' }
 {'EnableMultiTasking' } {'on' } {'Solver>Treat each discrete rate as a separate task' }
 {'ProdLongLongMode' } {'on' } {'Hardware Implementation>Support long long' }
 {'BlockReduction' } {'on' } {'Simulation Target>Block reduction' }
 {'MATLABDynamicMemAlloc' } {'on' } {'Simulation Target>Simulation Target>Dynamic memory allocation in MATLAB functions' }
 {'OptimizeBlockIOStorage' } {'on' } {'Simulation Target>Signal storage reuse' }
 {'InlineInvariantSignals' } {'on' } {'Simulation Target>Inline invariant signals' }
 {'BuildConfiguration' } {'Faster Runs'} {'Code Generation>Build configuration' }
 {'RTWVerbose' } {'off' } {'Code Generation>Verbose build' }
 {'CombineSignalStateStructs' } {'on' } {'Code Generation>Interface>Combine signal/state structures' }
 {'SupportVariableSizeSignals' } {'on' } {'Code Generation>Interface>Support variable-size signals' }
 {'CodeInterfacePackaging' } {'C++ class' } {'Code Generation>Interface>Code interface packaging' }
 {'GenerateExternalIOAccessMethods'} {'Method' } {'Code Generation>Interface>Data Member Visibility>External I/O access' }
 {'EfficientFloat2IntCast' } {'on' } {'Code Generation>Optimization>Remove code from floating-point to integer conversions that wraps out-of-range values'}
 {'ZeroExternalMemoryAtStartup' } {'off' } {'Code Generation>Optimization>Remove root level I/O zero initialization (inverse logic)' }
 {'CustomSymbolStrGlobalVar' } {'NM' } {'Code Generation>Symbols>Global variables' }
 {'CustomSymbolStrType' } {'NM_T' } {'Code Generation>Symbols>Global types' }
 {'CustomSymbolStrField' } {'NM' } {'Code Generation>Symbols>Field name of global types' }
 {'CustomSymbolStrFcn' } {'APV_NM$F' } {'Code Generation>Symbols>Subsystem methods' }
 {'CustomSymbolStrTmpVar' } {'NM' } {'Code Generation>Symbols>Local temporary variables' }
 {'CustomSymbolStrMacro' } {'NM' } {'Code Generation>Symbols>Constant macros' }

Generate code and review the code generation report from the reference model.

rtwbuild('VisionVehicleDetector');

Starting build procedure for: VisionVehicleDetector
Successful completion of build procedure for: VisionVehicleDetector

Build Summary

Top model targets built:

Model Action Rebuild Reason
==
VisionVehicleDetector Code generated and compiled Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 1m 14.916s

Use the code generation report to explore the generated code. For more information about the code
generation report, see “Reports for Code Generation” (Embedded Coder). Use the code interface
report link in the code generation report to explore these generated methods:

• initialize — Call once on initialization.

8 Featured Examples

8-1138

• step — Call periodically every step to execute the vehicle detection algorithm.
• terminate — Call once on termination.

Additional get and set methods for signal interface are declared in VisionVehicleDetector.h and
defined in VisionVehicleDetector.cpp.

Assess Functionality Using SIL

After generating C++ code for the ACF vision vehicle detector variant, you can now assess the code
functionality using SIL simulation. It provides early insight into the behavior of a deployed
application. For more information about SIL simulation, see “SIL and PIL Simulations” (Embedded
Coder).

SIL simulation enables you to verify whether the compiled generated code on the host is functionally
equivalent to the normal mode.

Configure the algorithm and test bench model parameters to support SIL simulation and log
execution profiling information.

helperSetModelParametersForSIL('VisionVehicleDetector');
helperSetModelParametersForSIL('VisionVehicleDetectorTestBench');

VisionVehicleDetector configuration parameters:

 Parameter Value Description
 ________________________________ ____________________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'CodeExecutionProfiling' } {'on' } {'Code Generation>Verification>Measure task execution time'}
 {'CodeProfilingSaveOptions' } {'AllData' } {'Code Generation>Verification>Save options' }
 {'CodeExecutionProfileVariable'} {'executionProfile'} {'Code Generation>Verification>Workspace variable' }

VisionVehicleDetectorTestBench configuration parameters:

 Parameter Value Description
 ________________________________ ____________________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'CodeExecutionProfiling' } {'on' } {'Code Generation>Verification>Measure task execution time'}
 {'CodeProfilingSaveOptions' } {'AllData' } {'Code Generation>Verification>Save options' }
 {'CodeExecutionProfileVariable'} {'executionProfile'} {'Code Generation>Verification>Workspace variable' }

Configure the test bench model to simulate Vision Vehicle Detector in SIL mode.

set_param('VisionVehicleDetectorTestBench/Vision Vehicle Detector','SimulationMode','Software-in-the-loop (SIL)');
save_system('VisionVehicleDetector');
simoutACFSIL = sim('VisionVehicleDetectorTestBench');

Starting build procedure for: VisionVehicleDetector
Successful completion of build procedure for: VisionVehicleDetector

Build Summary

 Generate Code for Vision Vehicle Detector

8-1139

Top model targets built:

Model Action Rebuild Reason
===
VisionVehicleDetector Code generated and compiled Generated code was out of date.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 47.784s
Preparing to start SIL simulation ...
Building with 'Microsoft Visual C++ 2019 (C)'.
MEX completed successfully.
Starting SIL simulation for component: VisionVehicleDetector
Application stopped
Stopping SIL simulation for component: VisionVehicleDetector

You can compare the outputs from normal simulation mode and SIL simulation mode. You can verify if
the differences between these runs are in the tolerance limits by using the following code. Plot the
differences in value among the true positives, false positives, and false negatives between the normal
simulation mode and SIL simulation mode.

runIDs = Simulink.sdi.getAllRunIDs;
normalSimRunID = runIDs(end - 2);
SilSimRunID = runIDs(end);
diffResult = Simulink.sdi.compareRuns(normalSimRunID, SilSimRunID);

Plot the differences between detection metric values computed from normal mode and SIL mode.

helperPlotDiffSignals(diffResult);

8 Featured Examples

8-1140

The differences between the detection metric values between the normal simulation mode and the
SIL simulation mode are zero.

Assess Execution Time

During the SIL simulation, log the execution time metrics for the generated code on the host
computer to the variable executionProfile in the MATLAB base workspace. These times can be an
early indicator of the performance of the generated code. For accurate execution time measurements,
profile the generated code when it is integrated into the external environment or when you use
processor-in-the-loop (PIL) simulation. To learn more about PIL profiling, refer to “Code Execution
Profiling with SIL and PIL” (Embedded Coder).

Plot how long the VisionVehicleDetector_step function takes to execute using
helperPlotExecutionProfile function.

helperPlotExecutionProfile(simoutACFSIL.executionProfile);

 Generate Code for Vision Vehicle Detector

8-1141

Using the plot, you can deduce the average time that the vision vehicle detector takes to execute
each frame. For more information on generating execution profiles and analyzing them during SIL
simulation, see “Execution Time Profiling for SIL and PIL” (Embedded Coder).

Generate CUDA Code for YOLOv2 Vehicle Detector

If you have a GPU Coder™ license, you can configure the model to generate CUDA code for the
YOLOv2 vehicle detector. Configure the test bench model to use the YOLOv2 Code Generation
variant.

isGPCAvailable = license('test', 'GPU_Coder');

if(isGPCAvailable && isDLTAvailable)
 helperSLVisionVehicleDetectorSetup("detectorVariantName","YOLOv2 Code Generation");
end

Verify GPU Environment

To verify that the compilers and libraries necessary for running this section are set up correctly, use
the coder.checkGpuInstall function. Set DeepLibTarget to either 'cudnn' or 'tensorrt'
based on availability of the relevant libraries on the target.

if(isGPCAvailable && isDLTAvailable)
 % Deep learning code generation for target library cuDNN requires the
 % GPU Coder Interface for Deep Learning Libraries support package.
 info = matlabshared.supportpkg.getInstalled;
 isDLGPUCodegenAvailable = 0;

8 Featured Examples

8-1142

 if(~isempty(info))
 for i = 1:length(info)
 if(strcmp(info(i).Name, 'GPU Coder Interface for Deep Learning Libraries'))
 isDLGPUCodegenAvailable = 1;
 end
 end
 end

 if(isDLGPUCodegenAvailable)
 envCfg = coder.gpuEnvConfig('host');
 envCfg.DeepLibTarget = 'cudnn';
 envCfg.DeepCodegen = 1;
 envCfg.Quiet = 1;
 coder.checkGpuInstall(envCfg);
 end
end

Open the configuration parameters dialog box. In the Code Generation pane, set Language to C++
and enable Generate GPU code.

if(isGPCAvailable && isDLTAvailable && isDLGPUCodegenAvailable)
 set_param('VisionVehicleDetector','TargetLang','C++');
 set_param('VisionVehicleDetector','GenerateGPUCode','CUDA');
 set_param('VisionVehicleDetector','DLTargetLibrary','cuDNN');
 save_system('VisionVehicleDetector');
end

Generate and build the Simulink model on the host GPU by using the rtwbuild command. The code
generator places the files in the build folder, which is a subfolder named
VisionVehicleDetector_ert_rtw under your current working folder.

if(isGPCAvailable && isDLTAvailable && isDLGPUCodegenAvailable)
 rtwbuild('VisionVehicleDetector');
end

Use the code generation report to explore the generated code. For more information about the code
generation report, see “Reports for Code Generation” (Embedded Coder). Use the code interface
report link in the code generation report to explore these generated methods:

• initialize — Call once on initialization.
• step — Call periodically every step to execute the vehicle detection algorithm.
• terminate — Call once on termination.

After generating CUDA code for the vision vehicle detector, you can now assess the code functionality
using SIL simulation similar to the ACF vehicle detector variant.

Turn back on warnings related to compute capability of GPU device.

warning('on', 'parallel:gpu:device:DeviceDeprecated');

 Generate Code for Vision Vehicle Detector

8-1143

In this example, you compared the performance of ACF and YOLOv2 vehicle detection algorithms,
generated C++ code for ACF detector and assessed functionality using SIL simulation, and generated
CUDA code for YOLOv2 detector.

See Also
Scenario Reader | Vehicle To World | Simulation 3D Scene Configuration | Cuboid To 3D Simulation |
Simulation 3D Vehicle with Ground Following

More About
• “Generate Code for Lane Marker Detector” on page 8-1085
• “Automate Testing for Lane Marker Detector” on page 8-1145
• “Highway Lane Following” on page 8-922
• “Automate Testing for Highway Lane Following” on page 8-938

8 Featured Examples

8-1144

Automate Testing for Lane Marker Detector
This example shows how to automate testing of a lane marker detector algorithm and the generated
code by using Simulink Test™. In this example, you will:

• Assess the behavior of a lane marker detector algorithm on different test scenarios with different
test requirements.

• Automate testing of the lane marker detector algorithm and the generated code for the algorithm.

This example uses the lane marker detector model presented in “Design Lane Marker Detector Using
Unreal Engine Simulation Environment” on page 8-885 and “Generate Code for Lane Marker
Detector” on page 8-1085 examples.

Introduction

A lane marker detector is a fundamental perception component of an automated driving application.
The detector analyzes images of roads captured using a monocular camera sensor and returns
information about the curvature and marking type of each lane. You can design and simulate a lane
marker detector using MATLAB® or Simulink® and then, assess its accuracy using a known ground
truth. You can configure the simulations to use test scenarios that are based on system requirements.
You can integrate the detector to an external software environment and deploy to a vehicle through C
++ code generation. Code generation and verification of the Simulink model ensures functional
equivalence between simulation and real-time implementation. Automatically running these
simulations enables regression testing to verify system-level functionality.

For information about how to design a lane marker detector and generate a model for C++ code
generation, see “Design Lane Marker Detector Using Unreal Engine Simulation Environment” on
page 8-885 and “Generate Code for Lane Marker Detector” on page 8-1085, respectively. This
example shows how to automate testing the lane marker detector and the code generation models
against multiple scenarios using Simulink Test™. The scenarios are based on system-level
requirements. The rest of the example explains the steps involved in automated testing of the lane
marker detector model.

1 Review requirements: Explore the test scenarios and review the requirements that describe the
test conditions.

2 Review the test bench model: Review the lane marker detector test bench model that contains
metric assessments. These metric assessments integrate the test bench model with Simulink
Test™ for the automated testing.

3 Disable runtime visualizations: Disable runtime visualizations to reduce execution time for the
automated testing.

4 Automate testing: Configure the test manager to simulate each test scenario, assess success
criteria, and report the results. You can explore the results dynamically using the test manager
and export to a PDF for external reviews.

5 Automate testing with generated code: Configure the lane detection, sensor fusion, decision
logic, and controls components to generate C++ code. Run automated testing on the generated
code and verify behavior.

6 Automate testing in parallel: Reduce overall execution time for the tests by using parallel
computing on a multi-core computer.

In this example, you enable system-level simulation through integration with the Unreal Engine from
Epic Games®. The 3D simulation environment requires a Windows® 64-bit platform.

 Automate Testing for Lane Marker Detector

8-1145

if ~ispc
 error("The 3D simulation environment requires a Windows 64-bit platform");
end

To ensure reproducibility of the simulation results, set the random seed.

rng(0);

Review Requirements

This example contains six test scenarios for evaluating the model. To define the high-level testing
requirements for each scenario, use Requirements Toolbox™.

To explore the test requirements and test bench model, open a working copy of the project example
files. MATLAB copies the files to an example folder so that you can edit them. TestAutomation folder
contains the files that enables the automate testing.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('LaneDetector.zip', 'workDir', pwd);

Open the test requirements file.

open('LaneMarkerDetectorTestRequirements.slreqx')

You can also open the file using the Requirements tab of the Requirements Manager app in
Simulink.

8 Featured Examples

8-1146

The panel displays information about the test scenarios and the test requirements in textual and
graphical format. To test lane detection on scenarios with only ego vehicle, use scenario files with the
prefix scenario_LF_. To test lane detection on scenarios with other vehicles on the road, use scenario
files with the prefix scenario_LD_.

1 scenario_LF_01_Straight_RightLane — Straight road scenario with ego vehicle in right
lane.

2 scenario_LF_02_Straight_LeftLane — Straight road scenario with ego vehicle in left lane.
3 scenario_LF_03_Curve_LeftLane — Curved road scenario with ego vehicle in left lane.
4 scenario_LF_04_Curve_RightLane — Curved road scenario with ego vehicle in right lane.
5 scenario_LD_01_Curve_ThreeVehicles — Curved road scenario with a passing vehicle in

ego lane.
6 scenario_LD_02_Curve_SixVehicles — Curved road scenario with changing lead vehicles in

ego lane.

These test scenarios have same names as the scenarios used in the
LaneMarkerDetectorTestBench model.

Review Test Bench Model

This example reuses the LaneMarkerDetectorTestBench model from the “Generate Code for Lane
Marker Detector” on page 8-1085 example.

Open the test bench model.

open_system("LaneMarkerDetectorTestBench");

This test bench model has Simulation 3D Scenario, Lane Marker Detector, and Metrics
Assessment subsystems.

To configure the test bench model, use the helperSLLaneMarkerDetectorSetup script. Specify a
test scenario as input to the setup script by using the scenarioName input argument. The value for
scenarioName must be any one of the scenario names specified in the test requirements.

 Automate Testing for Lane Marker Detector

8-1147

Run the setup script.

scenarioName = "scenario_LD_02_Curve_SixVehicles";
helperSLLaneMarkerDetectorSetup(scenarioName);

You can now simulate the model and visualize the results. For more details on the simulation and
analysis of the simulation results, see the “Design Lane Marker Detector Using Unreal Engine
Simulation Environment” on page 8-885 and “Generate Code for Lane Marker Detector” on page 8-
1085 example.

This example focuses on automating the simulation runs to test the lane marker detector on different
driving scenarios by using Simulink Test. The Metrics Assessment subsystem integrates the system-
level metric evaluations with Simulink Test by using the Check Static Range (Simulink) block.

Open the Metrics Assessment subsystem.

open_system("LaneMarkerDetectorTestBench/Metrics Assessment");

The Metric Assessment subsystem outputs:

1 Left lane metrics: An array that contains the number of matches (true positives), misses (false
negatives), and mismatches (false positives) computed from the detection results for left lane.

2 Left lane status: A logical scalar returned as true (1) or false (0). The value is true for matches
in the left lane and false for misses and false positives in the left lane.

3 Left lane distance: A scalar specifying the average value of distances between detected left
lane marking and the corresponding ground truth.

4 Right lane metrics: An array that contains the number of matches (true positives), misses (false
negatives), and false positives computed from the detection results for right lane.

5 Right lane status: Returned as true or false. The value is true for matches in the right lane and
false for misses and false positives in the right lane.

6 Right lane distance: A scalar specifying the average value of distances between detected right
lane boundary points and the ground truth for the right lane.

8 Featured Examples

8-1148

The model logs the output results from Metric Assessment subsystem to the base workspace
variable logsout. You can verify the performance of the lane marker detector algorithm by
validating and plotting the metrics computed separately for the left lane and the right lane during
simulation. You can also verify the performance of lane marker detector algorithm post simulation
using precision and sensitivity metrics.

Disable Runtime Visualizations

Disable runtime visualizations for the Lane Marker Detector subsystem.

load_system('LaneMarkerDetector');
blk = 'LaneMarkerDetector/Lane Marker Detector';
set_param(blk,'EnableDisplays','off');

Configure the Simulation 3D Scene Configuration block to run the Unreal Engine in headless mode,
where the 3D simulation window is disabled.

blk = ['LaneMarkerDetectorTestBench/Simulation 3D Scenario/', ...
 'Simulation 3D Scene Configuration'];
set_param(blk,'EnableWindow','off');

Automate Testing

Open the LaneMarkerDetectorTestAssessments.mldatx test file in the Test Manager. The Test
Manager is configured to automate the testing of lane marker detector algorithm.

sltestmgr;
testFile = sltest.testmanager.load('LaneMarkerDetectorTestAssessments.mldatx');

 Automate Testing for Lane Marker Detector

8-1149

The test cases in the Test Manager are linked to the test requirements in the Requirements Editor.
Each test case uses the POST-LOAD callback to run the setup script with appropriate inputs and to
configure the output video file name. After the simulation of the test case, it invokes
helperGenerateReportForLaneMarkerDetector from the CLEAN-UP callback to generate the
plots for lane boundary parameters and to generate the videos with overlaid lane detections. It also
invokes CUSTOM CRITERIA to plot detection results from Metric Assessment subsystem and to
verify the precision and sensitivity metrics using helperVerifyPrecisionAndSensitivity
function. For more information about these plots, see “Generate Code for Lane Marker Detector” on
page 8-1085 example.

Run and explore results for a single test scenario:

Test the system-level model on scenario_LD_02_Curve_SixVehicles scenario.

testSuite = getTestSuiteByName(testFile,'Test Scenarios');
testCase = getTestCaseByName(testSuite,'scenario_LD_02_Curve_SixVehicles');
resultObj = run(testCase);

Generate test reports obtained after simulation.

sltest.testmanager.report(resultObj,'Report.pdf',...,
 'Title','Lane Marker Detector',...
 'IncludeMATLABFigures',true,...
 'IncludeErrorMessages',true,...
 'IncludeTestResults',0,'LaunchReport',true);

Examine the Report.pdf. The Test environment section shows the platform on which the test is
run and the MATLAB® version used for testing. The Summary section shows the outcome of the test
and duration of the simulation in seconds. The Results section shows pass or fail results based on the
assessment criteria and displays the plots logged from the
helperGenerateReportForLaneMarkerDetector function.

Run and explore results for all test scenarios:

You can simulate the system to run all the tests by using sltest.testmanager.run command.
Alternatively, you can click Play in the Test Manager app.

After completion of the test simulations, the results for all the tests can be viewed in the Results and
Artifacts tab of the Test Manager. For each test case, the Check Static Range (Simulink) blocks in
the model are associated with the Test Manager. You can visualize the overall pass or fail results.

8 Featured Examples

8-1150

You can find the generated report in current working directory. This report contains a detailed
summary of pass or fail statuses and the plots for each test case.

 Automate Testing for Lane Marker Detector

8-1151

Verify test status in Requirements Editor:

Open the Requirements Editor and select Display. Then, select Verification Status to see a
verification status summary for each requirement. Green and red bars indicate the pass and fail
status of simulation results for each test.

8 Featured Examples

8-1152

Automate Testing with Generated Code

The LaneMarkerDetectorTestBench model enables testing of Lane Marker Detector
component. To perform regression testing of these components use software-in-the-loop (SIL)
verification. If you have Embedded Coder™ Simulink Coder™ license, you can generate code for the
lane marker detector component. You can verify if the generated code produce results that match the
test requirements.

Set the simulation mode for Lane Marker Detector to software-in-the-loop.

model = 'LaneMarkerDetectorTestBench/Lane Marker Detector';
set_param(model,'SimulationMode','Software-in-the-loop');

Simulate the system for all the test scenarios and generate the test report by using the MATLAB
command, run sltest.testmanager.run. Use the generated report to review the plots and test
results.

If you have a Simulink Coverage™ license, you can get the code coverage analysis for the generated
code to measure the testing completeness. You can use missing coverage data to find gaps in testing,
missing requirements, or unintended functionality. You can visualize the coverage results for
individual test cases and also aggregated coverage results as well.

 Automate Testing for Lane Marker Detector

8-1153

You can click on LaneMarkerDetector link in test manager to view the detailed report of coverage
results.

8 Featured Examples

8-1154

Automate Testing in Parallel

If you have a Parallel Computing Toolbox™ license, you can configure the test manager to execute
tests in parallel using a parallel pool. To run the tests in parallel, disable the runtime visualizations
and save the models using save_system('LaneMarkerDetector') and
save_system('LaneMarkerDetectorTestBench'). Test Manager uses the default Parallel
Computing Toolbox cluster and executes tests only on the local machine. Running tests in parallel
speeds up execution and decreases the amount of time required for testing. For more information on
how to configure tests in parallel using the Test Manager, see “Run Tests Using Parallel Execution”
(Simulink Test).

See Also
Blocks
Simulation 3D Scene Configuration | Simulation 3D Vehicle with Ground Following | Cuboid To 3D
Simulation | Vehicle To World

More About
• “Design Lane Marker Detector Using Unreal Engine Simulation Environment” on page 8-885
• “Evaluate and Visualize Lane Boundary Detections Against Ground Truth” on page 8-94
• “Generate Code for Lane Marker Detector” on page 8-1085
• “Generate Code for Vision Vehicle Detector” on page 8-1129

 Automate Testing for Lane Marker Detector

8-1155

Generate Code for Highway Lane Following Controller
This example shows how to test the highway lane following controller and generate C++ code for
real-time applications on a prebuilt 3D scene from the Unreal Engine® driving simulation
environment.

In this example, you:

1 Design a test bench model to verify the functionality of a lane following decision logic and
controller with ground truth information.

2 Generate code for the lane following decision logic and controller, and validate the functional
equivalence by using software-in-the-loop (SIL) simulation.

Introduction

The lane following controller is a fundamental component in highway lane following applications. The
lane following controller generates the steering angle and acceleration control commands for an ego
vehicle by using lane and vehicle information along with the set speed.

The lane following controller combines longitudinal and lateral controls. The longitudinal controller is
responsible for maintaining the driver-set velocity and keeping a safe distance from the lead vehicle.
The lateral controller is responsible for keeping the vehicle in the center of its current lane. In this
example, you use the ground truth lane and vehicle information to test the lane following controller.
For more information, see Path Following Control System (Model Predictive Control Toolbox).

This example shows how to test and verify the functionality of a lane following controller using a 3D
simulation environment. In this example, you:

1 Explore the test bench model.
2 Simulate the test bench model.
3 Generate C++ code from the reference model.
4 Assess the functionality of the generated code using SIL verification.
5 Assess the execution time and perform code coverage analysis.
6 Explore additional scenarios given in this example.

You test the lane following controller on a 3D simulation environment that uses the Unreal Engine
from Epic Games®. The Unreal Engine driving simulation environment requires a Windows® 64-bit
platform.

if ~ispc
 error(['Unreal driving simulation environment is only supported on Microsoft', char(174), ' Windows', char(174), '.']);
end

Explore Test Bench Model

To explore the test bench model, open a working copy of the project example files. MATLAB copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('HLFController.zip', 'workDir', pwd);

In this example, you use a system-level simulation test bench model to explore the behavior of the
controller for the lane following system. Open the system-level simulation test bench model.

8 Featured Examples

8-1156

open_system('HighwayLaneFollowingControllerTestBench');

Opening this model runs the helperSLHighwayLaneFollowingControllerSetup script, which
initializes the road scenario using the drivingScenario object in the base workspace. It also
configures the lane following controller parameters, vehicle model parameters, and Simulink bus
signals required for defining the inputs and outputs for the
HighwayLaneFollowingControllerTestBench model.

The test bench model contains these subsystems:

1 Simulation 3D Scenario — This subsystem specifies the road, vehicles used for simulation.
2 Lane Following Decision Logic — This subsystem specifies the lateral and longitudinal decision

logic.
3 Lane Following Controller — This subsystem specifies the path-following controller that

generates control commands to steer the ego vehicle.
4 Vehicle Dynamics — This subsystem specifies the dynamic model for the ego vehicle.
5 Metrics Assessment — This subsystem specifies metrics to assess system level behavior.

The Vehicle Dynamics subsystem is the same subsystem used in the “Highway Lane Following” on
page 8-922 example. This example focuses on the Lane Following Decision Logic and Lane Following
Controller reference models.

The Simulation 3D Scenario subsystem configures the road network, sets vehicle positions, and packs
truth data, similar to the Simulation 3D Scenario subsystem in the “Highway Lane Following” on page
8-922. However, the Simulation 3D Scenario subsystem used in this example does not have any
sensors. Instead, lanes truth from the Simulation 3D Vision Detection Generator block is packed into
lanes bus and actors truth from Scenario Reader block is packed into tracks bus structure to provide
inputs to the lane following decision logic. Open the Simulation 3D Scenario subsystem.

 Generate Code for Highway Lane Following Controller

8-1157

open_system('HighwayLaneFollowingControllerTestBench/Simulation 3D Scenario');

8 Featured Examples

8-1158

• The Pack Actors Truth MATLAB® function block packs the ground truth information of the actors
into the tracker bus structure, which the Lane Following Decision Logic reference model requires.

• The Simulation 3D Vision Detection Generator block is attached to the ego vehicle to get lane
truth information from the 3D simulation environment.

• The Pack Lanes Truth MATLAB function block packs the lane ground truth information into the
lanes bus structure, which the Lane Following Decision Logic reference model requires.

• The Rear Axle to Vehicle Center block shifts the lane detections from rear axle to the vehicle
center as required by the lateral controller.

Lane Following Decision Logic is the reference model that detects the lead vehicle information and
lane center. The Lane Following Controller model needs this information. Open Lane Following
Decision Logic model.

open_system('LaneFollowingDecisionLogic');

The Find Lead Car MATLAB function block finds the lead car that is most important object (MIO)
present in front of the ego vehicle in the same lane. It outputs the relative distance and relative
velocity between the ego vehicle and the MIO.

The Estimate Lane Center subsystem calculates the lane center of the ego lane, which is required by
the Lane Following Controller model.

 Generate Code for Highway Lane Following Controller

8-1159

The Lane Following Controller takes as input the MIO information and lane center information from
the lane following decision logic reference model, along with the set velocity and longitudinal velocity
of ego vehicle. The model then generates control commands (steering angle and acceleration) for the
ego vehicle. Open the Lane Following Controller model.

open_system('LaneFollowingController');

The Preview Curvature block calculates the curvature, lateral deviation, and relative yaw angle using
the lane center information. The controller uses previewed information for calculating the ego vehicle
steering angle. The lateral deviation measures the distance between the ego vehicle and the center of
the lane. The relative yaw angle measures the yaw angle difference between the ego vehicle and the
road. The ISO 8855 to SAE J670E block inside subsystem converts the lane coordinates from the ISO
8855 standard to the SAE J670E standard used by MPC Controller.

The MPC Controller block uses the Path Following Control System (Model Predictive Control Toolbox)
block from Model Predictive Control Toolbox™. The Path Following Controller block keeps the vehicle
traveling within a marked lane of a highway while maintaining the driver-set velocity. This controller
includes combined longitudinal and lateral control of the ego vehicle:

• Longitudinal control maintains the driver-set velocity of the ego vehicle.
• Lateral control keeps the ego vehicle traveling along the center line of its lane by adjusting the

steering angle of the ego vehicle.

The MPC controller provides a slow and steady response to the ego vehicle. A faster response is
required during the emergency conditions, and the Watchdog Braking Controller block applies the
brakes under such conditions.

Based on the braking status of the Watchdog Braking Controller block, the Controller Mode Selector
subsystem outputs the acceleration command that determines whether to accelerate or decelerate.

8 Featured Examples

8-1160

Simulate Model

Configure the HighwayLaneFollowingControllerTestBench model to simulate the
scenario_LFACC_03_Curve_StopnGo scenario. This scenario contains six vehicles, including the
ego vehicle, and defines their trajectories.

helperSLHighwayLaneFollowingControllerSetup("scenarioFcnName", "scenario_LFACC_03_Curve_StopnGo");

Simulate the test bench model.

sim('HighwayLaneFollowingControllerTestBench');

 Assuming no disturbance added to measured output channel #3.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #4 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Generate C++ Code

You can now generate C++ code for the algorithm, apply common optimizations, and generate a
report to facilitate exploring the generated code. Configure the Lane Following Decision Logic and
Lane Following Controller models to generate C++ code for real-time implementation of the
algorithm. Set the model parameters to enable code generation and display the configuration values.

Set and view model parameters to enable C++ code generation.

helperSetModelParametersForCodeGeneration('LaneFollowingController');
save_system('LaneFollowingController');

 Model configuration parameters:

 Parameter Value Description
 ___________________________________ _______________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'SolverType' } {'Fixed-step' } {'Solver>Type' }
 {'FixedStep' } {'auto' } {'Solver>Fixed-step size (fundamental sample time)' }
 {'EnableMultiTasking' } {'on' } {'Solver>Treat each discrete rate as a separate task' }
 {'ProdLongLongMode' } {'on' } {'Hardware Implementation>Support long long' }
 {'BlockReduction' } {'on' } {'Simulation Target>Block reduction' }
 {'MATLABDynamicMemAlloc' } {'on' } {'Simulation Target>Simulation Target>Dynamic memory allocation in MATLAB functions' }
 {'OptimizeBlockIOStorage' } {'on' } {'Simulation Target>Signal storage reuse' }
 {'InlineInvariantSignals' } {'on' } {'Simulation Target>Inline invariant signals' }
 {'BuildConfiguration' } {'Faster Runs'} {'Code Generation>Build configuration' }
 {'RTWVerbose' } {'off' } {'Code Generation>Verbose build' }
 {'CombineSignalStateStructs' } {'on' } {'Code Generation>Interface>Combine signal/state structures' }
 {'SupportVariableSizeSignals' } {'on' } {'Code Generation>Interface>Support variable-size signals' }
 {'CodeInterfacePackaging' } {'C++ class' } {'Code Generation>Interface>Code interface packaging' }
 {'GenerateExternalIOAccessMethods'} {'Method' } {'Code Generation>Interface>Data Member Visibility>External I/O access' }
 {'EfficientFloat2IntCast' } {'on' } {'Code Generation>Optimization>Remove code from floating-point to integer conversions that wraps out-of-range values'}
 {'ZeroExternalMemoryAtStartup' } {'off' } {'Code Generation>Optimization>Remove root level I/O zero initialization (inverse logic)' }
 {'CustomSymbolStrGlobalVar' } {'NM' } {'Code Generation>Symbols>Global variables' }
 {'CustomSymbolStrType' } {'NM_T' } {'Code Generation>Symbols>Global types' }
 {'CustomSymbolStrField' } {'NM' } {'Code Generation>Symbols>Field name of global types' }
 {'CustomSymbolStrFcn' } {'APV_NM$F' } {'Code Generation>Symbols>Subsystem methods' }

 Generate Code for Highway Lane Following Controller

8-1161

 {'CustomSymbolStrTmpVar' } {'NM' } {'Code Generation>Symbols>Local temporary variables' }
 {'CustomSymbolStrMacro' } {'NM' } {'Code Generation>Symbols>Constant macros' }

Generate code and review the code generation report from the reference model.

rtwbuild('LaneFollowingController');

Starting build procedure for: LaneFollowingController
 Assuming no disturbance added to measured output channel #3.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #4 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
Successful completion of build procedure for: LaneFollowingController

Build Summary

Top model targets built:

Model Action Rebuild Reason
==
LaneFollowingController Code generated and compiled Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 1m 16.773s

Assess Functionality of Code

After generating the C++ code, you can now assess the code functionality using SIL simulation.
Simulation provides early insight into the behavior of a deployed application. To learn more about SIL
simulation, see “SIL and PIL Simulations” (Embedded Coder).

SIL simulation enables you to verify that the compiled generated code on the host is functionally
equivalent to the normal mode.

Configure the reference model parameters to support SIL simulation and log the execution profiling
information.

helperSetModelParametersForSIL('LaneFollowingController');
helperSetModelParametersForSIL('HighwayLaneFollowingControllerTestBench');

LaneFollowingController configuration parameters:

 Parameter Value Description
 ________________________________ ____________________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'CodeExecutionProfiling' } {'on' } {'Code Generation>Verification>Measure task execution time'}
 {'CodeProfilingSaveOptions' } {'AllData' } {'Code Generation>Verification>Save options' }
 {'CodeExecutionProfileVariable'} {'executionProfile'} {'Code Generation>Verification>Workspace variable' }

HighwayLaneFollowingControllerTestBench configuration parameters:

 Parameter Value Description

8 Featured Examples

8-1162

 ________________________________ ____________________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'CodeExecutionProfiling' } {'on' } {'Code Generation>Verification>Measure task execution time'}
 {'CodeProfilingSaveOptions' } {'AllData' } {'Code Generation>Verification>Save options' }
 {'CodeExecutionProfileVariable'} {'executionProfile'} {'Code Generation>Verification>Workspace variable' }

Configure the test bench model to simulate Lane Following Decision Logic and Lane Following
Controller in SIL mode.

set_param('HighwayLaneFollowingControllerTestBench/Lane Following Controller','SimulationMode','Software-in-the-loop (SIL)');

sim('HighwayLaneFollowingControllerTestBench');

Starting serial model reference code generation build
Starting build procedure for: LaneFollowingController
 Assuming no disturbance added to measured output channel #3.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #4 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
Successful completion of build procedure for: LaneFollowingController

Build Summary

Code generation targets built:

Model Action Rebuild Reason
===
LaneFollowingController Code generated and compiled LaneFollowingController.cpp does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 1m 40.52s
Preparing to start SIL simulation ...
Building with 'MinGW64 Compiler (C)'.
MEX completed successfully.
Starting SIL simulation for component: LaneFollowingController
Application stopped
Stopping SIL simulation for component: LaneFollowingController

Compare the outputs from normal simulation mode and SIL simulation mode. You can verify if the
differences between these runs are in the tolerance limits by using the following code. Plot the
differences of the steering and acceleration values between the normal simulation mode and SIL
simulation mode.

runIDs = Simulink.sdi.getAllRunIDs;
normalSimRunID = runIDs(end - 1);
SilSimRunID = runIDs(end);
diffResult = Simulink.sdi.compareRuns(normalSimRunID ,SilSimRunID);

Plot the differences in the controller output parameters computed from normal mode and SIL mode.

helperPlotLFControllerDiffSignals(diffResult);

 Generate Code for Highway Lane Following Controller

8-1163

The differences between the normal and SIL modes of the simulation are approximately zero. Slight
differences are due to differences in the rounding off techniques used by different compilers.

Assess Execution Time and Coverage of Code

During the SIL simulation, log the execution time metrics for the generated code on the host
computer to the variable executionProfile in the MATLAB base workspace. These times can be an
early indicator of the performance of the generated code. For accurate execution time measurements,
profile the generated code when it is integrated into the external environment or when you use with
processor-in-the-loop (PIL) simulation. To learn more about PIL profiling, refer to “Code Execution
Profiling with SIL and PIL” (Embedded Coder).

Plot the execution time taken for _step function using the
helperPlotLFControllerExecutionProfile function.

helperPlotLFControllerExecutionProfile(executionProfile);

8 Featured Examples

8-1164

From the plot, you can deduce the average time taken per timestep for the lane following controller.
For more information on generating execution profiles and analyzing them during SIL simulation,
refer to “Execution Time Profiling for SIL and PIL” (Embedded Coder).

If you have a Simulink Coverage™ license, you can also perform the code coverage analysis for the
generated code to measure the testing completeness. You can use missing coverage data to find gaps
in testing, missing requirements, or unintended functionality. Configure the coverage settings and
simulate the test bench model to generate the coverage analysis report. Find the generated report
CoverageResults/LaneFollowingController_modelrefsil_summary_cov.html in the
working directory.

if(license('test','Simulink_Coverage'))
 helperCoverageSettings('HighwayLaneFollowingControllerTestBench');
 cvDataGroupObj = cvsim('HighwayLaneFollowingControllerTestBench');
 % Get Generated Code coverage of LaneFollowingController.
 cvDataObj = get(cvDataGroupObj,'LaneFollowingController');
 cvhtml('CoverageResults/LaneFollowingController_modelrefsil_summary_cov',cvDataObj);
end

Starting serial model reference code generation build
Starting build procedure for: LaneFollowingController
 Assuming no disturbance added to measured output channel #3.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #4 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
Successful completion of build procedure for: LaneFollowingController

 Generate Code for Highway Lane Following Controller

8-1165

Build Summary

Code generation targets built:

Model Action Rebuild Reason
===
LaneFollowingController Code compiled Code instrumentation settings have changed.

1 of 1 models built (0 models already up to date)
Build duration: 0h 2m 15.436s
Preparing to start SIL simulation ...
Building with 'MinGW64 Compiler (C)'.
MEX completed successfully.
Starting SIL simulation for component: LaneFollowingController
Stopping SIL simulation for component: LaneFollowingController
Completed code coverage analysis

You can find the decision coverage, statement coverage, and function coverage results while
simulating the generated code for this test scenario, scenario_LFACC_03_Curve_StopnGo. You
can test this model with different scenarios to get full coverage of the generated code. For more
information on how to analyze coverage results during SIL simulation, refer “Code Coverage for
Models in Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL) Mode” (Embedded
Coder).

Similarly, you can configure Lane Following Decision Logic to generate code and run in SIL to verify
the functional equivalence with simulation.

Explore Additional Scenarios

This example provides additional scenarios that you can use with the
HighwayLaneFollowingControllerTestBench model:

• scenario_LF_01_Straight_RightLane
• scenario_LF_02_Straight_LeftLane
• scenario_LF_03_Curve_LeftLane
• scenario_LF_04_Curve_RightLane
• scenario_LFACC_01_Curve_DecelTarget
• scenario_LFACC_02_Curve_AutoRetarget
• scenario_LFACC_03_Curve_StopnGo [Default]
• scenario_LFACC_04_Curve_CutInOut

8 Featured Examples

8-1166

• scenario_LFACC_05_Curve_CutInOut_TooClose
• scenario_LFACC_06_Straight_StopandGoLeadCar
• scenario_ACC_01_Straight_TargetDiscriminationTest
• scenario_ACC_02_Straight_StopnGo

Examine the comments in each file for more details about the geometry of the road and vehicles in
each scenario. You can configure the HighwayLaneFollowingControllerTestBench model and
workspace to simulate these scenarios using the helperSLHighwayLaneFollowingSetup function
as follows.

helperSLHighwayLaneFollowingControllerSetup("scenarioFcnName", "scenario_LFACC_04_Curve_CutInOut");

See Also
Scenario Reader | Vehicle To World | Simulation 3D Scene Configuration | Cuboid To 3D Simulation

More About
• “Highway Lane Following” on page 8-922
• “Automate Testing for Highway Lane Following” on page 8-938
• “Automate Testing for Highway Lane Following Controls and Sensor Fusion” on page 8-1168

 Generate Code for Highway Lane Following Controller

8-1167

Automate Testing for Highway Lane Following Controls and
Sensor Fusion

This example shows how to integrate the sensor fusion and controls components of a highway lane
following application. It also shows how to assess the functionality of this integration by defining
scenarios based on requirements, automating testing of components, and generating code for those
components.

Introduction

Sensor fusion and lane following controller components are the two fundamental components of a
highway lane following application. The sensor fusion component fuses information from a camera
and a radar sensor to detect vehicles and their tracks. The lane following controller generates control
signals for vehicle dynamics. It uses perception-based lane detections to provide the steering angle
for lateral control and acceleration for longitudinal control. Simulating and testing the interactions
between these two components using metrics for different test scenarios is important. Automatically
running these simulations enables regression testing to verify system-level functionality.

This example enables integration and simulation of these two components using a system-level test
bench model. It shows how to automate testing against multiple scenarios using Simulink Test™. The
scenarios are based on system-level requirements. Additionally, it also shows how you can verify the
generated code using software-in-the-loop (SIL) simulation. In this example, you:

1 Review requirements — The requirements describe system-level test conditions. Simulation
test scenarios are created to represent these conditions.

2 Explore the test bench model — The model contains sensor fusion, controls, vehicle dynamics,
sensors, and metrics to assess functionality. The metric assessments integrate the test bench
model with Simulink Test for the automated testing.

3 Disable runtime visualizations — Runtime visualizations are disabled to reduce the execution
time for automated testing.

4 Automate testing — A test manager is configured to simulate each test scenario, assess success
criteria, and report results. The results are explored dynamically in the test manager and
exported to a PDF for external reviewers.

5 Automate testing with generated code — The sensor fusion, decision logic, and controls
components are configured to generate C++ code. You run automated testing on the generated
code to verify expected behavior.

6 Automate testing in parallel — Overall execution time for running the tests is reduced using
parallel computing on a multicore computer.

Testing the integration of the sensor fusion and controls algorithms requires a photorealistic
simulation environment. In this example, you enable system-level simulation through integration with
the Unreal Engine® from Epic Games®. The 3D simulation environment requires a Windows® 64-bit
platform.

if ~ispc
 error(['3D simulation is supported only on Microsoft', char(174), ' Windows', char(174), '.'])
end

Review Requirements

To explore the requirements, open a working copy of the project example files. MATLAB copies the
files to an example folder so that you can edit them.

8 Featured Examples

8-1168

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('HLFControlsSensorFusion.zip', 'workDir', pwd);

Requirements Toolbox™ enables you to author, analyze, and manage requirements within Simulink.
This example contains 10 test scenarios, with high-level testing requirements defined for each
scenario. Open the requirement set.

open('HLFControlsWithSensorFusionTestRequirements.slreqx')

Alternatively, you can also open the file from the Requirements tab of the Requirements Manager
app in Simulink.

Each row in this file specifies the requirements in textual and graphical formats for testing the lane-
following system for a test scenario. The scenarios with the scenario_LF_ prefix enable you to test
lane-detection and lane-following algorithms without obstruction by other vehicles. The scenarios
with the scenario_LFACC_ prefix enable you to test lane-detection, lane-following, and adaptive
cruise control (ACC) behavior with other vehicles on the road.

• scenario_LF_01_Straight_RightLane — Straight road scenario with the ego vehicle in the
right lane.

• scenario_LF_02_Straight_LeftLane — Straight road scenario with the ego vehicle in the left
lane.

• scenario_LF_03_Curve_LeftLane — Curved road scenario with the ego vehicle in the left
lane.

• scenario_LF_04_Curve_RightLane — Curved road scenario with the ego vehicle in the right
lane.

• scenario_LFACC_01_Curve_DecelTarget — Curved road scenario with a decelerating lead
vehicle in the ego lane.

 Automate Testing for Highway Lane Following Controls and Sensor Fusion

8-1169

• scenario_LFACC_02_Curve_AutoRetarget — Curved road scenario with changing lead
vehicles in the ego lane. This scenario tests the ability of the ego vehicle to retarget to a new lead
vehicle while driving along a curve.

• scenario_LFACC_03_Curve_StopnGo — Curved road scenario with a lead vehicle slowing
down in the ego lane.

• scenario_LFACC_04_Curve_CutInOut — Curved road scenario with a lead car cutting into the
ego lane.

• scenario_LFACC_05_Curve_CutInOut_TooClose — Curved road scenario with a lead car
cutting aggressively into the ego lane.

• scenario_LFACC_06_Straight_StopandGoLeadCar — Straight road scenario with a lead
vehicle that breaks down in the ego lane.

Explore Test Bench Model

Open test bench model.

open_system('HLFControlsWithSensorFusionTestBench');

The test bench model contains these subsystems:

1 Simulation 3D Scenario — Subsystem that specifies the road, vehicles, vision detection generator,
and radar sensors used for simulation.

2 Forward Vehicle Sensor Fusion — Subsystem that fuses the detections of vehicles in front of the
ego vehicle that were obtained from the vision and radar sensors.

3 Lane Following Decision Logic — Algorithm model that specifies the lateral and longitudinal
decision logic and provides lane center information and the most important object (MIO) related
information to the controller.

4 Lane Following Controller — Algorithm model that specifies the controller.
5 Vehicle Dynamics — Subsystem that specifies the dynamic model for the ego vehicle
6 Metrics Assessment — Subsystem that assesses system-level behavior.

8 Featured Examples

8-1170

The Simulation 3D Scenario subsystem configures the road network, sets vehicle positions, and
synthesizes sensors. Open the Simulation 3D Scenario subsystem.

open_system("HLFControlsWithSensorFusionTestBench/Simulation 3D Scenario")

 Automate Testing for Highway Lane Following Controls and Sensor Fusion

8-1171

8 Featured Examples

8-1172

The scene and road network are specified by these parts of the subsystem:

• The Simulation 3D Scene Configuration block has the SceneName parameter set to Curved
road .

• The Scenario Reader block is configured to use a driving scenario that contains a road network.

The vehicle positions are specified by these parts of the subsystem:

• The Ego input port controls the position of the ego vehicle, which is specified by the Simulation 3D
Vehicle with Ground Following 1 block.

• The Vehicle To World block converts actor poses from the coordinates of the ego vehicle to the
world coordinates.

• The Scenario Reader block outputs actor poses, which control the position of the target vehicles.
These vehicles are specified by the other Simulation 3D Vehicle with Ground Following blocks.

• The Cuboid To 3D Simulation block converts the ego pose coordinate system (with respect to
below the center of the vehicle rear axle) to the 3D simulation coordinate system (with respect to
below the vehicle center).

The sensors attached to the ego vehicle are specified by these parts of the subsystem:

• The Simulation 3D Vision Detection Generator block is attached to the ego vehicle to detect
vehicles and lanes in the 3D simulation environment. The block derives vehicle detections from
simulated actor poses that are based on cuboid representations of the actors in the scenario.

• The Delete Velocity From Vision block packs vision detections to match the bus used by the vision
processing algorithm. To do so, the block replaces the measurement noise and disables the
velocity measurement.

• The Pack Lanes Truth block packs the lane ground truth information into the lanes bus structure,
which the Lane Following Decision Logic reference model requires.

• The Simulation 3D Probabilistic Radar block is attached to the ego vehicle to detect vehicles in the
3D Simulation environment.

The Forward Vehicle Sensor Fusion, Lane Following Decision Logic, Lane Following Controller,
Vehicle Dynamics, and Metrics Assessment subsystems are based on the subsystems used in the
“Highway Lane Following” on page 8-922 example.

In this example, the focus is on automating the simulation runs for this test bench model using
Simulink Test for the different test scenarios. The Metrics Assessment subsystem enables integration
of system-level metric evaluations with Simulink Test. This subsystem uses Check Static Range
(Simulink) blocks for this integration. Open the Metrics Assessment subsystem.

open_system('HLFControlsWithSensorFusionTestBench/Metrics Assessment');

 Automate Testing for Highway Lane Following Controls and Sensor Fusion

8-1173

In this example, four metrics are used to assess the lane-following system.

• Verify Lateral Deviation — This block verifies that the lateral deviation from the center line of the
lane is within prescribed thresholds for the corresponding scenario. Define the thresholds when
you author the test scenario.

• Verify In Lane — This block verifies that the ego vehicle is following one of the lanes on the road
throughout the simulation.

• Verify Time gap — This block verifies that the time gap between the ego vehicle and the lead
vehicle is more than 0.8 seconds. The time gap between the two vehicles is defined as the ratio of
the calculated headway distance to the ego vehicle velocity.

• Verify No Collision — This block verifies that the ego vehicle does not collide with the lead vehicle
at any point during the simulation.

Disable Runtime Visualizations

The system-level test bench model opens a Unreal Engine simulation window for visualizing the
scenario. This window is not required when the tests are automated.

Configure the Simulation 3D Scene Configuration block to run the Unreal Engine in headless mode,
where the 3D simulation window is disabled.

blk = 'HLFControlsWithSensorFusionTestBench/Simulation 3D Scenario/Simulation 3D Scene Configuration';
set_param(blk,'EnableWindow','off');

8 Featured Examples

8-1174

Automate Testing

The Test Manager is configured to automate the testing of the lane-following application. Open the
HLFControlsWithSensorFusionMetricAssessments.mldatx test file in the Test Manager.

sltestmgr;
sltest.testmanager.load('HLFControlsWithSensorFusionMetricAssessments.mldatx');

Observe the populated test cases that were authored previously in this file. These tests are
configured to run the model.

Each test case uses the POST-LOAD callback to run the setup script with appropriate inputs. After the
simulation of the test case, the Test Manager invokes
helperGenerateFilesForLaneFollowingWithSensorFusionReport from the CLEAN-UP
callback to generate the plots.

Run and Explore Results for Single Test Scenario

To test the system-level model with the scenario_LFACC_03_Curve_StopnGo test scenario from
Simulink Test, use this code:

testFile = sltest.testmanager.load('HLFControlsWithSensorFusionMetricAssessments.mldatx');
testSuite = getTestSuiteByName(testFile,'Test Scenarios');
testCase = getTestCaseByName(testSuite,'scenario_LFACC_03_Curve_StopnGo');
resultObj = run(testCase);

To generate a report after the simulation, use this code:

sltest.testmanager.report(resultObj,'Report.pdf',...,
'Title','Highway Lane Following Controls with Sensor Fusion',...

 Automate Testing for Highway Lane Following Controls and Sensor Fusion

8-1175

'IncludeMATLABFigures',true,...
'IncludeErrorMessages',true,...
'IncludeTestResults',0,'LaunchReport',true);

Examine the Report.pdf. Observe that the Test environment section shows the platform on which the
test is run and the MATLAB® version used for testing. The Summary section shows the outcome of
the test and duration of the simulation in seconds. The Results section shows pass/fail results based
on the assessment criteria. This section also shows the plots logged from the
helperGenerateFilesForLaneFollowingWithSensorFusionReport function.

Run and Explore Results for All Test Scenarios

You can simulate the system for all the tests by using sltest.testmanager.run. Alternatively, you
can simulate the system by clicking Play in the Test Manager app.

When the test simulations are complete, the results for all the tests can be viewed in the Results and
Artifacts tab of the Test Manager. For each test case, the Check Static Range (Simulink) blocks in
the model are associated with the Test Manager to visualize overall pass/fail results.

You can find the generated report in the current working directory. This report contains a detailed
summary of pass/fail statuses and plots for each test case.

8 Featured Examples

8-1176

Verify Test Status in Requirements Editor

Open the Requirements Editor and select Display. Then, select Verification Status to see a
verification status summary for each requirement. Green and red bars indicate the pass/fail status of
simulation results for each test.

 Automate Testing for Highway Lane Following Controls and Sensor Fusion

8-1177

Automate Testing with Generated Code

The HLFControlsWithSensorFusionTestBench model enables integrated testing of the Forward
Vehicle Sensor Fusion, Lane Following Decision Logic, and Lane Following Controller components.
Regression testing of these components through SIL verification is often helpful. If you have a
Simulink Coder™ license, then you can generate code for these components. This workflow lets you
verify that the generated code produces expected results that match the system-level requirements
throughout simulation.

Set Forward Vehicle Sensor Fusion to run in software-in-the-loop mode.

model = 'HLFControlsWithSensorFusionTestBench/Forward Vehicle Sensor Fusion';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Lane Following Decision Logic to run in software-in-the-loop mode.

model = 'HLFControlsWithSensorFusionTestBench/Lane Following Decision Logic';
set_param(model,'SimulationMode','Software-in-the-loop');

Set Lane Following Controller to run in software-in-the-loop mode.

model = 'HLFControlsWithSensorFusionTestBench/Lane Following Controller';
set_param(model,'SimulationMode','Software-in-the-loop');

Now, run sltest.testmanager.run to simulate the system for all the test scenarios. After tests are
complete, review the plots and results in the generated report.

Automate Testing in Parallel

If you have a Parallel Computing Toolbox™ license, then you can configure Test Manager to execute
tests in parallel using a parallel pool. To run tests in parallel, save the models after disabling the

8 Featured Examples

8-1178

runtime visualizations using save_system('HLFControlsWithSensorFusionTestBench'). Test
Manager uses the default Parallel Computing Toolbox cluster and executes tests only on the local
machine. Running tests in parallel can speed up execution and decrease the amount of time it takes
to get test results. For more information on how to configure tests in parallel from the Test Manager,
see “Run Tests Using Parallel Execution” (Simulink Test).

See Also
Scenario Reader | Vehicle To World | Simulation 3D Scene Configuration | Cuboid To 3D Simulation |
Multi-Object Tracker | Simulation 3D Vision Detection Generator | Simulation 3D Probabilistic Radar

More About
• “Forward Vehicle Sensor Fusion” on page 8-1121
• “Generate Code for Highway Lane Following Controller” on page 8-1156
• “Highway Lane Following” on page 8-922
• “Automate Testing for Highway Lane Following” on page 8-938

 Automate Testing for Highway Lane Following Controls and Sensor Fusion

8-1179

Generate Code for Highway Lane Change Planner
This example shows how to design, test, and generate C++ code for a lane change planner for
highway driving. This example closely follows the “Highway Trajectory Planning Using Frenet
Reference Path” on page 8-744 example. In this example, you:

1 Design the test bench model to verify the functionality of the highway lane change planner using
ground truth information.

2 Generate code for a highway lane change planner, profile the execution time, and validate the
functional equivalence with simulation.

Introduction

The highway lane change system enables the ego vehicle to automatically move from one lane to
another lane on a highway. The highway lane change planner is a fundamental component of a
highway lane change system. It is expected to handle different driving behaviors to safely navigate
the ego vehicle from one point to another point. In this example, the highway lane change planner
samples trajectories for different driving behaviors such as cruise control, lead car following (LCF),
and lane change maneuvers. It then evaluates the cost, feasibility, and possibility of collision with
other vehicles and generates an optimal collision-free trajectory. This example also shows how to
generate C++ code and verify the generated code using software-in-the-loop (SIL) execution. In this
example, you:

1 Explore test bench model — The test bench model contains the scenario and environment,
planner configuration parameters, highway lane change planner, and metrics to assess the
functionality.

2 Model lane change planner — The reference model contains a terminal state sampler, motion
planner, and motion prediction module. The terminal state sampler samples terminal states based
on the planner parameters and the current state of both the ego vehicle and other vehicles in the
scenario. The motion prediction module predicts the future motion of MIOs. Motion planner
samples trajectories and outputs an optimal trajectory.

3 Simulate with cruise control and lead car following — Simulate the system by enabling only
cruise control and lead car following maneuvers.

4 Simulate with lane change — Simulate the system by adding a lane-change maneuver.
5 Generate C++ code — Configure the lane change planner reference model to run in SIL mode,

and verify the functional equivalence with simulation.
6 Assess execution time and perform code coverage analysis — Assess the performance of

the generated code by using the execution time and coverage.
7 Explore other scenarios — These scenarios test the system under additional conditions. You

can apply the modeling patterns used in this example to test your own planner component for the
highway lane change system.

Explore Test Bench Model

The highway lane change planner system in this example contains a highway lane change planner
test bench and a reference model.

• Test bench model — The test bench model simulates and tests the behavior of the highway lane
change planner algorithm in a closed loop.

• Reference model — The Highway Lane Change Planner reference model implements the highway
lane change planner algorithm and generates C++ code of the algorithm.

8 Featured Examples

8-1180

The reference model can be integrated with the “Highway Lane Change” on page 8-867 system. To
explore the test bench model, open a working copy of the project example files. MATLAB copies the
files to an example folder so that you can edit them.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('HLCPlanner.zip', 'workDir', pwd);

Open the test bench model.

 open_system('HighwayLaneChangePlannerTestBench');

Opening this model runs the helperSLHighwayLaneChangePlannerSetup script, which initializes
the road scenario using a drivingScenario object in the base workspace. It also configures the
planner parameters, initial ego vehicle information, lane information, global plan points required by
the planner, and Simulink bus signals required for defining the inputs and outputs for the
HighwayLaneChangePlannerTestBench model. The test bench model contains these subsystems:

• Scenario and Environment — Subsystem that specifies the scene, vehicles, and map data used for
simulation.

• Planner Configuration Parameters — Subsystem that specifies the configuration parameters
required for the planner algorithm.

• Highway Lane Change Planner — Subsystem that implements the lane change planner algorithm
for the highway.

• Metrics Assessment — Subsystem that specifies metrics to assess the highway lane change
planner behavior.

• Visualization — Subsystem that visualizes the status of the ego vehicle and other vehicles defined
in the scenario.

 Generate Code for Highway Lane Change Planner

8-1181

• Pack Actor — Subsystem that updates the actor bus using the current state of the ego vehicle from
the planner.

The Scenario and Environment subsystem uses the Scenario Reader block to provide road network
and vehicle ground truth positions and map data required for the highway lane change planner
algorithm. This subsystem outputs the map data required by the lane change planner. Open the
Scenario and Environment subsystem.

open_system('HighwayLaneChangePlannerTestBench/Scenario and Environment');

The Scenario Reader block is configured to read the drivingScenario object from the base
workspace. It uses this object to read the actor data and lane boundary information. It takes in ego
vehicle information to perform a closed loop simulation. This block outputs ground truth vehicle
information from the actors in ego vehicle coordinates. The Vehicle To World block is used to convert
target vehicle positions from vehicle coordinates to world coordinates. This subsystem reads map
data from the base workspace and outputs information about lanes and the reference path.

The Planner Configuration Parameters subsystem reads base workspace variables using constant
blocks and constructs a bus structure using the Bus Creator block. The bus created by this subsystem
is used by the lane change planner.

open_system("HighwayLaneChangePlannerTestBench/Planner Configuration Parameters");

8 Featured Examples

8-1182

The Planner Configuration Parameters block reads the following parameters from the base
workspace:

• timeResolution defines the time resolution of the sampled trajectories in seconds.
• replanRate defines the replan rate for the planner in seconds.
• timeHorizon defines a vector of time horizons for sampling the trajectories in seconds.
• preferredLane defines the preferred lane for the ego vehicle
• setSpeed defines the driver set speed that ego vehicle can follow in m/s.
• maxPlanningHorizon defines the maximum longitudinal planning horizon in meters.
• egoFrontExt and targetFrontExt define the front extension for the ego and target vehicles,

respectively, in meters. These parameters are used to inflate the ego and target vehicles during
collision checking.

• frontSafetyGap and rearSafetyGap define the safety gap between the ego vehicle and other
vehicles.

• egoTTC and nextTTC define the time-to-collision bounds with other vehicles in the scenario.
• latDevCost, timeCost, and speedCost define the weights for calculating the cost of sampled

terminal states.
• maxAccel, maxCurvature, maxYawRate, and maxVelocity define the kinematic feasibility

bounds.
• enableCCBehavior, enableLCFBehavior, and enableLCBehavior are used for enabling the

sampling of terminal states for cruise control behavior, lead car following behavior (LCF), and lane
change behavior, respectively.

The Pack Actor subsystem packs the information generated by the planner into the actor bus. The
actor bus is used to update the ego actor information for the scenario reader block to perform closed
loop simulation.

 Generate Code for Highway Lane Change Planner

8-1183

open_system('HighwayLaneChangePlannerTestBench/Pack Actor');

The Get Actor Info MATLAB® function block outputs actor information in the format required by the
bus assignment block. The bus assignment block outputs the actor bus with updated information. The
Calculate Yaw Rate MATLAB function block computes the yaw rate for the ego vehicle.

The Visualization block creates a MATLAB figure that shows the chase view and top view of the
scenario and plots the ego vehicle, sampled trajectories, capsule list, and other vehicles in the
scenario.

The Metrics Assessment subsystem assesses the highway lane change planner behavior using metrics
that include the longitudinal and lateral jerk, collision, and time to collision. For more details, see
“Highway Lane Change” on page 8-867.

Model Highway Lane Change Planner

The Highway Lane Change Planner reference model implements the main algorithm for the highway
lane change system. The reference model reads map data, actor poses (in world coordinates), and

8 Featured Examples

8-1184

planner parameters from Scenario and Environment subsystem to perform trajectory planning. The
model uses the Fernet coordinate system to find the most important objects (MIOs) surrounding the
ego vehicle. Subsequently, the model samples terminal states for different behaviors, predicts the
motion of target actors, and generates multiple trajectories. Finally, the model evaluates the costs of
generated trajectories and checks for the possibility of collision and kinematic feasibility to estimate
the optimal trajectory. Open the Highway Lane Change Planner reference model.

open_system('HighwayLaneChangePlanner');

The Highway Lane Change Planner reference model contains the following blocks:

• The Frenet State Converter MATLAB function block converts the ego and target actor information
into the Frenet coordinate system from the world coordinate system.

• The Find MIOs MATLAB function block identifies the most important objects (MIOs) using ground
truth vehicle poses with respect to the current state of the ego vehicle. The vehicles present in the
front or rear of the ego vehicle are considered MIOs. The MIOs can also be present in adjacent
lanes, as shown in the following figure.

 Generate Code for Highway Lane Change Planner

8-1185

The Find MIOs block outputs information on the MIOs, including the lead vehicle, in the Frenet
coordinate system.

• Terminal State Sampler subsystem samples terminal states for cruise control, lead car following,
and lane change behaviors. It outputs concatenated terminal states for the trajectory generator.

• The Motion Prediction MATLAB system block predicts the motion of MIOs using a constant
velocity model. The predicted states of the MIOs are used for collision checking. This block uses
the HelperMotionPrediction system object, which implements the constant velocity based
motion prediction model. You can implement your own motion prediction module and test the test
bench model.

• The Motion Planner reference model uses the predicted states of MIOs, planner parameters, and
terminal states generated by the Terminal State Sampler to perform trajectory planning for the
ego vehicle.

The Terminal State Sampler subsystem configures planner behavior by computing the terminal states
using the ego vehicle and MIOs state information. Open the Terminal State Sampler subsystem.

open_system('HighwayLaneChangePlanner/Terminal State Sampler')

8 Featured Examples

8-1186

The Terminal State Sampler subsystem contains the following blocks:

• Update Environment Info updates the current lane and the preferred lane for the ego vehicle
based on its current pose. This block invokes the updateEnvironmentInfo function
implemented in the HelperTerminalStateSampler function, which is attached to this example.

• Cruise Control Sampler samples terminal states for the cruise behavior based on the current state
of the ego vehicle. This block invokes the cruiseControlSampler function from
HelperTerminalStateSampler.

• Lead Car Following Sampler samples terminal states for adaptively changing the velocity of the
ego vehicle with respect to the lead vehicle in the current ego lane. This block invokes the
leadCarFollowingSampler function from HelperTerminalStateSampler.

• Lane Change Sampler samples terminal states for lane change behavior for the ego vehicle. This
block invokes the laneChangeSampler function from HelperTerminalStateSampler.

• Concatenate States concatenates the terminal states from the Cruise Control Sampler, Lead Car
Following Sampler, and Lane Change Sampler blocks.

You can design your own Terminal State Sampler to sample terminal states for other behaviors, such
as stop and go. You can also enable or disable samplers in the Terminal State Sampler by using the
flags defined in the helperSLHighwayLaneChangePlannerSetup script.

The Motion Planner reference model generates trajectories based on the sampled terminal states and
planner parameters. Open the Motion Planner reference model.

open_system('MotionPlanner')

 Generate Code for Highway Lane Change Planner

8-1187

The Motion Planner reference model contains the following blocks:

• The Pulse Generator block defines a replan period for the Trajectory Generator block. The default
value is 1 second.

• The Cost Evaluator block calculates the cost associated with all the sampled terminal states and
sorts them in ascending order.

• The Trajectory Generator block generates trajectories for the sampled terminal states. The
sampled trajectories are in world coordinates.

• The Validity Checker subsystem validates trajectories generated by the Trajectory Generator for
feasibility and collision. It outputs the optimal trajectory that the ego car can follow.

• The State Estimator block identifies the appropriate point on the path to follow. The generated
path must conform to the road shape.

The Validity Checker subsystem checks for kinematic feasibility and collision of generated trajectories
with predicted trajectories of MIOs. Open the Validity Checker subsystem.

open_system('MotionPlanner/Validity Checker')

8 Featured Examples

8-1188

The Kinematic Feasibility block uses the helperKinematicFeasibility function to check the
feasibility of the yaw rate, curvature, acceleration, and velocity bounds for the generated trajectories.
You can add other feasibility criteria for validating the trajectories.

The Collision Checker block checks for collision with future trajectories of MIOs. It outputs the
optimal trajectory that the ego vehicle can follow. You can apply this modeling pattern and implement
your own logic to evaluate the cost and feasibility to find the optimal trajectory.

The Highway Lane Change Planner test bench by default samples trajectories for cruise control, lead
car following, and lane change behaviors. You can enable or disable these behaviors by setting the
flags in the helperSLHighwayLaneChangePlannerSetup script.

Simulate with Cruise Control and Lead Car Following Behaviors

Set up the Highway Lane Change Planner test bench with cruise control and lead car following
behavior and run the model to visualize the behavior of the system. Configure the test bench model to
use the scenario_LC_15_StopnGo_Curved scenario. This scenario contains a slow moving lead
vehicle in front of the ego vehicle. The lead car following behavior enables the ego vehicle to adjust
its velocity to avoid collision with the slow moving lead vehicle. When you enable only cruise control
behavior, the ego vehicle travels at the set velocity and avoiding collision with the lead vehicle is not
possible.

 Generate Code for Highway Lane Change Planner

8-1189

helperSLHighwayLaneChangePlannerSetup("scenarioFcnName","scenario_LC_15_StopnGo_Curved");

By default, the helperSLHighwayLaneChangeSetup script configures the model by enabling the
cruise control, lead car following, and lane change behaviors. Disable the lane change behavior and
simulate the model to observe the system behavior.

enableLCBehavior = 0;
sim('HighwayLaneChangePlannerTestBench');

Close the figure.

hLCPlot = findobj('Type', 'Figure', 'Name', 'Lane Change Status Plot');
if ~isempty(hLCPlot)
 close(hLCPlot);
end

Plot the ego velocity and orientation to analyze the behavior of the ego vehicle during the simulation.

hPlotSimResults = helperPlotEgoLateralandLongitudinalResults(logsout);

8 Featured Examples

8-1190

Observe that the ego vehicle negotiates with the lead vehicle by reducing its velocity to avoid
collision. The change in the orientation of the ego vehicle is due to the fact that the vehicle is
traveling along a curved road.

Close the figure.

close(hPlotSimResults);

Now, simulate the model by enabling lane change behavior.

Simulate with Lane Change Behavior

Now, enable the lane change behavior and simulate the model to observe the system behavior.
Enabling the lane change behavior allows the ego vehicle to perform a lane change for maintaining
the desired velocity and to avoid collision with the slow moving lead vehicle in the scenario.

 Generate Code for Highway Lane Change Planner

8-1191

enableLCBehavior = 1;
sim('HighwayLaneChangePlannerTestBench');

Close the figure.

hLCPlot = findobj('Type', 'Figure', 'Name', 'Lane Change Status Plot');
if ~isempty(hLCPlot)
 close(hLCPlot);
end

Plot the ego velocity and orientation to analyze the behavior of the ego vehicle during the simulation.

hPlotSimResults = helperPlotEgoLateralandLongitudinalResults(logsout);

8 Featured Examples

8-1192

Observe that the ego vehicle maintains a nearly constant velocity and yet avoids collision with the
slow moving lead car due to a lane change maneuver. The ego orientation plot clearly reflects the
change in the ego orientation during the lane change.

Close the figure.

close(hPlotSimResults);

Generate C++ Code

You can now generate C++ code for the algorithm, apply common optimizations, and generate a
report to facilitate exploring the generated code.

Configure the Highway Lane Change Planner and Motion Planner models to generate C++ code for
real-time implementation of the algorithm. Set the model parameters to enable code generation and
display the configuration values.

 Generate Code for Highway Lane Change Planner

8-1193

Now, set and view the model parameters to enable C++ code generation. Close the reference models
to preserve the model on the root level before saving the model.

close_system('MotionPlanner');
helperSetModelParametersForCodeGeneration('MotionPlanner');
save_system('MotionPlanner');
close_system('HighwayLaneChangePlanner');
helperSetModelParametersForCodeGeneration('HighwayLaneChangePlanner');
save_system('HighwayLaneChangePlanner');

 Model configuration parameters:

 Parameter Value Description
 ___________________________________ _______________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'SolverType' } {'Fixed-step' } {'Solver>Type' }
 {'FixedStep' } {'auto' } {'Solver>Fixed-step size (fundamental sample time)' }
 {'EnableMultiTasking' } {'on' } {'Solver>Treat each discrete rate as a separate task' }
 {'ProdLongLongMode' } {'on' } {'Hardware Implementation>Support long long' }
 {'BlockReduction' } {'on' } {'Simulation Target>Block reduction' }
 {'MATLABDynamicMemAlloc' } {'on' } {'Simulation Target>Simulation Target>Dynamic memory allocation in MATLAB functions' }
 {'OptimizeBlockIOStorage' } {'on' } {'Simulation Target>Signal storage reuse' }
 {'InlineInvariantSignals' } {'on' } {'Simulation Target>Inline invariant signals' }
 {'BuildConfiguration' } {'Faster Runs'} {'Code Generation>Build configuration' }
 {'RTWVerbose' } {'of' } {'Code Generation>Verbose build' }
 {'CombineSignalStateStructs' } {'on' } {'Code Generation>Interface>Combine signal/state structures' }
 {'SupportVariableSizeSignals' } {'on' } {'Code Generation>Interface>Support variable-size signals' }
 {'CodeInterfacePackaging' } {'C++ class' } {'Code Generation>Interface>Code interface packaging' }
 {'GenerateExternalIOAccessMethods'} {'Method' } {'Code Generation>Interface>Data Member Visibility>External I/O access' }
 {'EfficientFloat2IntCast' } {'on' } {'Code Generation>Optimization>Remove code from floating-point to integer conversions that wraps out-of-range values'}
 {'ZeroExternalMemoryAtStartup' } {'off' } {'Code Generation>Optimization>Remove root level I/O zero initialization (inverse logic)' }
 {'CustomSymbolStrGlobalVar' } {'NM' } {'Code Generation>Symbols>Global variables' }
 {'CustomSymbolStrType' } {'NM_T' } {'Code Generation>Symbols>Global types' }
 {'CustomSymbolStrField' } {'NM' } {'Code Generation>Symbols>Field name of global types' }
 {'CustomSymbolStrFcn' } {'APV_NM$F' } {'Code Generation>Symbols>Subsystem methods' }
 {'CustomSymbolStrTmpVar' } {'NM' } {'Code Generation>Symbols>Local temporary variables' }
 {'CustomSymbolStrMacro' } {'NM' } {'Code Generation>Symbols>Constant macros' }

 Model configuration parameters:

 Parameter Value Description
 ___________________________________ _______________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'SolverType' } {'Fixed-step' } {'Solver>Type' }
 {'FixedStep' } {'auto' } {'Solver>Fixed-step size (fundamental sample time)' }
 {'EnableMultiTasking' } {'on' } {'Solver>Treat each discrete rate as a separate task' }
 {'ProdLongLongMode' } {'on' } {'Hardware Implementation>Support long long' }
 {'BlockReduction' } {'on' } {'Simulation Target>Block reduction' }
 {'MATLABDynamicMemAlloc' } {'on' } {'Simulation Target>Simulation Target>Dynamic memory allocation in MATLAB functions' }
 {'OptimizeBlockIOStorage' } {'on' } {'Simulation Target>Signal storage reuse' }
 {'InlineInvariantSignals' } {'on' } {'Simulation Target>Inline invariant signals' }
 {'BuildConfiguration' } {'Faster Runs'} {'Code Generation>Build configuration' }

8 Featured Examples

8-1194

 {'RTWVerbose' } {'of' } {'Code Generation>Verbose build' }
 {'CombineSignalStateStructs' } {'on' } {'Code Generation>Interface>Combine signal/state structures' }
 {'SupportVariableSizeSignals' } {'on' } {'Code Generation>Interface>Support variable-size signals' }
 {'CodeInterfacePackaging' } {'C++ class' } {'Code Generation>Interface>Code interface packaging' }
 {'GenerateExternalIOAccessMethods'} {'Method' } {'Code Generation>Interface>Data Member Visibility>External I/O access' }
 {'EfficientFloat2IntCast' } {'on' } {'Code Generation>Optimization>Remove code from floating-point to integer conversions that wraps out-of-range values'}
 {'ZeroExternalMemoryAtStartup' } {'off' } {'Code Generation>Optimization>Remove root level I/O zero initialization (inverse logic)' }
 {'CustomSymbolStrGlobalVar' } {'NM' } {'Code Generation>Symbols>Global variables' }
 {'CustomSymbolStrType' } {'NM_T' } {'Code Generation>Symbols>Global types' }
 {'CustomSymbolStrField' } {'NM' } {'Code Generation>Symbols>Field name of global types' }
 {'CustomSymbolStrFcn' } {'APV_NM$F' } {'Code Generation>Symbols>Subsystem methods' }
 {'CustomSymbolStrTmpVar' } {'NM' } {'Code Generation>Symbols>Local temporary variables' }
 {'CustomSymbolStrMacro' } {'NM' } {'Code Generation>Symbols>Constant macros' }

Generate code and review the code generation report for the reference model.

rtwbuild('HighwayLaneChangePlanner');

Starting serial model reference code generation build
Starting build procedure for: MotionPlanner
Successful completion of build procedure for: MotionPlanner
Starting build procedure for: HighwayLaneChangePlanner
Successful completion of build procedure for: HighwayLaneChangePlanner

Build Summary

Code generation targets built:

Model Action Rebuild Reason
===
MotionPlanner Code generated and compiled MotionPlanner.cpp does not exist.

Top model targets built:

Model Action Rebuild Reason
===
HighwayLaneChangePlanner Code generated and compiled Code generation information file does not exist.

2 of 2 models built (0 models already up to date)
Build duration: 0h 8m 26s

Use the code generation report to explore the generated code. To learn more about the code
generation report, see “Reports for Code Generation” (Embedded Coder). Use the code interface
report link in the code generation report to explore these generated methods:

• initialize — Call once on initialization.
• step — Call periodically every step to execute the lane marker detection algorithm.
• terminate — Call once on termination.

Additional get and set methods for signal interface are declared in HighwayLaneChangePlanner.h
and defined in HighwayLaneChangePlanner.cpp.

Assess Functionality of Code

After generating C++ code for the highway lane change planner, you can now assess the code
functionality using software-in-the-loop (SIL) simulation. It provides early insight into the behavior of

 Generate Code for Highway Lane Change Planner

8-1195

a deployed application. To learn more about SIL simulation, see “SIL and PIL Simulations”
(Embedded Coder).

SIL simulation enables you to verify that the compiled generated code on the host is functionally
equivalent to the normal mode.

Configure the algorithm and test bench model parameters to support SIL simulation and log
execution profiling information.

helperSetModelParametersForSIL('HighwayLaneChangePlanner');
helperSetModelParametersForSIL('HighwayLaneChangePlannerTestBench');

HighwayLaneChangePlanner configuration parameters:

 Parameter Value Description
 ________________________________ ____________________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'CodeExecutionProfiling' } {'on' } {'Code Generation>Verification>Measure task execution time'}
 {'CodeProfilingSaveOptions' } {'AllData' } {'Code Generation>Verification>Save options' }
 {'CodeExecutionProfileVariable'} {'executionProfile'} {'Code Generation>Verification>Workspace variable' }

HighwayLaneChangePlannerTestBench configuration parameters:

 Parameter Value Description
 ________________________________ ____________________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'CodeExecutionProfiling' } {'on' } {'Code Generation>Verification>Measure task execution time'}
 {'CodeProfilingSaveOptions' } {'AllData' } {'Code Generation>Verification>Save options' }
 {'CodeExecutionProfileVariable'} {'executionProfile'} {'Code Generation>Verification>Workspace variable' }

Configure the test bench model to simulate in SIL mode.

set_param('HighwayLaneChangePlannerTestBench/Highway Lane Change Planner','SimulationMode','Software-in-the-loop (SIL)');
sim('HighwayLaneChangePlannerTestBench');

Starting serial model reference code generation build
Starting build procedure for: MotionPlanner
Successful completion of build procedure for: MotionPlanner
Starting build procedure for: HighwayLaneChangePlanner
Successful completion of build procedure for: HighwayLaneChangePlanner

Build Summary

Code generation targets built:

Model Action Rebuild Reason
===
MotionPlanner Code compiled Code instrumentation settings have changed.
HighwayLaneChangePlanner Code generated and compiled HighwayLaneChangePlanner.cpp does not exist.

2 of 2 models built (0 models already up to date)

8 Featured Examples

8-1196

Build duration: 0h 4m 48.198s
Preparing to start SIL simulation ...
Building with 'Microsoft Visual C++ 2017 (C)'.
MEX completed successfully.
Starting SIL simulation for component: HighwayLaneChangePlanner
Stopping SIL simulation for component: HighwayLaneChangePlanner

Close the figure.

hLCPlot = findobj('Type', 'Figure', 'Name', 'Lane Change Status Plot');
if ~isempty(hLCPlot)
 close(hLCPlot);
end

You can compare the outputs from normal simulation mode and SIL simulation mode. You can verify if
the differences between these runs are within the tolerance limits by using the following code. Plot
the differences of the detected lane boundary parameters between the normal simulation mode and
SIL simulation mode.

runIDs = Simulink.sdi.getAllRunIDs;
normalSimRunID = runIDs(end - 1);
SilSimRunID = runIDs(end);
diffResult = Simulink.sdi.compareRuns(normalSimRunID ,SilSimRunID);

Plot the differences between the lane boundary parameters computed from normal mode and SIL
mode.

hFigDiffResult = helperPlotLCPlannerDiffSignals(diffResult);

 Generate Code for Highway Lane Change Planner

8-1197

Close the figure handle.

close(hFigDiffResult);

Notice that the differences between normal mode of simulation and SIL mode of simulation are
approximately zero.

Assess Execution Time and Coverage of Code

During the SIL simulation, log the execution time metrics for the generated code on the host
computer to the variable executionProfile in the MATLAB base workspace. These times can be an
early indicator of the performance of the generated code. For accurate execution time measurements,
profile the generated code when it is integrated into the external environment or when you use
processor-in-the-loop (PIL) simulation. To learn more about PIL profiling, refer to “Code Execution
Profiling with SIL and PIL” (Embedded Coder).

Plot the execution time taken for the step function of HighwayLaneChangePlanner using the
helperPlotLCPlannerExecutionProfile function.

hFigLCExeProfile = helperPlotLCPlannerExecutionProfile(executionProfile);

8 Featured Examples

8-1198

You can deduce the average time taken per frame for the highway lane change planner from this plot.
For more information on generating execution profiles and analyzing them during SIL simulation, see
“Execution Time Profiling for SIL and PIL” (Embedded Coder).

Close the figure.

close(hFigLCExeProfile);

If you have a Simulink Coverage™ license, you can also perform the code coverage analysis for the
generated code to measure the testing completeness. You can use missing coverage data to find gaps
in testing, missing requirements, or unintended functionality. Configure the coverage settings and
simulate the test bench model to generate the coverage analysis report. Find the generated report
CoverageResults/HighwayLaneChangePlanner_modelrefsil_summary_cov.html in the
working directory.

if(license('test','Simulink_Coverage'))
 helperCoverageSettings('HighwayLaneChangePlannerTestBench');
 cvDataGroupObj = cvsim('HighwayLaneChangePlannerTestBench');
 % Get Generated Code coverage of HighwayLaneChangePlanner.
 cvDataObj = get(cvDataGroupObj,'HighwayLaneChangePlanner');
 cvhtml('CoverageResults/HighwayLaneChangePlanner_modelrefsil_summary_cov',cvDataObj);
end

hLCPlot = findobj('Type', 'Figure', 'Name', 'Lane Change Status Plot');
if ~isempty(hLCPlot)
 close(hLCPlot);
end

 Generate Code for Highway Lane Change Planner

8-1199

Starting serial model reference code generation build
Starting build procedure for: MotionPlanner
Successful completion of build procedure for: MotionPlanner
Starting build procedure for: HighwayLaneChangePlanner
Successful completion of build procedure for: HighwayLaneChangePlanner

Build Summary

Code generation targets built:

Model Action Rebuild Reason
==
MotionPlanner Code compiled Code instrumentation settings have changed.
HighwayLaneChangePlanner Code compiled Code instrumentation settings have changed.

2 of 2 models built (0 models already up to date)
Build duration: 0h 6m 33.501s
Preparing to start SIL simulation ...
Building with 'Microsoft Visual C++ 2017 (C)'.
MEX completed successfully.
Starting SIL simulation for component: HighwayLaneChangePlanner
Stopping SIL simulation for component: HighwayLaneChangePlanner
Completed code coverage analysis

You can find the decision coverage, statement coverage, and function coverage results while
simulating the generated code for this test scenario, scenario_LC_15_StopnGo_Curved. You can
test this model with different scenarios to get full coverage of the generated code. For more
information on how to analyze coverage results during SIL simulation, see “Code Coverage for
Models in Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL) Mode” (Embedded
Coder).

Explore Other Scenarios

The following additional scenarios are compatible with the Highway Lane Change Planner test bench
model.

• scenario_LC_01_SlowMoving
• scenario_LC_02_SlowMovingWithPassingCar
• scenario_LC_03_DisabledCar
• scenario_LC_04_CutInWithBrake
• scenario_LC_05_SingleLaneChange
• scenario_LC_06_DoubleLaneChange
• scenario_LC_07_RightLaneChange
• scenario_LC_08_SlowmovingCar_Curved
• scenario_LC_09_CutInWithBrake_Curved
• scenario_LC_10_SingleLaneChange_Curved
• scenario_LC_11_MergingCar_HighwayEntry
• scenario_LC_12_CutInCar_HighwayEntry
• scenario_LC_13_DisabledCar_Ushape
• scenario_LC_14_DoubleLaneChange_Ushape

8 Featured Examples

8-1200

• scenario_LC_15_StopnGo_Curved [Default]

These scenarios are created using the Driving Scenario Designer and are exported to a scenario file.
Examine the comments in each file for more details on the road and vehicles in each scenario. You
can configure the Highway Lane Change Planner test bench and workspace to simulate these
scenarios using the helperSLHighwayLaneChangePlannerSetup function. For example, you can
configure the simulation for a curved road scenario.

helperSLHighwayLaneChangePlannerSetup("scenarioFcnName","scenario_LC_14_DoubleLaneChange_Ushape");

Conclusion

This example showed how to design, test and generate code for highway lane change planner. After
successful testing, you can integrate this planner in highway lane change system.

See Also
Scenario Reader | Vehicle To World

More About
• “Highway Lane Change” on page 8-867
• “Surround Vehicle Sensor Fusion” on page 8-1202
• “Highway Lane Following” on page 8-922
• “Highway Lane Following with RoadRunner Scene” on page 8-1049

 Generate Code for Highway Lane Change Planner

8-1201

Surround Vehicle Sensor Fusion
This example shows how to implement a synthetic data simulation to detect vehicles using multiple
vision and radar sensors, and generate fused tracks for surround view analysis in Simulink® with
Automated Driving Toolbox™. It also shows how to use quantitative analysis tools in Sensor Fusion
and Tracking Toolbox™ for assessing the performance of a tracker.

Introduction

Sensor fusion and tracking is a fundamental perception component of automated driving applications.
An autonomous vehicle uses many onboard sensors to understand the world around it. Each of the
sensors the vehicle uses for self-driving applications, such as radar, camera, and lidar sensors has its
own limitations. The goal of sensor fusion and tracking is to take the inputs of different sensors and
sensor types, and use the combined information to perceive the environment more accurately. Any
cutting-edge autonomous driving system that can make critical decisions, such as highway lane
following or highway lane change, strongly relies on sensor fusion and tracking. As such, you must
test the design of sensor fusion and tracking systems using a component level model. This model
enables you to test critical scenarios that are difficult to test in real time.

This example shows how to fuse and track the detections from multiple vision detection sensors and a
radar sensor. The sensors are mounted on the ego vehicle such that they provide 360 degree
coverage around the ego vehicle. The example clusters radar detections, fuses them with vision
detections, and tracks the detections using a joint probabilistic data association (JPDA) multi-object
tracker. The example also shows how to evaluate the tracker performance using the generalized
optimal subpattern assignment (GOSPA) metric for a set of predefined scenarios in an open-loop
environment. In this example, you:

1 Explore the test bench model — The model contains sensors, sensor fusion and tracking
algorithm, and metrics to assess functionality. Detection generators from a driving scenario are
used to model detections from a radar and vision sensor.

2 Configure sensors and environment — Set up a driving scenario that includes an ego vehicle
with a camera and a radar sensor. Plot the coverage area of each sensor using Bird's-Eye
Scope.

3 Perform sensor fusion and tracking — Cluster radar detections, fuse them with vision
detections, and track the detections using a JPDA multi-object tracker.

4 Evaluate performance of tracker — Use the GOSPA metric to evaluate the performance of the
tracker.

5 Simulate the test bench model and analyze the results — The model configures a scenario
with multiple target vehicles surrounding an ego vehicle that performs lane change maneuvers.
Simulate the model, and analyze the components of the GOSPA metric to understand the
performance of tracker.

6 Explore other scenarios — These scenarios test the system under additional conditions.

Explore Test Bench Model

This example uses both a test bench model and a reference model of surround vehicle sensor fusion.
The test bench model simulates and tests the behavior of the fusion and tracking algorithm in an
open loop. The reference model implements the sensor fusion and tracking algorithm.

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

8 Featured Examples

8-1202

addpath(fullfile(matlabroot, "toolbox", "driving", "drivingdemos"));
helperDrivingProjectSetup("SVSensorFusion.zip", workDir=pwd);

Open the test bench model.

open_system("SurroundVehicleSensorFusionTestBench");

Opening this model runs the helperSLSurroundVehicleSensorFusionSetup script, which
initializes the road scenario using the drivingScenario object in the base workspace. The script
also configures the sensor parameters, tracker parameters, and the Simulink bus signals required to
define the inputs and outputs for the SurroundVehicleSensorFusionTestBench model. The test
bench model contains these subsystems:

1 Sensors and Environment — This subsystem specifies the scene, camera, radar, and INS sensors
used for simulation.

2 Surround Vehicle Sensor Fusion — This subsystem fuses the detections from multiple sensors to
produce tracks.

3 Metrics Assessment — This subsystem assesses the surround vehicle sensor fusion design using
the GOSPA metric.

Configure Sensors and Environment

The Sensors and Environment subsystem configures the road network, sets vehicle positions, and
synthesizes sensors. Open the Sensors and Environment subsystem.

open_system("SurroundVehicleSensorFusionTestBench/Sensors and Environment");

 Surround Vehicle Sensor Fusion

8-1203

• The Scenario Reader block configures the driving scenario and outputs actor poses, which control
the positions of the target vehicles.

• The Vehicle To World block converts actor poses from the coordinates of the ego vehicle to the
world coordinates.

• The Vision Detection Generator block simulates object detections using a camera sensor model.
• The Driving Radar Data Generator block simulates object detections based on a statistical model.

It also outputs clustered object detections for further processing.
• The INS block models the measurements from inertial navigation system and global navigation

satellite system and outputs the fused measurements. It outputs the noise-corrupted position,
velocity, and orientation for the ego vehicle.

The subsystem configures five vision sensors and a radar sensor to capture the surround view of the
vehicle. These sensors are mounted on different locations on the ego vehicle to capture a 360 degree
view. The helperSLSurroundVehicleSensorFusionSetup script sets the parameters of the
sensor models.

The Bird's-Eye Scope displays sensor coverage by using a cuboid representation. The radar
coverage area and detections are in red. The vision coverage area and detections are in blue.

8 Featured Examples

8-1204

Perform Sensor Fusion and Tracking

The Surround Vehicle Sensor Fusion is the reference model that processes vision and radar
detections and generates the position and velocity of the tracks relative to the ego vehicle. Open the
Surround Vehicle Sensor Fusion reference model.

open_system("SurroundVehicleSensorFusion");

 Surround Vehicle Sensor Fusion

8-1205

• The Vision Detection Concatenation block concatenates the vision detections. The prediction time
is driven by a clock in the Sensors and Environment subsystem.

• The Delete Velocity From Vision block is a MATLAB Function block that deletes velocity
information from vision detections.

• The Vision and Radar Detection Concatenation block concatenates the vision and radar detections.
• The Add Localization Information block is a MATLAB Function block that adds localization

information for the ego vehicle to the concatenated detections using an estimated ego vehicle
pose from INS sensor. This enables the tracker to track in the global frame and minimizes the
effect on the tracks of lane change maneuvers by the ego vehicle.

• The Joint Probabilistic Data Association Multi Object Tracker (Sensor Fusion and Tracking
Toolbox) block performs the fusion and manages the tracks of stationary and moving objects.

• The Estimate Yaw block is a MATLAB Function block that estimates the yaw for the tracks and
appends it to Tracks output. Yaw information is useful when you integrate this component level
model with closed-loop systems like highway lane change system.

• The Convert To Ego block is a MATLAB Function block that converts the tracks from the global
frame to the ego frame using the estimated ego vehicle information. The Bird's-Eye Scope
displays tracks in the ego frame.

The Joint Probabilistic Data Association Multi-Object Tracker is a key block in the Surround Vehicle
Sensor Fusion reference model. The tracker fuses the information contained in concatenated
detections and tracks the objects around the ego vehicle. The tracker then outputs a list of confirmed
tracks. These tracks are updated at a prediction time driven by a digital clock in the Sensors and
Environment subsystem.

Evaluate Performance of Tracker

The Metrics Assessment subsystem computes various metrics to assess the performance of a tracker.
Open the Metrics Assessment subsystem.

This metric assesses the performance of a tracker by combining both assignment and state-estimation
accuracy into a single cost value. Open the Metrics Assessment subsystem.

open_system("SurroundVehicleSensorFusionTestBench/Metrics Assessment");

8 Featured Examples

8-1206

To evaluate the performance of a tracker, you must remove the ground truth information of the actors
that are outside the coverage area of the sensors. For this purpose, the subsystem uses the Filter
Within Coverage MATLAB Function block to filter only those actors that are within the coverage area
of the sensors.

The subsystem contains a GOSPA metric block that computes these metrics:

• GOSPA metric — Measures the distance between a set of tracks and their ground truths. This
metric combines both assignment and state-estimation accuracy into a single cost value.

• Switching error — Indicates the resulting error during track switching. A higher switching error
indicates the incorrect assignments of tracks to truth while switching tracks.

• Localization error — Indicates the state-estimation accuracy. A higher localization error indicates
that the assigned tracks do not estimate the state of the truths correctly.

• Missed target error — Indicates the presence of missed targets. A higher missed target error
indicates that targets are not being tracked.

• False tracks error — Indicates the presence of false tracks.

Simulate Test Bench Model and Analyze Results

During simulation, you can visualize the scenario using the Bird's-Eye Scope. To open the scope,
click Bird's-Eye Scope in the Review Results section of the Simulink toolstrip. Next, click Update
Signals to find and update signals that the scope can display. Select the tracksInEgo signal for the
confirmed tracks.

Configure the SurroundVehicleSensorFusionTestBench model to simulate the
scenario_LC_06_DoubleLaneChange scenario. This scenario contains 10 vehicles, including the
ego vehicle, and defines their trajectories. In this scenario, the ego vehicle changes lanes two times.
The target actors are moving around the ego vehicle.

helperSLSurroundVehicleSensorFusionSetup("scenarioFcnName","scenario_LC_06_DoubleLaneChange");

Simulate the test bench model.

sim("SurroundVehicleSensorFusionTestBench");

 Surround Vehicle Sensor Fusion

8-1207

Once the simulation starts, use the Bird's-Eye Scope window to visualize the ego actor, target actors,
sensor coverages and detections, and confirmed tracks.

During simulation, the model outputs the GOSPA metric and its components, which measure the
statistical distance between multiple tracks and truths. The model logs these metrics, with the
confirmed tracks and ground truth information, to the base workspace variable logsout. You can
plot the values in logsout by using the helperPlotSurroundVehicleSensorFusionResults
function.

hFigResults = helperPlotSurroundVehicleSensorFusionResults(logsout);

8 Featured Examples

8-1208

In this simulation, the Distance Type and Cutoff distance parameters of GOSPA metric block are
set to custom and 30 respectively. The helperComputeDistanceToTruth function computes the
custom distance by combining the errors in position and velocity between each truth and track.

Close the figure.

close(hFigResults);

Explore Other Scenarios

You can use the procedure in this example to explore these other scenarios, which are compatible
with SurroundVehicleSensorFusionTestBench:

scenario_LC_01_SlowMoving
scenario_LC_02_SlowMovingWithPassingCar
scenario_LC_03_DisabledCar
scenario_LC_04_CutInWithBrake

 Surround Vehicle Sensor Fusion

8-1209

scenario_LC_05_SingleLaneChange
scenario_LC_06_DoubleLaneChange [Default]
scenario_LC_07_RightLaneChange
scenario_LC_08_SlowmovingCar_Curved
scenario_LC_09_CutInWithBrake_Curved
scenario_LC_10_SingleLaneChange_Curved
scenario_LC_11_MergingCar_HighwayEntry
scenario_LC_12_CutInCar_HighwayEntry
scenario_LC_13_DisabledCar_Ushape
scenario_LC_14_DoubleLaneChange_Ushape
scenario_LC_15_StopnGo_Curved
scenario_SVSF_01_ConstVelocityAsTargets
scenario_SVSF_02_CrossTargetActors

Use these additional scenarios to analyze SurroundVehicleSensorFusionTestBench under
different conditions.

Conclusion

This example showed how to simulate and evaluate the performance of the surround vehicle sensor
fusion and tracking component for highway lane change maneuvers. This component-level model lets
you stress test your design in an open-loop virtual environment and helps in tuning the tracker
parameters by evaluating GOSPA metrics. The next logical step is to integrate this component-level
model in a closed-loop system like highway lane change.

See Also
Scenario Reader | Vehicle To World | Vision Detection Generator | Driving Radar Data Generator

More About
• “Forward Vehicle Sensor Fusion” on page 8-1121
• “Highway Lane Following” on page 8-922
• “Highway Lane Change” on page 8-867

8 Featured Examples

8-1210

Build Occupancy Map from 3-D Lidar Data using SLAM
This example demonstrates how to build a 2-D occupancy map from 3-D Lidar data using a
simultaneous localization and mapping (SLAM) algorithm. This occupancy map is useful for
localization and path planning for vehicle navigation. You can also use this map as a prebuilt map to
incorporate sensor information.

In this example, you process point clouds incrementally to estimate the trajectory of a vehicle with a
mounted lidar sensor. These estimates are prone to accumulating drift over time, which reduces the
accuracy of the built map. To correct drift, use loop closure detection and pose graph optimization.
Finally, use the optimized poses to build an occupancy map. The lidar point cloud data in this example
has been collected from a scene in a simulation environment built using the Unreal Engine® from
Epic Games®.

In this example you learn how to:

1 Set up a scenario in the simulation environment with different scenes, vehicles, sensor
configurations, and collect data.

2 Estimate the trajectory of a vehicle using the phase correlation registration technique.
3 Use a SLAM algorithm to perform loop closure detection and pose graph optimization.
4 Use the estimated poses to build and visualize an occupancy map.

Set Up Scenario in Simulation Environment

Load the prebuilt Large Parking Lot scene. The “Select Waypoints for Unreal Engine Simulation” on
page 8-894 example describes how to interactively select a sequence of waypoints from a scene and
how to generate a reference vehicle trajectory. Use this approach to select a sequence of waypoints
and generate a reference trajectory for the ego vehicle. Add additional vehicles by specifying the
parking poses of the vehicles. Visualize the reference path and the parked vehicles on a 2-D bird's-eye
view of the scene.

% Load reference path
data = load('parkingLotReferenceData.mat');

% Set reference trajectory of the ego vehicle
refPosesX = data.refPosesX;
refPosesY = data.refPosesY;
refPosesT = data.refPosesT;

% Set poses of the parked vehicles
parkedPoses = data.parkedPoses([18 21],:);

% Display the reference path and the parked vehicle locations
sceneName = 'LargeParkingLot';
hScene = figure('Name', 'Large Parking Lot','NumberTitle','off');
helperShowSceneImage(sceneName);
hold on
plot(refPosesX(:,2),refPosesY(:,2),'LineWidth',2,'DisplayName','Reference Path');
scatter(parkedPoses(:,1),parkedPoses(:,2),[],'filled','DisplayName','Parked Vehicles');
xlim([-60 40])
ylim([10 60])
hScene.Position = [100, 100, 1000, 500]; % Resize figure
legend
hold off

 Build Occupancy Map from 3-D Lidar Data using SLAM

8-1211

Open the model and add parked vehicles using the helperAddParkedVehicle function.

modelName = 'GenerateLidarDataOfParkingLot';
open_system(modelName);
snapnow;

helperAddParkedVehicles(modelName,parkedPoses);

Record and Visualize Data

Set up a simple model with a hatchback vehicle moving along the specified reference path by using
the Simulation 3D Vehicle with Ground Following block. Mount a lidar on the roof center of a vehicle
using the Simulation 3D Lidar block. Record and visualize the sensor data. The recorded data is used
to develop the localization algorithm.

close(hScene)

if ~ispc
 error("Unreal Engine Simulation is supported only on Microsoft" + char(174) + " Windows" + char(174) + ".");
end

% Run simulation
simOut = sim(modelName);

close_system(modelName,0);

% Extract lidar data
ptCloudArr = helperGetPointClouds(simOut);

% Extract ground truth for the lidar data as an array of rigid3d objects
groundTruthPosesLidar = helperGetLidarGroundTruth(simOut);

8 Featured Examples

8-1212

Vehicle Odometry Using Phase Correlation Algorithm

In order to build a map using the collected point clouds, the relative poses between the successive
point clouds need to be estimated. From these poses, the estimated trajectory of the vehicle is
determined. This approach of incrementally estimating the trajectory is called odometry.

To build a 2-D occupancy grid map, 2-D pose estimations are sufficient. Hence, convert the point
clouds into 2-D occupancy grid images by projecting the points onto the ground plane. Use a phase
correlation registration algorithm to calculate the 2-D relative transformation between two images.
By successively composing these transformations, you transform each point cloud back to the
reference frame of the first point cloud. This technique is also used in pcregistercorr [1].

In summary, these are the steps used to calculate the vehicle odometry:

1 Preprocess the point cloud
2 Create an occupancy grid image of the point cloud, by determining the occupancy based on the

height (Z-axis) value of the points
3 Register two occupancy grid images created from point clouds that correspond to the same

scene. Use the imregcorr function to register the grid images and estimate the pose.
4 Repeat steps on point clouds successively to estimate the relative poses between them

Preprocess Point Cloud

The preprocessing step involves the following operations:

1 Remove the outliers.
2 Clip the point cloud to concentrate on the area of interest.
3 Segment and remove the ego vehicle.

ptCloud = ptCloudArr(1);

% Remove outliers in the point cloud
ptCloudDenoised = pcdenoise(ptCloud);

% Clip the point cloud. This is done to improve the processing performance
% and also to include only the areas of interest

% Set the limits to select the point cloud
selectLimitX = [-40 40];
selectLimitY = [-40 40];

% In order to not include ground in the processing, add a buffer value to
% the lower Z limit of the point cloud. Clip anything above 5m.
minZValue = ptCloudDenoised.ZLimits(1) + 0.2;
maxZValue = 5;
selectLimitZ = [minZValue maxZValue];

roi = [selectLimitX selectLimitY selectLimitZ];
indices = findPointsInROI(ptCloudDenoised,roi);
ptCloudClipped = select(ptCloudDenoised,indices);

% Segment and remove ego vehicle

% Set location of the sensor and vehicle radius
sensorLocation = [0 0 0];

 Build Occupancy Map from 3-D Lidar Data using SLAM

8-1213

vehicleRadius = 3.5;

% Find the indices of the points other than the ego vehicle and create a
% point cloud with these points
egoIndices = findNeighborsInRadius(ptCloudClipped,sensorLocation,vehicleRadius);

egoFixed = false(ptCloudClipped.Count,1);
egoFixed(egoIndices) = true;
ptCloudProcessed = select(ptCloudClipped,~egoFixed);

% Visualize and compare the point cloud before and after preprocessing.
figure('Name','Processed Point Clouds','NumberTitle','off');
pcViewAxes = pcshowpair(ptCloud, ptCloudProcessed);
title('Point cloud before and after preprocessing');
xlabel(pcViewAxes,'X (m)');
ylabel(pcViewAxes,'Y (m)');
zlabel(pcViewAxes,'Z (m)');

8 Featured Examples

8-1214

Create Occupancy Grid Image

Follow the steps below to create the occupancy grid images from the point clouds by projecting the
points onto the ground plane.

1 Define a grid on the X-Y plane with appropriate resolution
2 Calculate a probability value for each point in the point cloud based on its Z-value. This

probability is determined by a lower and an upper limit, with all the Z-values between the limits
scaled in the range [0,1]. Any points with Z-values below the lower limit or above the upper
limit, are mapped to the probability values 0 and 1 respectively.

3 Accumulate the probabilities in each grid cell corresponding to the points and compute the
average. Use pcbin to discretize the grid and obtain the indices of the grid cells for processing.

4 Visualize the occupancy grid image that represents a top view of the scene.

% Set the occupancy grid size to 100 m with a resolution of 0.2 m
gridSize = 100;
gridStep = 0.2;

% The occupancy grid is created by scaling the points from 1m - 5m in
% height to the probability values of [0 1]
zLimits = [1 5];

% Since we use the Z-values to determine the occupancy in a grid image,
% move the point cloud by sensor height so that more points are included to
% calculate occupancy

% Set the sensor height. This information can be obtained from the lidar
% point cloud
sensorHeight = groundTruthPosesLidar(1).Translation(3);

locationPts = ptCloudProcessed.Location;
locationPts(:,3) = locationPts(:,3) + sensorHeight;
ptCloudHeightAdjusted = pointCloud(locationPts);

% Calclate the number of bins
spatialLimits = [-gridSize/2 gridSize/2; -gridSize/2 gridSize/2; ptCloudHeightAdjusted.ZLimits];

gridXBinSize = round(abs(spatialLimits(1,2) - spatialLimits(1,1)) / gridStep);
gridYBinSize = round(abs(spatialLimits(2,2) - spatialLimits(2,1)) / gridStep);

numBins = [gridXBinSize gridYBinSize 1];

% Find bin indices
binIndices = pcbin(ptCloudHeightAdjusted,numBins,spatialLimits,'BinOutput',false);

% Pre allocate occupancy grid
occupancyGrid = zeros(gridXBinSize,gridYBinSize,'like',ptCloudHeightAdjusted.Location);
gridCount = zeros(gridXBinSize,gridYBinSize);

% Scale the Z values of the points to the probability range [0 1]
zValues = rescale(ptCloudHeightAdjusted.Location(:,3),'InputMin', zLimits(1),'InputMax', zLimits(2));

for idx = 1:numel(binIndices)
 binIdx = binIndices(idx);
 if ~isnan(binIdx)
 occupancyGrid(binIdx) = occupancyGrid(binIdx) + zValues(idx);

 Build Occupancy Map from 3-D Lidar Data using SLAM

8-1215

 gridCount(binIdx) = gridCount(binIdx) + 1;
 end
end

gridCount(gridCount == 0) = 1;

occupancyGrid = occupancyGrid ./ gridCount;

% Visualize the created occupancy grid
figure;
subplot(1,2,1);
pcshow(ptCloudProcessed); view(2);
title('Point cloud birds eye view')
subplot(1,2,2);
imshow(imrotate(occupancyGrid, 90));
tHandle = title('Occupancy grid image');
tHandle.Color = [1 1 1];

Projecting the points onto the ground plane works well if the ground plane is flat. The data collected
in this example has a relatively flat ground plane. If the ground plane is not flat, transform the ground

8 Featured Examples

8-1216

plane so that it is parallel to the X-Y plane. For more information, see the “Register Lidar Moving
Point Cloud to Fixed Point Cloud” example and the “Tips” section of pcregistercorr.

Register and Estimate Poses

Use poseGraph (Navigation Toolbox) to store the estimated poses.

% Pose graph for registration poses
regEstPoseGraph = poseGraph;
relTrans = groundTruthPosesLidar(1).T(4, 1:2);
relYaw = -atan2(groundTruthPosesLidar(1).T(2,1),groundTruthPosesLidar(1).T(1,1));

Then use imregcorr to estimate the relative transformation. Add the poses obtained to the pose
graph using addRelativePose (Navigation Toolbox) method. Visualize the poses that are stored in
the pose graph as the algorithm progresses.

% Get ground truth pose graph
gTPoseGraph = helperGetGTPoseGraph(groundTruthPosesLidar);

% Obtain the nodes from the pose graphs
gTNodes = gTPoseGraph.nodes();

% Plot the ground truth trajectory
figure('Name','Vehicle Trajectory','NumberTitle',"off");
compareTrajAxes = axes;
compareTrajAxes.XLim = [-10 60];
compareTrajAxes.YLim = [-20 5];
compareTrajAxes.XGrid = 'on';
compareTrajAxes.YGrid = 'on';
title('Compare Trajectories')

hold on;
plot(gTNodes(:,1),gTNodes(:,2),'Color','blue','LineWidth',3,'DisplayName','Ground Truth Trajectory');

% Visualize the estimated trajectory and the location of the vehicle when
% running the algorithm
estimatedTraj = plot(gTNodes(1,1),gTNodes(1,2),'Color','green','LineWidth',3 ,'DisplayName','Estimated Trajectory');
currentLoc = scatter(gTNodes(1,1),gTNodes(1,2),50,'red','filled','DisplayName','Vehicle Location');

legend;

% Process every fourth frame. This is done to speed up the processing
% without affecting much the accuracy.
skipFrames = 3;

numFrames = numel(groundTruthPosesLidar);

occGridFixed = occupancyGrid';

for frameIdx = 1+skipFrames:skipFrames:numFrames

 ptCloud = ptCloudArr(frameIdx);

 ptCloudProcessed = helperPreprocessPtCloud(ptCloud);

 occGridMoving = helperCreateOccupancyGrid(ptCloudProcessed,gridSize,gridStep,zLimits, sensorHeight);

 Build Occupancy Map from 3-D Lidar Data using SLAM

8-1217

 % Registration

 % imregcorr reports the transformation from the origin. Hence provide a
 % referencing such that the sensor is at the center of the images
 Rgrid = imref2d(size(occGridMoving));
 offsetX = mean(Rgrid.XWorldLimits);
 Rgrid.XWorldLimits = Rgrid.XWorldLimits - offsetX;
 offsetY = mean(Rgrid.YWorldLimits);
 Rgrid.YWorldLimits = Rgrid.YWorldLimits - offsetY;

 % Find relative pose in image coordinates
 [relPoseImage, peak] = imregcorr(occGridMoving,Rgrid,occGridFixed,Rgrid);

 % Convert translation to grid coordinates
 transInGrid = relPoseImage.T(3,1:2) .* gridStep;

 % The tranformation is a rigid transformation. Since relative pose is
 % an affine2d object, convert to rigid2d object
 rotations = relPoseImage.T(1:2,1:2);
 [u,~,v] = svd(rotations);
 relPose = rigid2d(u*v', transInGrid);

 % Add pose to registration estimate pose graph
 relTrans = relPose.Translation(1:2);
 relYaw = -atan2(relPose.T(2,1), relPose.T(1,1));
 regEstPoseGraph.addRelativePose([relTrans relYaw]);

 occGridFixed = occGridMoving;

 % Update the estimated trajectory and vehicle location
 estimatedNode = regEstPoseGraph.nodes(regEstPoseGraph.NumNodes);
 estimatedTraj.XData(end+1) = estimatedNode(1);
 estimatedTraj.YData(end+1) = estimatedNode(2);
 set(currentLoc,'XData',estimatedNode(1),'YData',estimatedNode(2));
 drawnow;
end
hold off;

8 Featured Examples

8-1218

Notice that there is a drift that has accumulated over time which makes the trajectory to deviate from
the ground truth and terminate at a different end point. This drift occurs due to the errors
accumulated in estimation of poses.

Detect Loops and Correct Drift

Graph SLAM technique can be used to correct the accumulated drift and obtain an accurate map. Use
the lidarSLAM (Navigation Toolbox) object and its methods to use pose graph optimization to detect
loops and correct drift in the trajectory. When a new scan is added to the lidarSLAM (Navigation
Toolbox) object, the following steps occur:

1 Pose Estimation: Uses imregcorr for registration.
2 Build pose graph: Stores poses in a poseGraph (Navigation Toolbox) object.
3 Loop closure detection: Loops are places that have been previously visited. The lidarSLAM

(Navigation Toolbox) object uses scan registration methods, matchScansGrid (Navigation
Toolbox) and matchScans (Navigation Toolbox) to detect loops. This process is referred to as
loop closure detection. The object performs loop closure detection by matching the current scan
against the previous scans within a small radius around the current robot location. Detected
loops are added to the pose graph.

 Build Occupancy Map from 3-D Lidar Data using SLAM

8-1219

4 Pose graph optimization: Based on the detected loops, the object optimizes the pose graph to find
new set of vehicle poses with reduced drift.

5 Build a map.

The lidarSLAM parameters are emprically set based on the data.

% Set lidarSLAM Parameters
mapResolution = 2;
maxLidarRange = 50;
loopClosureThreshold = 2450;
loopClosureRadius = 3;

% Initialize lidarSLAM object
slamAlg = lidarSLAM(mapResolution,maxLidarRange);
slamAlg.ScanRegistrationMethod = 'PhaseCorrelation';
slamAlg.LoopClosureThreshold = loopClosureThreshold;
slamAlg.LoopClosureSearchRadius = loopClosureRadius;

Use addScan (Navigation Toolbox) method of the lidarSLAM (Navigation Toolbox) object to
incrementally provide the data for registration and loop closure detection. Because the addScan
(Navigation Toolbox) method only accepts a lidarScan (Navigation Toolbox) object, you must
convert the grid image to a lidarScan (Navigation Toolbox) object.

occGridFixed = occupancyGrid';

% Create a lidarScan object from occupancy grid image
[rows,cols,values] = find(occGridFixed);
xLocs = -gridSize/2 + rows * gridStep;
yLocs = -gridSize/2 + cols * gridStep;

scan = lidarScan([yLocs xLocs]);

% Visualize the grid image and lidar scan
figure('Name','Occupancy image and lidar scan','NumberTitle','off');
subplot(1,2,1);
imshow(imrotate(occupancyGrid, -180));
title('Occupancy grid image')
subplot(1,2,2)
plot(scan)

8 Featured Examples

8-1220

Incrementally add the lidar scans to the lidarSLAM (Navigation Toolbox) object.

% Plot the ground truth trajectory
figure('Name','Trajectory traversal','NumberTitle','off');
slamAlgAxes = axes;
plot(gTNodes(:,1), gTNodes(:,2),'Color','blue','LineWidth',3,'DisplayName','Ground Truth Trajectory');
hold on;
slamAlgAxes.XLim = [-10 60];
slamAlgAxes.YLim = [-20 5];
slamAlgAxes.XGrid = 'on';
slamAlgAxes.YGrid = 'on';
title('Trajectory traversal and loop closure detections')
legend

% Plot the current location of the vehicle as the algorithm progresses.
currentLoc = scatter(gTNodes(1,1), gTNodes(1,2), 50,'red','filled','DisplayName','Vehicle Location');

% Also plot any location where a loop closure was detected.
loopLocation = scatter([],[], 50,'black','filled','DisplayName','Loop Detected');

for frameIdx = 1:skipFrames:numFrames

 Build Occupancy Map from 3-D Lidar Data using SLAM

8-1221

 ptCloud = ptCloudArr(frameIdx);

 ptCloudProcessed = helperPreprocessPtCloud(ptCloud);

 occGridMoving = helperCreateOccupancyGrid(ptCloudProcessed, gridSize, gridStep, zLimits, sensorHeight);

 [rows,cols,values] = find(occGridMoving);
 xLocs = -gridSize/2 + rows * gridStep;
 yLocs = -gridSize/2 + cols * gridStep;

 scan = lidarScan([yLocs xLocs]);

 % Add Lidar scan to algorithm
 [isScanAccepted,loopClosureInfo] = addScan(slamAlg, scan);

 % Update the loop closure detected location
 if isScanAccepted && size(loopClosureInfo.EdgeIDs,1) > 0
 loopLocation.XData(end+1) = gTNodes(frameIdx,1);
 loopLocation.YData(end+1) = gTNodes(frameIdx,2);
 end

 % Update the vehicle location
 set(currentLoc,'XData',gTNodes(frameIdx,1),'YData',gTNodes(frameIdx,2));
 drawnow;
end
hold off;

8 Featured Examples

8-1222

Visualize the trajectory obtained by using pose graph optimization. Note that the drift has been
reduced. For details on how to calculate the errors for pose estimates, see the “Lidar Localization
with Unreal Engine Simulation” on page 8-972 example.

% Obtain the poses from the pose graph
slamAlgPoses = slamAlg.PoseGraph.nodes();
estNodes = regEstPoseGraph.nodes();

% Plot the trajectories from the nodes
figure('Name','Vehicle Trajectory','NumberTitle',"off");
slamTrajAxes = axes;
slamTrajAxes.XLim = [-10 60];
slamTrajAxes.YLim = [-20 5];
slamTrajAxes.XGrid = 'on';
slamTrajAxes.YGrid = 'on';
title('Compare Trajectories')
legend

hold on;

plot(gTNodes(:,1),gTNodes(:,2),'Color','blue','LineWidth',3,'DisplayName','Ground Truth Trajectory');

 Build Occupancy Map from 3-D Lidar Data using SLAM

8-1223

plot(estNodes(:,1),estNodes(:,2),'Color','green','LineWidth',3 ,'DisplayName','Estimated Trajectory');
plot(slamAlgPoses(:,1),slamAlgPoses(:,2),'Color','magenta','LineWidth',3,'DisplayName','Optimized Trajectory');

hold off;

View and visualize the detected loop closure nodes added to the slamAlg object.

slamAlg.PoseGraph.LoopClosureEdgeIDs

ans = 1×9

 189 194 196 198 200 202 204 206 208

figure('Name','Loop Closure Results','NumberTitle',"off");
pGraphAxes = slamAlg.PoseGraph.show('IDs','off');
pGraphAxes.XLim = [0 10];
pGraphAxes.YLim = [-5 3];
title('Loop closure edges')

8 Featured Examples

8-1224

Build and Visualize Map

Use the buildMap (Navigation Toolbox) method to build the occupancy grid map. Obtain the
required scans and poses using the scansAndPoses (Navigation Toolbox) method of lidarSLAM
(Navigation Toolbox) object.

[scans, optimizedPoses] = scansAndPoses(slamAlg);

map = buildMap(scans, optimizedPoses, 1, 50);
figure('Name', 'Occupancy Map', 'NumberTitle',"off");
show(map);
hold on
show(slamAlg.PoseGraph, 'IDs', 'off');
xlim([-20 100]);
ylim([-50 50]);
hold off;

 Build Occupancy Map from 3-D Lidar Data using SLAM

8-1225

Stitch the point clouds together using the information from the pose graph to create a point cloud
map.

sensorHeight = groundTruthPosesLidar(1).Translation(3);
ptCloudAccum = ptCloud.empty;

% Configure display
xlimits = [-30 100];
ylimits = [-50 60];
zlimits = [-3 30];
player = pcplayer(xlimits, ylimits, zlimits);

% Define rigid transformation between the lidar sensor mounting position
% and the vehicle reference point.
lidarToVehicleTform = helperPoseToRigidTransform(single([0 0 -1.57 0 0 0]));

% Specify vehicle dimensions
centerToFront = 1.104;
centerToRear = 1.343;
frontOverhang = 0.828;
rearOverhang = 0.589;

8 Featured Examples

8-1226

vehicleWidth = 1.653;
vehicleHeight = 1.513;
vehicleLength = centerToFront + centerToRear + frontOverhang + rearOverhang;
hatchbackDims = vehicleDimensions(vehicleLength,vehicleWidth,vehicleHeight, ...
'FrontOverhang',frontOverhang,'RearOverhang',rearOverhang);

vehicleDims = [hatchbackDims.Length,hatchbackDims.Width,hatchbackDims.Height];
vehicleColor = [0.85 0.325 0.098];

% Estimation trajectory handle
markerSize = 3;
hold(player.Axes,'on');
estTrajHandle = scatter3(player.Axes,NaN,NaN,NaN,markerSize,vehicleColor,'filled');
hold(player.Axes,'off');

for frameIdx = 1:skipFrames:numFrames

 % Obtain the point clouds
 ptCloud = ptCloudArr(frameIdx);
 ptCloudProcessed = helperPreprocessPtCloud(ptCloud);

 % Obtain the pose
 poseIdx = floor((frameIdx-1)/skipFrames) + 1;
 pose = optimizedPoses(poseIdx, :);

 % Construct the rigid3d object required to concatenate point clouds.
 % This object holds the rigid transformation
 yaw = pose(3);
 rot = [cos(yaw) sin(yaw) 0;...
 -sin(yaw) cos(yaw) 0;...
 0 0 1];
 trans = [pose(1:2) sensorHeight];

 absPose = rigid3d(rot,trans);

 % Accumulated point cloud map
 ptCloudAccum = pccat([ptCloudAccum,pctransform(ptCloudProcessed,absPose)]);

 % Update accumulated point cloud map
 view(player,ptCloudAccum);

 % Set viewing angle to top view
 view(player.Axes,2);

 % Convert current absolute pose of sensor to vehicle frame
 absVehiclePose = rigid3d(lidarToVehicleTform.T * absPose.T);

 % Draw vehicle at current absolute pose
 helperDrawVehicle(player.Axes,absVehiclePose,vehicleDims,'Color',vehicleColor);

 %
 estTrajHandle.XData(end+1) = trans(1);
 estTrajHandle.YData(end+1) = trans(2);
 estTrajHandle.ZData(end+1) = trans(3);

end

hold(player.Axes, 'off');

 Build Occupancy Map from 3-D Lidar Data using SLAM

8-1227

Visualize the scene with the parked vehicles and compare it against the built map.

% Display the scene and the parked vehicle locations
figure;
sceneAxes = axes;
sceneName = 'LargeParkingLot';
[sceneImage, sceneRef] = helperGetSceneImage(sceneName);
helperShowSceneImage(imrotate(sceneImage, 180), sceneRef);
hold on
parkedPoses = [-17.255 -44.789 90; -0.7848, -44.6161, 90];
scatter(parkedPoses(:,1), parkedPoses(:,2), [], [0.8500 0.3250 0.0980], 'filled', 'DisplayName', 'Parked Vehicles');
ylim([-90 20])
sceneAxes.XTick = [];
sceneAxes.YTick = [];

8 Featured Examples

8-1228

sceneAxes.XLabel = [];
sceneAxes.YLabel = [];
legend
hold off;

References

[1] Dimitrievski, Martin, David Van Hamme, Peter Veelaert, and Wilfried Philips. “Robust Matching of
Occupancy Maps for Odometry in Autonomous Vehicles.” In Proceedings of the 11th Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Applications, 626–33. Rome, Italy:
SCITEPRESS - Science and Technology Publications, 2016.

 Build Occupancy Map from 3-D Lidar Data using SLAM

8-1229

Supporting Functions

helperPoseToRigidTransform converts pose to rigid transformation.

helperShowSceneImage displays scene image.

helperAddParkedVehicles adds parked vehicles to the parking lot scene.

helperPreprocessPtCloud preprocesses the point cloud.

helperCreateOccupancyGrid creates an occupancy grid image from point cloud.

helperDrawVehicle draws a vehicle in the map.

helperGetSceneImage retrieves scene image and spatial reference.

helperGetPointClouds extracts an array of pointCloud objects that contain lidar sensor data.

function ptCloudArr = helperGetPointClouds(simOut)

% Extract signal
ptCloudData = simOut.ptCloudData.signals.values;

% Create a pointCloud array
ptCloudArr = pointCloud(ptCloudData(:,:,:,2)); % Ignore first frame
for n = 3 : size(ptCloudData,4)
 ptCloudArr(end+1) = pointCloud(ptCloudData(:,:,:,n)); %#ok<AGROW>
end

end

helperGetLidarGroundTruth Extract ground truth location and orientation.

function gTruth = helperGetLidarGroundTruth(simOut)
numFrames = size(simOut.lidarLocation.time,1);

gTruth = repmat(rigid3d, numFrames-1, 1);

for i = 2:numFrames
 gTruth(i-1).Translation = squeeze(simOut.lidarLocation.signals.values(:, :, i));
 % Ignore the roll and the pitch rotations since the ground is flat
 yaw = double(simOut.lidarOrientation.signals.values(:, 3, i));
 gTruth(i-1).Rotation = [cos(yaw), sin(yaw), 0; ...
 -sin(yaw), cos(yaw), 0; ...
 0, 0, 1];
end
end

helperGetGTPoseGraph Obtain pose graph from Lidar ground truth

function gTPoseGraph = helperGetGTPoseGraph(gTruthLidar)

gTPoseGraph = poseGraph;
gTPoseGraph.addRelativePose([0 0 0]);

for idx = 3:numel(gTruthLidar)
 relTform = gTruthLidar(idx).T * inv(gTruthLidar(idx-1).T);

8 Featured Examples

8-1230

 relTrans = relTform(4, 1:2);
 relYaw = -atan2(relTform(2,1),relTform(1,1));

 gTPoseGraph.addRelativePose([relTrans relYaw]);

end

end

See Also
Functions
pcdenoise | imregcorr | poseGraph | pcregistercorr

Objects
lidarSLAM | rigid3d | pointCloud

More About
• “Build a Map from Lidar Data” on page 8-807
• “Lidar Localization with Unreal Engine Simulation” on page 8-972
• “Occupancy Grids” (Navigation Toolbox)
• “Perform SLAM Using 3-D Lidar Point Clouds” (Navigation Toolbox)
• “Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment” on page 8-962

External Websites
• Velodyne SLAM Dataset

 Build Occupancy Map from 3-D Lidar Data using SLAM

8-1231

https://www.mrt.kit.edu/z/publ/download/velodyneslam/dataset.html

Automate Testing for Vision Vehicle Detector
This example shows how to automate testing of a YOLOv2-based vehicle detector algorithm and the
generated code by using Simulink® Test™. In this example, you:

• Assess the behavior of the YOLOv2-based vehicle detector algorithm on different test scenarios
with different test requirements.

• Automate testing of the YOLOv2-based vehicle detector algorithm and the generated Math Kernel
Library for Deep Neural Networks (MKL-DNN) code or CUDA code.

Introduction

A vehicle detector is a fundamental perception component of an automated driving application. The
detector analyzes images captured using a monocular camera sensor and returns information about
the vehicles present in the image. You can design and simulate a vehicle detector using MATLAB® or
Simulink, and then assess its accuracy using known ground truth. You can define system
requirements to configure test scenarios for simulation. You can integrate the detector into an
external software environment and deploy it to a vehicle through generated code. Code generation
and verification of the Simulink model ensures functional equivalence between simulation and real-
time implementation.

For information about how to design and generate code for a vehicle detector, see “Generate Code for
Vision Vehicle Detector” on page 8-1129.

This example shows how to automate testing the vehicle detector and the code generation models
against multiple scenarios using Simulink Test. The scenarios are based on system-level
requirements. In this example, you:

1 Review requirements — Explore the test scenarios and review requirements that describe test
conditions.

2 Review the test bench model — Review the vision vehicle detector test bench model, which
contains metric assessments. These metric assessments integrate the test bench model with
Simulink Test for automated testing.

3 Disable runtime visualizations — Disable runtime visualizations to reduce execution time for
automated testing.

4 Automate testing — Configure a test manager to simulate each test scenario with the YOLOv2
vehicle detector, assess success criteria, and report the results. You can explore the results
dynamically using the test manager and export them to a PDF for external review.

5 Automate testing with generated code — Configure the model to generate either MKL-DNN or
CUDA code from the YOLOv2 vehicle detector, run automated tests on the generated code, and
get coverage analysis results.

6 Automate testing in parallel — Reduce overall execution time for the tests by using parallel
computing on a multicore computer.

In this example, you enable system-level simulation through integration with the Unreal Engine™
from Epic Games®. The 3D simulation environment requires a Windows® 64-bit platform.

if ~ispc
 error("The 3D simulation environment requires a Windows 64-bit platform")
end

8 Featured Examples

8-1232

Review Requirements

This example contains 10 test scenarios for evaluating the model. To define the high-level testing
requirements for each scenario, use Requirements Toolbox™.

To explore the test requirements and test bench model, open a working copy of the project example
files. MATLAB copies the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot,"toolbox","driving","drivingdemos"))
helperDrivingProjectSetup("VisionVehicleDetector.zip",workDir=pwd);

Open the test requirements file.

open("VisionVehicleDetectorTestRequirements.slreqx")

You can also open the file using the Requirements tab of the Requirements Manager app in
Simulink.

The panel displays information about the test scenarios and the test requirements in textual and
graphical format.

• scenario_VVD_01_Curve_FiveVehicles — Curved road scenario with the ego vehicle in the
left lane and four target vehicles traveling in adjacent lanes.

• scenario_LFACC_01_Curve_DecelTarget — Curved road scenario with a decelerating lead
vehicle in the ego lane.

• scenario_LFACC_02_Curve_AutoRetarget — Curved road scenario with changing lead
vehicles in the ego lane.

• scenario_LFACC_03_Curve_StopnGo — Curved road scenario with a lead vehicle slowing
down in the ego lane.

 Automate Testing for Vision Vehicle Detector

8-1233

• scenario_LFACC_04_Curve_CutInOut — Curved road scenario with a lead vehicle cutting into
the ego lane to overtake a slow-moving vehicle in the adjacent lane, and then cutting out of the
ego lane.

• scenario_LFACC_05_Curve_CutInOut_TooClose — Curved road scenario with a lead vehicle
cutting aggressively into the ego lane to overtake a slow-moving vehicle in the adjacent lane, and
then cutting out of the ego lane.

• scenario_LFACC_06_Straight_StopandGoLeadCar — Straight road scenario with a lead
vehicle that breaks down in the ego lane.

• scenario_FVSF_01_Curve_FourVehicles — Curved road scenario with a lead vehicle cutting
out of the ego lane to overtake a slow-moving vehicle.

• scenario_FVSF_02_Straight_FourVehicles — Straight road scenario where non-ego
vehicles vary their velocities.

• scenario_FVSF_03_Curve_SixVehicles — Curved road scenario where the ego car varies its
velocity.

Review Test Bench Model

The example reuses the model from “Generate Code for Vision Vehicle Detector” on page 8-1129.

Open the test bench model.

open_system("VisionVehicleDetectorTestBench")

To configure the test bench model, use the helperSLVisionVehicleDetectorSetup script.
Specify a test scenario as input to the setup script by using the scenarioFcnName input argument.
The value for scenarioFcnName must be one of the scenario names specified in the test
requirements. Specify the detector variant name as YOLOv2 Simulation to use the YOLOv2 vehicle
detector in normal mode and YOLOv2 Code Generation to use the YOLOv2 vehicle detector in
software-in-the-loop (SIL) mode.

Run the setup script.

8 Featured Examples

8-1234

detectorVariantName = "YOLOv2 Simulation";
helperSLVisionVehicleDetectorSetup(scenarioFcnName="scenario_VVD_01_Curve_FiveVehicles", ...
 detectorVariantName=detectorVariantName)

You can now simulate the model and visualize the results. For more details on the simulation and
analysis of the simulation results, see the “Generate Code for Vision Vehicle Detector” on page 8-
1129.

This example focuses on automating the simulation runs to test the YOLOv2 vehicle detector on
different driving scenarios by using Simulink Test. The Metrics Assessment subsystem outputs the
required signals to compute the metrics.

Open the Metrics Assessment subsystem.

open_system("VisionVehicleDetectorTestBench/Metrics Assessment");

The Metric Assessment subsystem outputs these values:

• Number of actors — The number of vehicles in range of the camera sensor at any given time.
• True positives — The number of vehicles that the algorithm detects correctly.
• False negatives — The number of vehicles that are present, but that the algorithm does not

detect.
• False positives — The number of vehicles that the algorithm detects when the vehicles are not

present in reality.

The model logs the output results from the Metric Assessment subsystem to the base workspace
variable logsout. You can verify the performance of the YOLOv2 vehicle detector algorithm by
validating and plotting the computed metrics. After the simulation, you can also compute average
precision and average miss rate from these logged metrics, and verify the performance of the
YOLOv2 vehicle detector using them.

Disable Runtime Visualizations

The test bench model visualizes intermediate outputs during the simulation. These visualizations are
not required when the tests are automated. You can reduce the execution time for automated testing
by disabling them.

 Automate Testing for Vision Vehicle Detector

8-1235

Disable runtime visualizations for the Vision Vehicle Detector subsystem.

load_system("VisionVehicleDetector")
blk = "VisionVehicleDetector/Vision Vehicle Detector/YOLOv2 Simulation/YOLOv2";
set_param(blk,EnableDisplay="off");

Configure the Simulation 3D Scene Configuration block to disable the 3D simulation window and run
Unreal Engine in headless mode.

blk = "VisionVehicleDetectorTestBench/Sensors and Environment/Simulation 3D Scene Configuration";
set_param(blk,EnableWindow="off");

Automate Testing

Open the VisionVehicleDetectorMetricAssessments.mldatx test file in the Test Manager.
The Test Manager is configured to automate testing of the YOLOv2 vehicle detector algorithm.

sltestmgr
testFile = sltest.testmanager.load("VisionVehicleDetectorTestAssessments.mldatx");

The test cases in the Test Manager are linked to the test requirements in the Requirements
Editor. Each test case uses the POST-LOAD callback to run the setup script with appropriate inputs.
After simulating the test cases, the Test Manager invokes these assessments to evaluate the
performance of the algorithm:

• CLEANUP — Invokes the helperPlotDetectionMetrics function to plot detection results
from the Metric Assessment subsystem. For more information about these plots, see “Generate
Code for Vision Vehicle Detector” on page 8-1129 example.

• LOGICAL AND TEMPORAL ASSESSMENTS — Invokes custom conditions to evaluate the
algorithm.

8 Featured Examples

8-1236

• CUSTOM CRITERIA — Invokes the helperVerifyPrecisionAndSensitivity function to
evaluate the precision and sensitivity metrics.

Run and Explore Results for Single Test Scenario

Test the system-level model on the scenario_VVD_01_Curve_FiveVehicles scenario.

testSuite = getTestSuiteByName(testFile,"Test Scenarios");
testCase = getTestCaseByName(testSuite,"scenario_VVD_01_Curve_FiveVehicles");
resultObj = run(testCase);

Generate the test reports obtained after simulation.

sltest.testmanager.report(resultObj,"Report.pdf", ...
 Title="YOLOv2 Vehicle Detector", ...
 IncludeMATLABFigures=true,IncludeErrorMessages=true, ...
 IncludeTestResults=false,LaunchReport=true);

Examine Report.pdf. The Test environment section shows the platform on which the test is run
and the MATLAB version used for testing. The Summary section shows the outcome of the test and
the duration of the simulation in seconds. The Results section shows pass or fail results based on
the logical and temporal assessment criteria. The customized criteria used to assess the algorithm for
this test case are:

1 At any point of time, TruePositives <= NumActorsTruth
2 At any point of time, FalsePositives <= 1
3 At any point of time, (TruePositives + FalseNegatives) == NumActorsTruth

The report also displays the plots logged from the helperPlotDetectionMetrics function.

Run and Explore Results for All Test Scenarios

Run a simulation of the system for all the tests.

run(testFile)

Alternatively, you can select Play in the Test Manager app.

After completion of the test simulations, you can view the results for all the tests in the Results and
Artifacts tab of the Test Manager. For each test case, check Custom Criteria Result and
Logical And Temporal Assessments. You can visualize the overall pass or fail results.

 Automate Testing for Vision Vehicle Detector

8-1237

You can find the generated report in the current working directory. This report contains a detailed
summary of the pass or fail statuses and plots for each test case.

8 Featured Examples

8-1238

Verify Test Status in Requirements Editor

Open the Requirements Editor and select Display. Then, select Verification Status to see a
verification status summary for each requirement. Green and red bars indicate the pass and fail
status, respectively, for each simulation test result.

 Automate Testing for Vision Vehicle Detector

8-1239

Automate Testing with Generated Code

The VisionVehicleDetectorTestBench model enables generating either MKL-DNN code or
CUDA code from a YOLOv2 Vehicle detector component to perform regression testing of these
components using SIL verification.

Configure YOLOv2 Detector to Generate MKL-DNN Code

If you have Embedded Coder™ and Simulink Coder™ licenses, you can generate MKLDNN code for
the YOLOv2 vehicle detector. Set DLTargetLibrary to "MKL-DNN".

Configure the YOLOv2 vehicle detector to generate the MKL-DNN code.

set_param("VisionVehicleDetector",TargetLang="C++")
set_param("VisionVehicleDetector",GenerateGPUCode="None")
set_param("VisionVehicleDetector",DLTargetLibrary="MKL-DNN")

Configure YOLOv2 Detector to Generate CUDA code

If you have GPU Coder™ and Simulink Coder licenses, you can generate CUDA code for the YOLOv2
vehicle detector. To verify that the compilers and libraries necessary for running this section are set
up correctly, use the coder.checkGpuInstall function. Set DLTargetLibrary to either "cudnn"
or "tensorrt", based on the availability of the relevant libraries on the target. For more details on

8 Featured Examples

8-1240

how to verify the GPU environment, see the “Generate Code for Vision Vehicle Detector” on page 8-
1129 example.

Configure the model to generate the CUDA code.

set_param("VisionVehicleDetector",TargetLang="C++")
set_param("VisionVehicleDetector",GenerateGPUCode="CUDA")
set_param("VisionVehicleDetector",DLTargetLibrary="cuDNN")

Save the configured system using save_system("VisionVehicleDetector").

Configure and Simulate Model in SIL Mode for All Test Scenarios

Set the detector variant name to YOLOv2 Code Generation and the simulation mode of the model
to SIL mode.

detectorVariantName = "YOLOv2 Code Generation";
model = "VisionVehicleDetectorTestBench/Vision Vehicle Detector";
set_param(model,SimulationMode="Software-in-the-loop")

Simulate system for all the test scenarios and generate the test report by using the MATLAB
command: run(testFile). Review the plots and results in the generated report.

Capture Coverage Results

If you have a Simulink Coverage™ license, you can get the code coverage analysis for the generated
code to measure testing completeness. You can use coverage data to find gaps in testing, missing
requirements, or unintended functionality. You can visualize the coverage results for individual test
cases, as well as aggregated coverage results.

Click the VisionVehicleDetector link in Test Manager to view a detailed report of the coverage
results.

 Automate Testing for Vision Vehicle Detector

8-1241

Automate Testing in Parallel

If you have a Parallel Computing Toolbox™ license, you can configure the test manager to execute
tests in parallel using a parallel pool. To run the tests in parallel, disable the runtime visualizations
and save the models using save_system("VisionVehicleDetector") and
save_system("VisionVehicleDetectorTestBench"). Test Manager uses the default Parallel
Computing Toolbox cluster and executes tests on only the local machine. Running tests in parallel
speeds up execution and decreases the amount of time required for testing. For more information on
how to configure tests in parallel using the Test Manager, see “Run Tests Using Parallel Execution”
(Simulink Test).

See Also

More About
• “Generate Code for Vision Vehicle Detector” on page 8-1129
• “Automate Testing for Forward Vehicle Sensor Fusion” on page 8-1243
• “Highway Lane Following” on page 8-922
• “Highway Lane Change” on page 8-867

8 Featured Examples

8-1242

Automate Testing for Forward Vehicle Sensor Fusion
This example shows how to automate testing of a forward vehicle sensor fusion algorithm and its
generated code by using Simulink® Test™. In this example, you:

• Assess the behavior of a sensor fusion and tracking algorithm on different test scenarios with
different test requirements.

• Automate testing of the sensor fusion and tracking algorithm and the generated code for the
algorithm.

Introduction

The sensor fusion and tracking algorithm is a fundamental perception component of an automated
driving application. The tracker analyzes the sensor data and tracks the objects on the road. You can
design, simulate, and evaluate the performance of a sensor fusion and tracking algorithm using
MATLAB® and Simulink®. You can define system requirements to configure test scenarios for
simulation. You can integrate the sensor fusion and tracking algorithm in an external software
environment and deploy it to a vehicle through C++ code generation. Code generation and
verification of the Simulink model ensures functional equivalence between simulation and real-time
implementation. Automatically running these simulations enables regression testing to verify system-
level functionality.

For information about how to design a sensor fusion and tracking algorithm, see the “Forward Vehicle
Sensor Fusion” on page 8-1121 example. This example shows how to automate testing the sensor
fusion and tracking algorithm against multiple scenarios using Simulink Test. The scenarios are
based on system-level requirements. In this example, you:

• Review requirements — Explore the test scenarios and review the requirements that describe the
test conditions.

• Review the test bench model — Review the forward vehicle sensor fusion test bench model, which
contains metric assessments. These metric assessments integrate the test bench model with
Simulink Test for automated testing.

• Disable runtime visualizations — Disable runtime visualizations to reduce execution time for
automated testing.

• Automate testing — Configure the test manager to simulate each test scenario, assess success
criteria, and report the results. You can explore the results dynamically using the test manager
and export to a PDF for external reviews.

• Automate testing with generated code — Configure the forward vehicle sensor fusion component
to generate C++ code. Run automated tests on the generated code and verify behavior.

• Automate testing in parallel — Increase overall execution speed for the tests by using parallel
computing on a multicore computer.

In this example, you enable system-level simulation through integration with the Unreal Engine®
from Epic Games®. The 3D simulation environment requires a Windows® 64-bit platform.

if ~ispc
 error("The 3D simulation environment requires a Windows 64-bit platform")
end

Review Requirements

This example provides 11 test scenarios for evaluating the model. To define the high-level testing
requirements for each scenario, use Requirements Toolbox™. To explore the test requirements, open

 Automate Testing for Forward Vehicle Sensor Fusion

8-1243

a working copy of the project example files. MATLAB copies the files to an example folder so that you
can edit them.

Open the project and the test requirements file.

addpath(fullfile(matlabroot,"toolbox","driving","drivingdemos"))
helperDrivingProjectSetup("FVSensorFusion.zip",workDir=pwd)
open("ForwardVehicleSensorFusionTestRequirements.slreqx")

You can also open the file using the Requirements tab of the Requirements Manager app in
Simulink.

The panel displays information about the test scenarios and the test requirements in textual and
graphical format. To test a sensor fusion and tracking algorithm, use these scenario files.

• scenario_LFACC_01_Curve_DecelTarget — Curved road scenario with a decelerating lead
vehicle in the ego lane.

• scenario_LFACC_02_Curve_AutoRetarget — Curved road scenario with changing lead
vehicles in the ego lane. This scenario tests the ability of the ego vehicle to retarget to a new lead
vehicle while driving along a curve.

• scenario_LFACC_03_Curve_StopnGo — Curved road scenario with a lead vehicle slowing
down in the ego lane.

• scenario_LFACC_04_Curve_CutInOut — Curved road scenario with a lead vehicle cutting into
the ego lane to overtake a slow-moving vehicle in the adjacent lane, and then cutting out of the
ego lane.

• scenario_LFACC_05_Curve_CutInOut_TooClose — Curved road scenario with a lead car
cutting aggressively into the ego lane.

8 Featured Examples

8-1244

• scenario_LFACC_06_Straight_StopandGoLeadCar — Straight road scenario with a lead
vehicle that breaks down in the ego lane.

• scenario_FVSF_01_Curve_FourVehicles — Curved road scenario with a lead car cutting out
of the ego lane to overtake a slow-moving car.

• scenario_FVSF_02_Straight_FourVehicles — Straight road scenario where where non-ego
vehicles vary their velocity.

• scenario_FVSF_03_Curve_SixVehicles — Curved road scenario where the ego car varies its
velocity.

• scenario_FVSF_04_Straight_ThreeVehicles — Straight road scenario with the ego car and
two target vehicles. The lead vehicle travels in the ego lane and the other target vehicle travels in
the adjacent right lane.

• scenario_FVSF_05_Straight_TwoVehicles — Straight road scenario with the ego vehicle
and a target vehicle that travels in the adjacent lane to the right of the ego lane.

These test scenarios have the same names as the scenarios used in the
ForwardVehicleSensorFusionTestBench model.

Review Test Bench Model

This example reuses the ForwardVehicleSensorFusionTestBench model from the “Forward
Vehicle Sensor Fusion” on page 8-1121 example.

Open the test bench model.

open_system("ForwardVehicleSensorFusionTestBench")

To configure the test bench model, use the helperSLForwardVehicleSensorFusionSetup script.
Specify a test scenario as input to the setup script by using the scenarioFcnName input argument.
The value for scenarioFcnName must be one of the scenario names specified in the test
requirements.

Run the setup script.

helperSLForwardVehicleSensorFusionSetup(scenarioFcnName="scenario_LFACC_03_Curve_StopnGo")

 Automate Testing for Forward Vehicle Sensor Fusion

8-1245

You can now simulate the model and visualize the results. For more details on the simulation and
analysis of the simulation results, see the “Forward Vehicle Sensor Fusion” on page 8-1121 example.

This example focuses on automating the simulation runs to test the sensor fusion and tracking
algorithm on different driving scenarios by using Simulink Test. The Evaluate Tracker Metrics
subsystem integrates the component-level metric evaluations with Simulink Test by using the Check
Static Upper Bound block.

Open the Evaluate Tracker Metrics subsystem.

open_system("ForwardVehicleSensorFusionTestBench/Evaluate Tracker Metrics")

The Evaluate Tracker Metrics subsystem outputs the generalized optimal subpattern
assignment (GOSPA) metric and its components.

The Filter Within Coverage block removes the actors that are outside the coverage area of the
sensors from the ground truth information. As shown in this figure, the block removes the purple and
yellow vehicles from the truth list as these vehicles are not within the coverage areas of both the
sensors. The GOSPA Metric block uses the filtered actors to compute the GOSPA metric and its
components. The model logs the output results from the Evaluate Tracker Metrics subsystem to
the base workspace variable logsout. You can verify the performance of the sensor fusion and
tracking algorithm by validating and plotting the GOSPA metrics computed during the simulation. For
more details on GOSPA metrics, see trackGOSPAMetric (Sensor Fusion and Tracking Toolbox).

8 Featured Examples

8-1246

Disable Runtime Visualizations

The test bench model opens an Unreal Engine simulation window for visualizing the scenario. You do
not require this window while running automated tests. Configure the Simulation 3D Scene
Configuration block to run the Unreal Engine in headless mode, where the 3D simulation window is
disabled.

blk = ['ForwardVehicleSensorFusionTestBench/Sensors and Environment/', ...
 'Simulation 3D Scene Configuration'];
set_param(blk, EnableWindow="off")

Automate Testing

Open the ForwardVehicleSensorFusionTests.mldatx test file in the Test Manager. The Test
Manager is configured to automate the testing of the sensor fusion and tracking algorithm.

sltestmgr
testFile = sltest.testmanager.load("ForwardVehicleSensorFusionTests.mldatx");

 Automate Testing for Forward Vehicle Sensor Fusion

8-1247

The test cases in the Test Manager are linked to the test requirements in the Requirements
Editor. Each test case uses the POST-LOAD callback to run the setup script with appropriate inputs.
After simulating the test case, the Test Manager invokes the
helperPlotForwardVehicleSensorFusionResults function from the CLEANUP callback to
generate the plots for GOSPA and its components from the Evaluate Tracker Metrics
subsystem. For more information about these plots, see the “Forward Vehicle Sensor Fusion” on page
8-1121 example.

Run and Explore Results for Single Test Scenario

Test the system-level model on the scenario_LFACC_03_Curve_StopnGo scenario.

testSuite = getTestSuiteByName(testFile,"Test Scenarios");
testCase = getTestCaseByName(testSuite,"scenario_LFACC_03_Curve_StopnGo");
resultObj = run(testCase);

Generate the test reports obtained after the simulation.

sltest.testmanager.report(resultObj, "Report.pdf", ...
Title="Forward Vehicle Sensor Fusion", ...
IncludeMATLABFigures=true,IncludeErrorMessages=true, ...
IncludeTestResults=false,LaunchReport=true);

Examine Report.pdf . The Test environment section shows the platform on which the test is run
and the MATLAB version used for testing. The Summary section shows the outcome of the test and
the duration of the simulation in seconds. The Results section shows pass or fail results based on
the assessment criteria, and displays the plots logged from the
helperPlotForwardVehicleSensorFusionResults function.

8 Featured Examples

8-1248

Run and Explore Results for All Test Scenarios

Run a simulation of the system for all the tests by using the run(testFile) command. Alternatively,
you can click Play in the Test Manager app.

View the results in the Results and Artifacts tab of the Test Manager. For each test case, the
Check Static Upper Bound blocks in the model are associated with the Test Manager. This
association enables you to visualize the overall pass or fail results.

You can find the generated report in your current working directory. This report contains a detailed
summary of the pass or fail statuses and plots for each test case.

 Automate Testing for Forward Vehicle Sensor Fusion

8-1249

Verify Test Status in Requirements Editor

Open the Requirements Editor and select Display. Then, select Verification Status to see a
verification status summary for each requirement. Green and red bars indicate the pass or fail status,
respectively, for each simulation test result.

8 Featured Examples

8-1250

Automate Testing with Generated Code

The ForwardVehicleSensorFusionTestBench model enables regression testing of the Forward
Vehicle Sensor Fusion component through software-in-the-loop (SIL) verification, and enables
you to identify any issues in this component. This workflow enables you to verify that the generated
code produces expected results that match the system-level requirements throughout the simulation.

Set the Forward Vehicle Sensor Fusion component to run in SIL mode.

model = "ForwardVehicleSensorFusionTestBench/Forward Vehicle Sensor Fusion";
set_param(model,SimulationMode="Software-in-the-loop");

Simulate the system for all test scenarios using the run(testFile) command. After the tests are
complete, review the plots and results in the generated report.

Capture Coverage Results

If you have a Simulink Coverage™ license, you can get the code coverage analysis for the generated
code to measure the testing completeness. You can use the coverage data to find gaps in testing,
missing requirements, or unintended functionality. You can visualize the coverage results for
individual test cases, as well as aggregated coverage results.

 Automate Testing for Forward Vehicle Sensor Fusion

8-1251

Select ForwardVehicleSensorFusion in the AGGREGATED COVERAGE RESULTS section of the
test manager to view a detailed report of the coverage results.

8 Featured Examples

8-1252

Automate Testing in Parallel

If you have a Parallel Computing Toolbox™ license, you can configure the test manager to execute
tests in parallel using a parallel pool. To run the tests in parallel, disable the runtime visualizations
and save the models using save_system("ForwardVehicleSensorFusion") and
save_system("ForwardVehicleSensorFusionTestBench"). Test Manager uses the default
Parallel Computing Toolbox cluster, and executes tests on only the local machine. Running tests in
parallel speeds up execution and decreases the amount of time required for testing. For more
information on how to configure tests in parallel using the Test Manager, see “Run Tests Using
Parallel Execution” (Simulink Test).

See Also

More About
• “Forward Vehicle Sensor Fusion” on page 8-1121
• “Automate Real-Time Testing for Forward Vehicle Sensor Fusion” on page 8-1344
• “Automate Testing for Highway Lane Following Controls and Sensor Fusion” on page 8-1168
• “Highway Lane Following” on page 8-922
• “Highway Lane Change” on page 8-867

 Automate Testing for Forward Vehicle Sensor Fusion

8-1253

Automate Testing for Highway Lane Following Controller
This example shows how to automate testing of a lane following controller and the generated code for
this component by using Simulink® Test™. In this example, you:

• Assess the behavior of a lane following controller on different test scenarios with different test
requirements.

• Automate testing of the lane following controller and the generated code for the reference model.

This example uses the lane following controller presented in the “Generate Code for Highway Lane
Following Controller” on page 8-1156 example.

Introduction

The lane following controller is a fundamental component in highway lane following applications. The
lane following controller generates the steering angle and acceleration control commands for an ego
vehicle by using lane and vehicle information along with a set speed. For more information about how
to design a lane following controller and configure the model for C++ code generation, see the
“Generate Code for Highway Lane Following Controller” on page 8-1156 example.

This example shows how to automate testing of the lane following controller against multiple
scenarios by using Simulink Test. The scenarios are based on system-level requirements. It also
shows how you can verify the generated code using software-in-the-loop (SIL) simulation. In this
example, you:

1 Review requirements — The requirements describe system-level test conditions. Use simulation
test scenarios to represent these conditions.

2 Review test bench model — The model contains controls, vehicle dynamics, and metrics to assess
functionality. The metric assessments integrate the test bench model with Simulink Test for
automated testing.

3 Disable runtime visualizations — Disable runtime visualizations to reduce the execution time for
automated testing.

4 Automate testing — Configure a test manager to simulate each test scenario, assess success
criteria, and report results. Explore the results dynamically in the test manager and export them
to a PDF for external reviewers.

5 Automate testing with generated code — Configure the decision logic and controls components to
generate C++ code. Run automated testing on the generated code to verify the behavior.

6 Automate testing in parallel — Reduce the overall execution time for running the tests by using
parallel computing on a multicore computer.

In this example, you enable system-level simulation through integration with the Unreal Engine®
from Epic Games®. The 3D simulation environment requires a Windows® 64-bit platform.

if ~ispc
 error(['3D simulation is supported only on Microsoft',char(174),' Windows',char(174),'.'])
end

Review Requirements

To explore the requirements, open a working copy of the project example files. MATLAB® copies the
files to an example folder so that you can edit them.

8 Featured Examples

8-1254

addpath(fullfile(matlabroot,"toolbox","driving","drivingdemos"))
helperDrivingProjectSetup("HLFController.zip",workDir=pwd)

Requirements Toolbox™ enables you to author, analyze, and manage requirements within Simulink.
This example contains 12 test scenarios, with high-level testing requirements defined for each
scenario. Open the requirement set.

open("HighwayLaneFollowingControllerTestRequirements.slreqx")

Alternatively, you can open the file from the Requirements tab of the Requirements Manager app
in Simulink.

Each row in this file specifies the testing requirements of the lane following controller component in
textual and graphical formats. The scenarios with the scenario_LF_ prefix enable you to test the
lane following controller algorithm without obstruction by other vehicles. The scenarios with the
scenario_ACC_ prefix enable you to test adaptive cruise control (ACC) behavior with other vehicles
on the road. The scenarios with the scenario_LFACC_ prefix enable you to test lane following and
ACC behavior with other vehicles on the road.

• scenario_LF_01_Straight_RightLane — Straight road scenario with the ego vehicle in the
right lane.

• scenario_LF_02_Straight_LeftLane — Straight road scenario with the ego vehicle in the left
lane.

• scenario_LF_03_Curve_LeftLane — Curved road scenario with the ego vehicle in the left
lane.

• scenario_LF_04_Curve_RightLane — Curved road scenario with the ego vehicle in the right
lane.

 Automate Testing for Highway Lane Following Controller

8-1255

• scenario_ACC_01_Straight_TargetDiscriminationTest — Straight road scenario with
two target vehicles, one in the ego lane and another one in an adjacent lane. This scenario tests
the ability of the ego vehicle to identify the lead vehicle when there is another target vehicle that
is traveling adjacent to the lead vehicle with the same speed.

• scenario_ACC_02_Straight_StopnGo — Straight road scenario with a decelerating lead
vehicle in the ego lane.

• scenario_LFACC_01_Curve_DecelTarget — Curved road scenario with a decelerating lead
vehicle in the ego lane.

• scenario_LFACC_02_Curve_AutoRetarget — Curved road scenario with changing lead
vehicles in the ego lane. This scenario tests the ability of the ego vehicle to retarget to a new lead
vehicle while driving along a curve.

• scenario_LFACC_03_Curve_StopnGo — Curved road scenario with a lead vehicle slowing
down in the ego lane.

• scenario_LFACC_04_Curve_CutInOut — Curved road scenario with a fast-moving car in the
adjacent lane that cuts into the ego lane, and then cuts out from the ego lane.

• scenario_LFACC_05_Curve_CutInOut_TooClose — Curved road scenario with a fast-moving
car in the adjacent lane that cuts into the ego lane and cuts out from the ego lane aggressively.

• scenario_LFACC_06_Straight_StopandGoLeadCar — Straight road scenario with a broken
down vehicle in the ego lane.

Review Test Bench Model

Open the test bench model.

open_system("HighwayLaneFollowingControllerTestBench")

The test bench model contains these subsystems:

8 Featured Examples

8-1256

• Simulation 3D Scenario — Specifies the road, vehicles, and vision detection generator used
for simulation.

• Lane Following Decision Logic — Specifies the lateral and longitudinal decision logic, and
provides lane center information and most important object (MIO) related information to the
controller.

• Lane Following Controller — Specifies the path-following controller that generates control
commands to steer the ego vehicle.

• Vehicle Dynamics — Specifies the dynamic model for the ego vehicle.
• Metrics Assessment — Assesses system-level behavior.

The Simulation 3D Scenario, Lane Following Decision Logic, Lane Following
Controller, Vehicle Dynamics, and Metrics Assessment subsystems are based on the
subsystems used in the “Generate Code for Highway Lane Following Controller” on page 8-1156
example.

In this example, the focus is on automating the simulation runs for this test bench model using
Simulink Test for the different test scenarios. The Metrics Assessment subsystem enables
integration of system-level metric evaluations with Simulink Test. This subsystem uses Check Static
Range (Simulink) blocks for this integration. Open the Metrics Assessment subsystem.

open_system("HighwayLaneFollowingControllerTestBench/Metrics Assessment")

 Automate Testing for Highway Lane Following Controller

8-1257

In this example, four metrics are used to assess the lane following system.

• Verify Lateral Deviation — This block verifies that the lateral deviation from the center line
of the lane is within the prescribed thresholds for the corresponding scenario. Define the
thresholds when you author the test scenario.

• Verify In Lane — This block verifies that the ego vehicle is following one of the lanes on the
road throughout the simulation.

• Verify Time gap — This block verifies that the time gap between the ego vehicle and the lead
vehicle is more than 0.8 seconds. The time gap between the two vehicles is defined as the ratio of
the calculated headway distance to the ego vehicle velocity.

• Verify No Collision — This block verifies that the ego vehicle does not collide with the lead
vehicle at any point during the simulation.

8 Featured Examples

8-1258

Disable Runtime Visualizations

The system-level test bench model opens an Unreal Engine simulation window for visualizing the
scenario. This window is not required when the tests are automated.

Configure the Simulation 3D Scene Configuration block to run the Unreal Engine in headless mode,
where the 3D simulation window is disabled.

blk = "HighwayLaneFollowingControllerTestBench/Simulation 3D Scenario/Simulation 3D Scene Configuration";
set_param(blk,EnableWindow="off");

Automate Testing

The Test Manager is configured to automate the testing of the lane following controller component.
Open the HighwayLaneFollowingControllerMetricAssessments.mldatx test file in the Test
Manager.

sltestmgr
sltest.testmanager.load("HighwayLaneFollowingControllerMetricAssessments.mldatx");

Observe the populated test cases previously authored in this file. These tests are configured to run
the model.

Each test case uses the POST-LOAD callback to run the setup script with appropriate inputs. After
the simulation of each test case, the Test Manager runs the script from the CLEANUP callback to
generate the results plots.

Run and Explore Results for Single Test Scenario

Turn off the update messages about model predictive control objects.

 Automate Testing for Highway Lane Following Controller

8-1259

mpcverbosity("off");

Test the system-level model with the scenario_LFACC_03_Curve_StopnGo test scenario from
Simulink Test.

testFile = sltest.testmanager.load("HighwayLaneFollowingControllerMetricAssessments.mldatx");
testSuite = getTestSuiteByName(testFile,"Test Scenarios");
testCase = getTestCaseByName(testSuite,"scenario_LFACC_03_Curve_StopnGo");
resultObj = run(testCase);

Generate a report after the simulation.

sltest.testmanager.report(resultObj,"Report.pdf", ...
Title="Highway Lane Following Controller", ...
IncludeMATLABFigures=true, ...
IncludeErrorMessages=true, ...
IncludeTestResults=false, ...
LaunchReport=true);

Examine Report.pdf. Observe that the Test environment section shows the platform on which
the test is run and the MATLAB version used for testing. The Summary section shows the outcome of
the test and duration of the simulation in seconds. The Results section shows pass or fail results
based on the assessment criteria. This section also shows the logged plots from the CLEANUP
callback commands.

If you have a license for Simulink Coverage™, you can get coverage results in the generated
Report.pdf by enabling coverage settings in the Test Manager file. For more information, see the
Coverage Settings section in “Specify Test Properties in the Test Manager” (Simulink Test). You can
use coverage data to find gaps in testing, missing requirements, or unintended functionality.

Run and Explore Results for All Test Scenarios

Simulate the system for all the tests by using the run(testFile) command. Alternatively, you can
simulate the system by selecting Play in the Test Manager app.

When the test simulations are complete, you can view the test results in the Results and Artifacts
tab of the Test Manager. For each test case, the Check Static Range (Simulink) blocks in the model
are associated with the Test Manager. This association enables you to the visualize overall pass or
fail results.

8 Featured Examples

8-1260

You can find the generated report in the current working directory. This report contains a detailed
summary of the pass or fail statuses and plots for each test case.

 Automate Testing for Highway Lane Following Controller

8-1261

Verify Test Status in Requirements Editor

Open the Requirements Editor and select Display. Then, select Verification Status to see a
verification status summary for each requirement. The green and red bars indicate the respective
pass or fail status of the simulation results for each test.

8 Featured Examples

8-1262

Automate Testing with Generated Code

The HighwayLaneFollowingControllerTestBench model enables you to verify the generated
code by performing equivalence testing for the Lane Following Decision Logic and Lane
Following Controller components in open-loop. To perform equivalence testing of these
components, use back-to-back testing. Back-to-back tests compare the results of normal simulations
with the generated code results from software-in-the-loop, processor-in-the-loop, or hardware-in-the-
loop simulations. For more information, see sltest.testmanager.createTestForComponent
(Simulink Test). This example focusses on verifying the Lane Following Controller.

Use these steps to create and run an equivalence test for the Lane Following Controller.

1. Select a test scenario and run the setup script.

helperSLHighwayLaneFollowingControllerSetup(scenarioFcnName="scenario_LFACC_03_Curve_StopnGo");

2. Create a test suite object.

testSuite = getTestSuiteByName(testFile,"LaneFollowingControllerEquivalenceTest");
if isempty(testSuite)
 testSuite = sltest.testmanager.TestSuite(testFile,"LaneFollowingControllerEquivalenceTest");
end

3. Create an equivalence test for the component.

testCase = sltest.testmanager.createTestForComponent("TestFile",testSuite, ...
 "Component","HighwayLaneFollowingControllerTestBench/Lane Following Controller", ...
 TestType="equivalence",Simulation1Mode="Normal", ...
 Simulation2Mode="Software-in-the-Loop (SIL)",UseComponentInputs=false, ...
 HarnessOptions={"LogOutputs",true});

 Automate Testing for Highway Lane Following Controller

8-1263

A test harness is created by default in the previous step. Find and open the test harness.

harnessList = sltest.harness.find("HighwayLaneFollowingControllerTestBench/Lane Following Controller");
sltest.harness.open("HighwayLaneFollowingControllerTestBench/Lane Following Controller",harnessList(end).name);

4. Set the tolerance for the equivalence test.

Capture the equivalence criteria.

eq = captureEquivalenceCriteria(testCase);

Set the equivalence criteria tolerance for output signals.

sc = getSignalCriteria(eq);
for i=1:size(sc,2)
 if (strcmp(sc(i).Name,"steering_angle") || strcmp(sc(i).Name,"ego_acceleration"))
 sc(i).AbsTol = sqrt(eps("double"));
 else
 sc(i).Enabled = false;
 end
end

5. Run the equivalence test simulation.

run(testCase);

6. View the test results after the simulation completes. Select the Results and Artifacts tab of the
Test Manager or enter this command.

sltest.testmanager.view;

8 Featured Examples

8-1264

The tab shows pass or fail results based on the assessment criteria. You can use this process to create
equivalence tests for other test scenarios as well.

This process has shown you how to create and run an equivalence test programmatically. You can also
do this graphically by following the steps explained in the “Create and Run a Back-to-Back Test”
(Simulink Test) example.

The HighwayLaneFollowingControllerTestBench model also enables integrated testing of the
Lane Following Decision Logic and Lane Following Controller components with
Vehicle Dynamics in closed-loop. Regression testing of these components through SIL verification
allows you to identify any issues at the system level. This workflow enables you to verify that the
generated code produces expected results that match the system-level requirements throughout the
simulation.

Set the Lane Following Decision Logic to run in software-in-the-loop mode.

model = "HighwayLaneFollowingControllerTestBench/Lane Following Decision Logic";
set_param(model,SimulationMode="Software-in-the-loop")

Set the Lane Following Controller to run in software-in-the-loop mode.

model = "HighwayLaneFollowingControllerTestBench/Lane Following Controller";
set_param(model,SimulationMode="Software-in-the-loop")

Use the run(testFile) command to simulate the system for all test scenarios. After the tests are
complete, review the plots and results in the generated report. If you have a license for Simulink
Coverage, you can also get the code coverage analysis for the generated code in the generated report
by enabling coverage settings in the Test Manager file.

You can visualize the coverage results for individual test cases, as well as the aggregated coverage
results.

Reenable the MPC update messages.

mpcverbosity("on");

Automate Testing in Parallel

If you have a Parallel Computing Toolbox™ license, then you can configure Test Manager to execute
tests in parallel using a parallel pool. To run tests in parallel, save the models after disabling the
runtime visualizations using save_system("HighwayLaneFollowingControllerTestBench").
Test Manager uses the default Parallel Computing Toolbox cluster, and executes tests on only the
local machine. Running tests in parallel can speed up execution and decrease the amount of time it
takes to get test results. For more information on how to configure tests in parallel from the Test
Manager, see “Run Tests Using Parallel Execution” (Simulink Test).

See Also

More About
• “Automate Real-Time Testing for Highway Lane Following Controller” on page 8-1289
• “Automate Testing for Highway Lane Following Controls and Sensor Fusion” on page 8-1168
• “Generate Code for Highway Lane Following Controller” on page 8-1156

 Automate Testing for Highway Lane Following Controller

8-1265

• “Highway Lane Following” on page 8-922

8 Featured Examples

8-1266

Automate Testing for Highway Lane Change
This example shows how to assess the functionality of a lane change application by defining scenarios
based on requirements, and automating testing of components and the generated code for those
components. The components include a lane change planner and controller. This example builds on
the “Highway Lane Change” on page 8-867 example.

Introduction

The highway lane change system enables the ego vehicle to automatically move from one lane to
another lane on a highway. The system models longitudinal and lateral control dynamics for
automated lane change. System-level simulation enables you to assess the functionality of the system-
level test bench model. You can configure simulations to test scenarios based on system
requirements. Automatically running these simulations enables regression testing to verify system-
level functionality.

The “Highway Lane Change” on page 8-867 example shows how to design and simulate a system-
level model for lane change using ground truth information. This example shows how to automate the
testing of that model against multiple scenarios by using Simulink® Test™. The scenarios are based
on system-level requirements. In this example, you:

1 Review requirements — The requirements describe system-level test conditions. Create
simulation test scenarios to represent these conditions.

2 Review the test bench model — Review the system-level lane-change test bench model that
contains metric assessments. These metric assessments integrate the test bench model with
Simulink Test for automated testing.

3 Disable runtime visualizations — Disabling runtime visualizations reduces the execution time
for automated testing.

4 Automate testing — Configure a test manager to simulate each test scenario, assess success
criteria, and report results. Explore the results dynamically in the test manager and export them
to a PDF for external reviewers.

5 Automate testing with generated code — Configure the lane change planner and controller
components to generate C++ code. Run automated testing on the generated code and verify the
behavior.

6 Automate testing in parallel — Increase overall execution speed for running tests by using
parallel computing on a multicore computer.

Review Requirements

To explore the requirements, open a working copy of the project example files. MATLAB® copies the
files to an example folder so that you can edit them.

addpath(fullfile(matlabroot,"toolbox","driving","drivingdemos"))
helperDrivingProjectSetup("HighwayLaneChange.zip",workDir=pwd)

Requirements Toolbox™ enables you to author, analyze, and manage requirements within Simulink.
This example contains 15 test scenarios, with high-level testing requirements defined for each
scenario. Open the requirement set.

open("HighwayLaneChangeTestRequirements.slreqx")

Alternatively, you can open the file from the Requirements tab of the Requirements Manager app
in Simulink.

 Automate Testing for Highway Lane Change

8-1267

Each row in this file specifies the testing requirements of a lane-change system test scenario in
textual and graphical formats. These scenarios enable you to test the lane change planner and
controller components.

• scenario_LC_01_SlowMoving — Three-lane straight road scene with a slow-moving lead
vehicle in the ego lane.

• scenario_LC_02_SlowMovingWithPassingCar — Three-lane straight road scene with a slow-
moving lead vehicle in the ego lane and a passing car in the left lane.

• scenario_LC_03_DisabledCar — Three-lane straight road scenario with a disabled vehicle in
the ego lane.

• scenario_LC_04_CutInWithBrake — Three-lane straight road scene with a lead car cutting
into the ego lane with a brake.

• scenario_LC_05_SingleLaneChange — Four-lane straight road scene with multiple vehicles in
the scenario and a slow-moving lead vehicle.

• scenario_LC_06_DoubleLaneChange — Four-lane straight road scene with multiple vehicles in
the scenario, including a slow-moving lead vehicle and a fast-moving rear vehicle.

• scenario_LC_07_RightLaneChange — Three-lane straight road scene with a lead car in the
ego lane and a passing vehicle in the left lane that causes a right-lane change trigger for the ego
vehicle.

• scenario_LC_08_SlowmovingCar_Curved — Curved road scene with a slow-moving lead car
in the ego lane.

• scenario_LC_09_CutInWithBrake_Curved — Curved road scene with a lead car cutting into
the ego lane.

• scenario_LC_10_SingleLaneChange_Curved — Curved road scene with multiple vehicles in
the scenario and a slow-moving lead vehicle.

8 Featured Examples

8-1268

• scenario_LC_11_MergingCar_HighwayEntry — Highway entry scene with three vehicles in
the scenario. One of the vehicles is merging into the ego lane from the highway-entry road
segment.

• scenario_LC_12_CutInCar_HighwayEntry — Highway entry scene with four vehicles in the
scenario. One of the vehicle cuts into the ego lane on the curved segment of the road network.

• scenario_LC_13_DisabledCar_Ushape — U-shaped scene with multiple vehicles in the
scenario, including a disabled car in the adjacent lane of the ego vehicle and a slow-moving
vehicle in the ego lane.

• scenario_LC_14_DoubleLaneChange_Ushape — U-shaped scene with multiple vehicles in the
scenario, including a disabled car in the adjacent lane of the ego vehicle and a slow-moving
vehicle in the ego lane.

• scenario_LC_15_StopnGo_Curved — Curved road scene that contains six vehicles in the
scenario. The lead vehicle slows down while other vehicles travel in adjacent lanes.

Review Test Bench Model

This example reuses the HighwayLaneChangeTestBench model from the “Highway Lane Change”
on page 8-867 example. Open the test bench model.

open_system("HighwayLaneChangeTestBench")

The test bench model contains these subsystems:

• Scenario and Environment — Specifies the scene, vehicles, and map data used for simulation.
• Planner Configuration Parameters — Specifies the configuration parameters required for

the planner algorithm.
• Highway Lane Change Planner — Implements the lane change planner algorithm for

highways.
• Lane Change Controller — Algorithm model that specifies the controller.

 Automate Testing for Highway Lane Change

8-1269

• Vehicle Dynamics — Specifies the dynamic model for the ego vehicle.
• Metrics Assessment — Assesses system-level behavior.

Configure this test bench model by using the helperSLHighwayLaneChangeSetup script. This
setup script takes scenarioName as input, where scenarioName can be any one of the previously
described test scenarios. To run the setup script, use this code:

scenarioName = "scenario_LC_15_StopnGo_Curved";
helperSLHighwayLaneChangeSetup(scenarioFcnName=scenarioName)

You can now simulate the model and visualize the results. For more details on the design of individual
components in the test bench model, see the “Highway Lane Change” on page 8-867 example.

Next, automate the simulation runs for this test bench model using Simulink Test for the different test
scenarios. The Metrics Assessment subsystem enables integration of system-level metric
evaluations with Simulink Test. This subsystem uses Check Static Range (Simulink) and Check Static
Lower Bound (Simulink) blocks for this integration. Open the Metrics Assessment subsystem.

open_system("HighwayLaneChangeTestBench/Metrics Assessment")

8 Featured Examples

8-1270

The Metric Assessment subsystem outputs these metrics:

• Verify Time gap — Verifies that the time gap between the ego vehicle and the lead vehicle is
greater than 0.8 seconds. The time gap between the two vehicles is the ratio of the calculated
headway distance to the ego vehicle velocity.

• Verify No Collision — Verifies that the ego vehicle does not collide with any vehicle in the
scenario at any point during the simulation.

• Verify Longitudinal Jerk — Verifies that the ego vehicle has a longitudinal jerk value
between –5 m/s^3 and 5 m/s^3.

• Verify Lateral Jerk — Verifies that the ego vehicle has a lateral jerk value between –5 m/s^3
and 5 m/s^3.

• Verify Safety — Verifies the safety of the ego vehicle with respect to the vehicles present in
the current lane, left lane, and right lane. This ensures that the ego vehicle performs a safe
maneuver while following the trajectory.

Disable Runtime Visualizations

The system-level test bench model opens a visualization window showing the ego vehicle, the
sampled trajectories, and a capsule list in both the chase view and top view of the scenario. You can
disable the visualization window to make the simulation run faster.

Configure the Visualization block to disable the visualization window.

blk = "HighwayLaneChangeTestBench/Visualization";
set_param(blk,EnableChaseView="off")
set_param(blk,EnableTopView="off")

Automate Testing

Configure the Test Manager to automate the testing of the lane change application. Open the
HighwayLaneChangeMetricAssessments.mldatx test file in the Test Manager.

sltestmgr;
testFile = sltest.testmanager.load("HighwayLaneChangeMetricAssessments.mldatx");

 Automate Testing for Highway Lane Change

8-1271

Observe the populated test cases previously authored in this file. These tests are configured to run
the model.

Each test case uses the POST-LOAD callback to run the setup script with appropriate inputs. After
simulating the test case, the Test Manager uses the helperLaneChangeReport function from the
CLEAN-UP callback to generate the plots for curvature, lateral deviation, heading angle, velocity,
steering angle, acceleration, and jerk.

Run and Explore Results for Single Test Scenario

Test the system-level model on the scenario_LC_15_StopnGo_Curved scenario.

testSuite = getTestSuiteByName(testFile,"Test Scenarios");
testCase = getTestCaseByName(testSuite,"scenario_LC_15_StopnGo_Curved");
resultObj = run(testCase);

Generate test report after the simulation.

sltest.testmanager.report(resultObj,"Report.pdf", ...
Title="Highway Lane Change", ...
IncludeMATLABFigures=true, ...
IncludeErrorMessages=true, ...
IncludeTestResults=false, ...
LaunchReport=true)

Examine the Report.pdf file. Observe that the Test environment section shows the platform on
which the test is run and the MATLAB version used for testing. The Summary section shows the
outcome of the test and duration of the simulation in seconds. The Results section shows pass or
fail results based on the assessment criteria. This section also shows the plots logged from the
helperLaneChangeReport function.

8 Featured Examples

8-1272

Run and Explore Results for All Test Scenarios

Simulate the system for all the tests by using the run(testFile) command. Alternatively, you can
simulate the system by clicking Play in the Test Manager app.

When the test simulations are complete, view the results for all of the tests in the Results and
Artifacts tab of the Test Manager. For each test case, the Test Manager uses the Check Static
Range (Simulink) and Check Static Lower Bound (Simulink) blocks in the model to visualize overall
pass or fail results.

You can find the generated report in the current working directory. This report contains a detailed
summary of pass or fail statuses and plots for each test case.

 Automate Testing for Highway Lane Change

8-1273

Verify Test Status in Requirements Editor

Open the Requirements Editor and select Display. Then, select Verification Status to see a
verification status summary for each requirement. Green and red bars indicate the pass or failure,
respectively, of simulation results for each test.

8 Featured Examples

8-1274

Automate Testing with Generated Code

The HighwayLaneChangeTestBench model enables integrated testing of the Highway Lane
Change Planner and Highway Lane Change Controller components. Generating code for
these components requires a Simulink Coder™ license. This workflow enables you to verify that the
generated code produces expected results that match the system-level requirements throughout
simulation.

Set the Highway Lane Change Planner to run in software-in-the-loop (SIL) mode.

model = "HighwayLaneChangeTestBench/Highway Lane Change Planner";
set_param(model,SimulationMode="Software-in-the-loop")

Set the Lane Change Controller to run in SIL mode.

model = "HighwayLaneChangeTestBench/Lane Change Controller";
set_param(model,SimulationMode="Software-in-the-loop")

Simulate the system for all the test scenarios by using the run(testFile) command. After the tests
are complete, review the plots and results in the generated report. If you have a license for Simulink
Coverage™, you can also get the code coverage analysis for the generated code in the generated
report. This license also enables you to visualize the coverage results for individual test cases and
aggregated coverage results.

Automate Testing in Parallel

If you have a Parallel Computing Toolbox™ license, you can configure the Test Manager to execute
tests in parallel using a parallel pool. To run tests in parallel, save the models after disabling the
runtime visualizations by using the save_system("HighwayLaneChangeTestBench") command.
The Test Manager uses the default Parallel Computing Toolbox cluster and executes tests only on

 Automate Testing for Highway Lane Change

8-1275

the local machine. Running tests in parallel speeds up execution and decreases the amount of time it
takes to get test results. For more information on how to configure tests in parallel from the Test
Manager, see “Run Tests Using Parallel Execution” (Simulink Test).

See Also

More About
• “Highway Lane Change” on page 8-867
• “Generate Code for Highway Lane Change Planner” on page 8-1180
• “Highway Lane Following” on page 8-922

8 Featured Examples

8-1276

Visualize Logged Data from Unreal Engine Simulation
This example shows how to customize the visualization of logged simulation data in a time-
synchronized fashion by using the Simulation Data Inspector (SDI).

Introduction

Automated driving applications use multilevel sensors such as cameras, radars, and lidar sensors to
implement perception, planning, and control algorithms. Automated Driving Toolbox™ provides tools
for creating and visualizing different test scenarios to test and verify the behavior of your application.
Improving the design of an application often requires visualizing data from different sensors, along
with simulation data, to analyze and debug failed test cases.

This example shows how to customize the visualization of logged simulation data for post-simulation
analysis of an automated driving application. It shows how to configure and visualize the logged
sensor and simulation data in a time-synchronized fashion using SDI. In this example, you:

1 Explore and simulate test bench model — The model consists of vehicles, an environment, and a
visualization framework. Configure and simulate the model to log the data for post-simulation
analysis.

2 Inspect logged data — Explore and inspect the logged data.
3 Configure and visualize a data instance — Configure and visualize the logged data at a specific

time instance.
4 Visualize logged data using SDI — Visualize the logged data for the entire simulation run using

SDI.

Because this example requires a photorealistic simulation environment to capture data from various
sensors during simulation, you enable the simulation through integration with the Unreal Engine®
from Epic Games®. The 3D simulation environment requires a Windows® 64-bit platform.

if ~ispc
 error(['3D Simulation is supported only on Microsoft', char(174), ' Windows', char(174), '.'])
end

Explore and Simulate Test Bench Model

In this example, you use a test bench model to log the data during the simulation. In this test bench,
the ego car moves around the Virtual Mcity scene, and the model visualizes the sensor data.

Open the test bench model.

open_system("VisualizeSensorDataTestBench")

 Visualize Logged Data from Unreal Engine Simulation

8-1277

The test bench model contains these subsystems:

• Vehicles and Environment — Specifies the scene and vehicles.
• Camera — Specifies a camera sensor, overlays bounding boxes for vehicles in the scene, and logs

the data to a multimedia file.
• Map data — Generates latitude and longitude from the ego position, and plots geographic data

using geoplayer.
• Lidar — Specifies a lidar sensor, computes bounding boxes for vehicles, and visualizes point

cloud data.
• INS — Specifies an INS sensor to get pose information for the ego vehicle.
• Radar — Specifies a radar sensor to obtain radar detections.

The Vehicles and Environment subsystem uses the prebuilt Virtual Mcity scene with
predefined vehicle trajectories. Open the Vehicles and Environment subsystem.

open_system("VisualizeSensorDataTestBench/Vehicles and Environment")

8 Featured Examples

8-1278

The scenario contains six vehicles moving with predefined trajectories. The ego vehicle is connected
to the camera, radar, and lidar sensors. This example enables you to visualize the data of these
sensors and the ground truth of the vehicles.

You can also configure logging of the required data and signals for post-simulation visualization. For
more information, see “Configure a Signal for Logging” (Simulink). When you run the simulation, the
model opens different windows to visualize different types of data:

 Visualize Logged Data from Unreal Engine Simulation

8-1279

• Unreal Engine creates a 3D simulation window to display the scenario.
• The To Video Display block displays the images overlaid with ground truth vehicles.
• The Map Display subsystem opens a geographic player to display the geographic location of the

ego vehicle.
• The Visualize Point Cloud MATLAB® function block opens a lidar pcplayer window to

display the point cloud.

Simulate the model to log the required data.

sim("VisualizeSensorDataTestBench");
close("PointCloud data")

Inspect Logged Data

For post-simulation visualization, the model logs the simulation data to the logsout variable, which
is a Simulink.SimulationData.Dataset (Simulink) object. The logged signals are stored in
the Simulink.SimulationData.Signal (Simulink) data type.

Display logsout.

disp(logsout)

Simulink.SimulationData.Dataset 'logsout' with 15 elements

 Name BlockPath
 ____________________ __
 1 [1x1 Signal] lidar_truth ...ataTestBench/Compute Vehicle Boxes 3D
 2 [1x1 Signal] ins_acceleration VisualizeSensorDataTestBench/INS
 3 [1x1 Signal] ins_angular_velocity VisualizeSensorDataTestBench/INS
 4 [1x1 Signal] ins_orientation VisualizeSensorDataTestBench/INS
 5 [1x1 Signal] ins_position VisualizeSensorDataTestBench/INS

8 Featured Examples

8-1280

 6 [1x1 Signal] ins_velocity VisualizeSensorDataTestBench/INS
 7 [1x1 Signal] actor_boxes ...izeSensorDataTestBench/MATLAB System1
 8 [1x1 Signal] ego_latitude ...ataTestBench/Map Display/Conv2LatLong
 9 [1x1 Signal] ego_longitude ...ataTestBench/Map Display/Conv2LatLong
 10 [1x1 Signal] point_cloud ...nsorDataTestBench/Simulation 3D Lidar
 11 [1x1 Signal] '' ...mulation 3D Lidar/Simulation 3D Lidar
 12 [1x1 Signal] radar_detections ...nch/Simulation 3D Probabilistic Radar
 13 [1x1 Signal] '' ...dar/Simulation 3D Probabilistic Radar
 14 [1x1 Signal] actors ...icles and Environment/Scenario Reader
 15 [1x1 Signal] ego ...icles and Environment/Scenario Reader

 - Use braces { } to access, modify, or add elements using index.

You can access a logged signal using its Name or BlockPath by using the get method. For example,
access the signal for the logged radar detections using this command.

radarSignal = logsout.get("radar_detections")

radarSignal =

 Simulink.SimulationData.Signal
 Package: Simulink.SimulationData

 Properties:
 Name: 'radar_detections'
 PropagatedName: ''
 BlockPath: [1×1 Simulink.SimulationData.BlockPath]
 PortType: 'outport'
 PortIndex: 1
 Values: [1×1 struct]

To access the data from the signal, use the Values property of the
Simulink.SimulationData.Signal object. Get the data of the radar signal.

radarData = radarSignal.Values

radarData =

 struct with fields:

 NumDetections: [1×1 timeseries]
 IsValidTime: [1×1 timeseries]
 Detections: [50×1 struct]

Notice that the NumDetections field is in timeseries format. It contains data for the complete
simulation run in array format. Display the NumDetections data.

disp(radarData.NumDetections)

 timeseries with properties:

 Events: []
 Name: 'NumDetections'
 UserData: []

 Visualize Logged Data from Unreal Engine Simulation

8-1281

 Data: [1×1×1121 double]
 DataInfo: [1×1 tsdata.datametadata]
 Time: [1121×1 double]
 TimeInfo: [1×1 tsdata.timemetadata]
 Quality: []
 QualityInfo: [1×1 tsdata.qualmetadata]
 IsTimeFirst: 0
 TreatNaNasMissing: 1
 Length: 1121

The Time property contains the corresponding time for each logged signal. The Data property
contains the number of detections at each time step.

Find the number of detections, and the corresponding simulation time, of the data point 481.

disp(['At ',num2str(radarData.NumDetections.Time(481)), ...
 's, the Number of Radar Detections is ', num2str(radarData.NumDetections.Data(481)), '.'])

At 24s, the Number of Radar Detections is 13.

Configure and Visualize Data Instance

This section shows how to configure the setup script to visualize the logged data at a specified time.

Configure Visualization Parameters

Use the helperVisualizationSetup function to customize the visualization of your sensors.

The helperVisualizationSetup function returns a visualization configuration structure that can
store the required sensor data for visualization along with flags indicating whether or not to visualize
cameras, radar sensors, and lidar sensors. By default, the configuration structure has zeroes for
sensor data.

In this example, the data visualization flags are preset to visualize the camera image with vehicle
truth 2D bounding boxes, radar detections with actor truth, and lidar point clouds with vehicle truth
3D bounding boxes.

visualizationDataConfig = helperVisualizationSetup

visualizationDataConfig =

 struct with fields:

 enableCameraVisualization: 1
 enableRadarVisualization: 1
 enableLidarVisualization: 1
 numCamera: 1
 numRadar: 1
 numLidar: 1
 BusCameraData: [1×1 struct]
 BusRadarData: [1×1 struct]
 BusLidarData: [1×1 struct]

8 Featured Examples

8-1282

Note that the flags are set to visualize data from the camera, radar, and lidar sensors. The data of
each sensor is stored in an individual structure. You can use the Bus Editor to understand the format
of the sensor data. For more information, see Bus Editor (Simulink).

The BusCameraData structure stores flags to enable visualization of ground truth and detections
along with the data.

disp(visualizationDataConfig.BusCameraData)

 enableCameraLaneTruth: 0
 enableCameraObjectTruth: 1
 enableCameraLaneDetections: 0
 enableCameraObjectDetections: 0
 Frame: [768×1024×3 double]
 GroundTruth: [1×1 struct]
 Detections: [1×1 struct]
 Parameters: [1×1 struct]

The flag to visualize vehicle bounding boxes overlaid on camera image is set to true. Other flags for
lane visualizations (truth and detections) and vehicle detections are set to false.

The Frame field stores image data for visualization as an array. The GroundTruth structure stores
ground truth data for vehicles and lanes.

disp(visualizationDataConfig.BusCameraData.GroundTruth)

 Objects: [20×4 double]
 Lanes: [1×1 struct]

The Detections structure stores detections from vehicles and lanes.

disp(visualizationDataConfig.BusCameraData.Detections)

 Objects: [1×1 struct]
 Lanes: [1×1 struct]

The Parameters structure stores camera parameters, which can be changed by editing the
helperVisualizationSetup function script.

disp(visualizationDataConfig.BusCameraData.Parameters)

 NumColumns: 1024
 NumRows: 768
 FieldOfView: [45 45]
 ImageSize: [768 1024]
 PrincipalPoint: [512 384]
 FocalLength: [512 512]
 Position: [1.8750 0 1.2000]
 PositionSim3d: [0.5700 0 1.2000]
 Rotation: [0 0 0]
 DetectionRanges: [6 50]
 LaneDetectionRanges: [6 30]
 MeasurementNoise: [3×3 double]
 MinObjectImageSize: [10 10]

 Visualize Logged Data from Unreal Engine Simulation

8-1283

The BusRadarData structure stores flags to enable visualization of actor truth and of the scenario
overlaid on a bird's-eye view. By default, these two flags are set to true. This structure also stores
the actor ground truth, radar detections, and radar parameters. You can modify radar parameters
using the helperVisualizationSetup function.

disp(visualizationDataConfig.BusRadarData)

 enableRadarObjectTruth: 1
 enableScenarioVisualization: 1
 Actors: [1×1 struct]
 Detections: [1×1 struct]
 Parameters: [1×1 struct]

disp(visualizationDataConfig.BusRadarData.Parameters)

 FieldOfView: [40 5]
 DetectionRanges: [1 150]
 Position: [3.7290 0 0.8000]
 PositionSim3d: [2.4240 0 0.8000]
 Rotation: [0 0 0]

The BusLidarData stores the enableLidarObjectTruth flag, which enables the visualization of
ground truth vehicle bounding boxes on the point cloud. To store ground truth information, set this
flag to true. The PointCloud field stores the point cloud data for visualization.

disp(visualizationDataConfig.BusLidarData)

 enableLidarObjectTruth: 1
 ObjectTruth: [20×9 double]
 PointCloud: [0 0 0]

Get Data Instance

Use the visualizationDataConfig structure to visualize data at a specified time instance.
Visualize the sensor data at 24 seconds, extract the data from logsout, and store it in the
configuration structure.

Specify a time for visualization.

time = 24;
simulationTimeStep = max(1,round(time/Ts)); % Ts is simulation step size.

Read the camera data and vehicle truth 2D bounding boxes from logsout.

% Read camera image recording
videoSrc = VideoReader("forwardFacingCamera_Mcity.mp4");

% Vehicle ground truth 2D bounding boxes
cameraObjectTruthData = logsout.get("actor_boxes").Values;

Get the camera frame at the specified time.

frame = read(videoSrc, simulationTimeStep);

Add the camera frame and vehicle truth to the visualizationDataConfig structure.

8 Featured Examples

8-1284

% Add camera frame into structure
visualizationDataConfig.BusCameraData.Frame = frame;
% Add vehicle truth 2D bounding boxes into structure
visualizationDataConfig.BusCameraData.GroundTruth.Objects = cameraObjectTruthData.data(:,:,simulationTimeStep);

Read the radar detections, ego bus, and vehicle truth.

radarDetectionsData = logsout.get("radar_detections").Values;
egoVehicleData = logsout.get("ego").Values;
radarActorTruth = logsout.get("actors").Values;

Add the radar detections to the visualizationDataConfig structure.

% Radar object detections
numDetections = radarDetectionsData.NumDetections.Data(simulationTimeStep);
for k = 1:numDetections
 visualizationDataConfig.BusRadarData.Detections.Detections(k).Measurement = radarDetectionsData.Detections(k).Measurement.Data(:,:,simulationTimeStep);
 visualizationDataConfig.BusRadarData.Detections.Detections(k).MeasurementNoise = radarDetectionsData.Detections(k).MeasurementNoise.Data(:,:,simulationTimeStep);
end
visualizationDataConfig.BusRadarData.Detections.NumDetections = numDetections;

Add ego information to visualizationDataConfig for visualizing the scenario in a bird's-eye plot.

% Ego information
visualizationDataConfig.BusRadarData.Actors.NumActors = 1;
visualizationDataConfig.BusRadarData.Actors.Actors(1).Position = egoVehicleData.Position.Data(:,:,simulationTimeStep);
visualizationDataConfig.BusRadarData.Actors.Actors(1).Yaw = egoVehicleData.Yaw.Data(:,:,simulationTimeStep);

Add actor truth to the visualizationDataConfig structure for visualization in a bird's-eye plot.

% Get actor truth for radar
numActors = radarActorTruth.NumActors.Data(simulationTimeStep);
% Add Actor bus data into structure
visualizationDataConfig.BusRadarData.Actors.NumActors = radarActorTruth.NumActors.Data(simulationTimeStep) + 1;
fn = fieldnames(visualizationDataConfig.BusRadarData.Actors.Actors);
for i = 1:numActors
 for k = 1:numel(fn)
 visualizationDataConfig.BusRadarData.Actors.Actors(i+1).(fn{k}) = radarActorTruth.Actors(i).(fn{k}).Data(:,:,simulationTimeStep);
 end
end

Read the lidar data and vehicle truth 3D bounding boxes from the simulation data.

% Lidar data
pointCloudData = logsout.get("point_cloud").Values;
% Vehicle ground truth 3D bounding boxes
lidarActorBoxes = logsout.get("lidar_truth").Values;

Add the lidar data and vehicle truth to the visualizationDataConfig structure.

% Add point cloud into structure
visualizationDataConfig.BusLidarData.PointCloud = pointCloudData.Data(:,:,:,simulationTimeStep);
% Add vehicle truth 3D bounding boxes into structure
visualizationDataConfig.BusLidarData.ObjectTruth = lidarActorBoxes.Data(:,:,simulationTimeStep);

Visualize Data Instance

 Visualize Logged Data from Unreal Engine Simulation

8-1285

Use the helperPlotSensorData function to visualize the data in visualizationDataConfig.
Because this function uses persistent variables to define the figure and axes for visualization, you
must clear the existing persistent variables.

clear helperPlotSensorData

Visualize the data instance.

helperPlotSensorData(visualizationDataConfig, scenario)

Visualize Logged Data using SDI

You can also use SDI to visualize the logged data for an entire simulation. SDI is a powerful tool for
visualizing and comparing multiple kinds of data, including map data. Using SDI, you can visualize
logged signals during and after the simulation. You can use the cursor in SDI to visualize the data in
playback mode. You can also assign a callback function to the cursor, using the
Simulink.sdi.registerCursorCallback function, that triggers when you move the SDI cursor.
Because the Simulink.sdi.registerCursorCallback function returns a callback ID that you
must clear before assigning another callback function, use the
Simulink.sdi.unregisterCursorCallback function to clear the SDI callback.

8 Featured Examples

8-1286

This flowchart shows the workflow for visualizing logged data using SDI. Using the
helperVisualizeData function, you can specify the names of the signals that logged data during
simulation. You can also visualize map data with the logged ego_latitude and ego_longitude
signals. For more information, see “View and Replay Map Data” (Simulink).

The helperVisualizeData function initializes SDI, and adds the seekSDICallbackFunction
function as the SDI cursor callback function. The callback function takes the data from logsout and
adds it to the structure at each cursor move. The callback function passes this structure to the
helperPlotSensorData function, which enables you to visualize sensor data in playback mode.

visualizationDataConfig = helperVisualizationSetup;
id = helperVisualizeData(logsout, scenario, visualizationDataConfig);

 Visualize Logged Data from Unreal Engine Simulation

8-1287

The helperVisualizeData function returns the callback ID of the SDI cursor callback function.
Unregister the SDI cursor callback function before running the simulation again.

Simulink.sdi.unregisterCursorCallback(id)

See Also

More About
• “Configure a Signal for Logging” (Simulink)
• “Highway Lane Following” on page 8-922

8 Featured Examples

8-1288

Automate Real-Time Testing for Highway Lane Following
Controller

This example shows how to automate the testing of a lane following controller deployed to a
Speedgoat® real-time target machine using Simulink® Test™. In this example, you:

• Deploy the highway lane following controller to a Speedgoat machine using Simulink Real-Time™.
• Perform automated testing of the deployed application using Simulink Test.

The lane following controller is a fundamental component in highway driving applications, as it
combines lateral and longitudinal controls for an ego vehicle. This critical component is most
commonly deployed to a real-time processor. This example shows how you can deploy the lane
following controller to a Speedgoat real-time machine. It also shows how you can reuse the desktop
simulation test cases and automate regression testing for the deployed controller. This example builds
on the “Generate Code for Highway Lane Following Controller” on page 8-1156 example.

System Configuration

This example uses a hardware setup that primarily consists of two machines, a host and a target,
connected by ethernet.

This example uses this hardware configuration:

 Automate Real-Time Testing for Highway Lane Following Controller

8-1289

1 Target — Speedgoat Performance Real-Time machine with an Intel® Core™ i7 4.2 GHz, running
Simulink Real-Time operating system. For more information, see Speedgoat Performance Real-
Time Target Machine.

2 Host — Intel® Xeon® 3.60GHz, running a Windows® 64-bit operating system.
3 Ethernet cable connecting the target to the host.

The target runs the lane following decision logic and lane following controller. It sends steering angle
and acceleration signals to the host using the User Datagram Protocol (UDP) over ethernet.

The host sets up the simulation environment, configures the test scenarios, and models the vehicle
dynamics of the ego vehicle. It sends signals carrying information about lanes, tracks, ego velocity,
and set velocity to the target using UDP. It receives the steering angle and acceleration to generate
the ego pose from the target using UDP.

Using this setup, you can deploy the lane following controller to the target, run the host model for a
test scenario, and log and visualize simulation results.

In this example, you:

1 Review the simulation test bench model — The model contains the scenario, controls, vehicle
dynamics, and metrics to assess functionality. The metric assessments integrate the test bench
model with Simulink Test for automated testing.

2 Partition and explore host and target models — The simulation test bench model is
partitioned into two models. One runs on the host machine, and the other is used for deployment
to the target machine.

3 Deploy the target model — Configure and deploy the lane following controller model to the
target machine using Simulink Real-Time.

4 Simulate host model and visualize results — Configure the host model with a test scenario.
Simulate the model and visualize the results.

5 Explore the test manager file — Explore the configured test manager file that enables you to
automate the testing of the deployed lane following controller.

6 Automate testing — Run the test suite using the test manager and analyze the test report.

Review Simulation Test Bench Model

This example uses the test bench model from “Generate Code for Highway Lane Following
Controller” on page 8-1156, as shown in this figure.

8 Featured Examples

8-1290

https://www.speedgoat.com/products-services/real-time-target-machines/performance
https://www.speedgoat.com/products-services/real-time-target-machines/performance

This simulation test bench model contains these subsystems:

• Simulation 3D Scenario — Specifies the road, vehicles, and vision detection generator used
for simulation.

• Lane Following Decision Logic — Specifies the lateral and longitudinal decision logic, and
provides lane center information and most important object (MIO) related information to the
controller.

• Lane Following Controller — Specifies the path-following controller that generates control
commands to steer the ego vehicle.

• Vehicle Dynamics — Specifies the dynamic model for the ego vehicle.
• Metrics Assessment — Assesses system-level behavior.

Partition and Explore Host and Target Models

The test bench model is partitioned into host and target models. Explore these models.

Explore Host Model

The host model contains the Simulation 3D Scenario, Vehicle Dynamics, and Metrics
Assessment subsystems of the highway lane following application. The model also configures the
UDP interface using the UDP Data Send and UDP Data Receive subsystems. Open the host
model.

open_system("RTHLFControllerHost")

 Automate Real-Time Testing for Highway Lane Following Controller

8-1291

The Simulation 3D Scenario subsystem configures the road network, sets vehicle positions, and
packs truth data into detections. For more information see “Generate Code for Highway Lane
Following Controller” on page 8-1156. Open the Simulation 3D Scenario subsystem.

open_system("RTHLFControllerHost/Simulation 3D Scenario")

8 Featured Examples

8-1292

 Automate Real-Time Testing for Highway Lane Following Controller

8-1293

This subsystem also sets the initial velocity of the ego vehicle, and generates the reset flag using a
MATLAB® Function block. Use this flag to reset the internal states of the deployed application before
you run the simulation.

The UDP Data Send subsystem contains Byte Packing (Simulink Real-Time) and UDP Send (Simulink
Real-Time) blocks from the Simulink Real-Time library. Open the UDP Data Send subsystem.

open_system("RTHLFControllerHost/UDP Data Send")

8 Featured Examples

8-1294

 Automate Real-Time Testing for Highway Lane Following Controller

8-1295

Each Byte Pack subsystem contains a Byte Packing block that converts one or more signals of user-
selectable data types to a single vector of varying data types. Each UDP Send block sends the data
from the corresponding Byte Pack subsystem over a UDP network to the specified IP address and
port. You must configure these UDP Send blocks with the IP address and port number of the target
machine.

This list defines the specifications of the data signals.

• Set Velocity — 8-byte double
• Longitudinal Velocity — 8-byte ldouble
• Initial Longitudinal Velocity — 8-byte double
• Reset Flag — 8-byte double
• Tracks — 268-byte Simulink bus structure
• Lane Detections — 32-byte Simulink bus structure

This example sets the maximum number of tracks to 5. You can update this value when you use a
different test scenario.

The UDP Data Receive subsystem contains UDP Receive (Simulink Real-Time) and Byte Unpacking
(Simulink Real-Time) blocks from the Simulink Real-Time library. Open the UDP Data Receive
subsystem.

open_system("RTHLFControllerHost/UDP Data Receive")

This subsystem contains two additional subsystems:

8 Featured Examples

8-1296

• Receive Controller Output — Receives and unpacks the controller outputs sent from the
target machine.

• Receive Intermediate Signals — Receives and unpacks the intermediate signals from the
target machine.

The Vehicle Dynamics subsystem contains a dynamic model for the ego vehicle.

open_system("RTHLFControllerHost/Vehicle Dynamics")

The Vehicle Dynamics subsystem implements a Bicycle Model for the ego vehicle. The subsystem
takes controller outputs and estimates the ego vehicle pose.

The Metrics Assessment subsystem is based on the subsystem used in the “Generate Code for
Highway Lane Following Controller” on page 8-1156 example.

To perform the real-time simulation, the host model runs with simulation pacing set to 1. For more
information, see “Simulation Pacing” (Simulink).

Explore Target Model

The target model contains the Highway Lane Following Controller subsystem, along with UDP
interfaces. Open the target model.

open_system("RTHLFControllerTarget")

 Automate Real-Time Testing for Highway Lane Following Controller

8-1297

The target model contains these subsystems:

• UDP Data Receive — Receives data required for highway lane following controller model to run.
• Highway Lane Following Controller — Enabled subsystem that contains the lane following

decision logic and lane following controller algorithms.
• UDP Data Send — Sends the outputs of the controller to the host model, which are required by

Vehicle Dynamics subsystem of the host model.

The UDP Data Receive subsystem contains UDP Receive and Byte Unpacking blocks from Simulink
Real-Time library. Open the UDP Data Receive subsystem.

open_system("RTHLFControllerTarget/UDP Data Receive")

8 Featured Examples

8-1298

This subsystem receives data frames from the host machine, and deconstructs them using the Byte
Unpack subsystems.

The UDP Data Send subsystem contains Byte Packing and UDP Send blocks from Simulink Real-
Time library. Open the UDP Data Send subsystem.

open_system("RTHLFControllerTarget/UDP Data Send")

 Automate Real-Time Testing for Highway Lane Following Controller

8-1299

This subsystem sends the controller outputs, Steering Angle and Acceleration, to the host
machine using a UDP Send block. It also sends some internal signals used for plotting.

The Highway Lane Following Controller subsystem is an enabled subsystem that enables
execution of the controller algorithm upon receiving data from the host machine. Open the Highway
Lane Following Controller subsystem.

open_system("RTHLFControllerTarget/Highway Lane Following Controller")

8 Featured Examples

8-1300

The enabled subsystem contains a resettable subsystem. The resettable subsystem resets the lane
following controller to its default state when Reset Flag is set. Open the Resettable Highway
Lane Following Controller subsystem.

open_system("RTHLFControllerTarget/Highway Lane Following Controller/Resettable Highway Lane Following Controller")

 Automate Real-Time Testing for Highway Lane Following Controller

8-1301

This subsystem is a combination of the Lane Following Decision Logic and Lane Following
Controller subsytems. These subsystems are similar to the ones used in the “Generate Code for
Highway Lane Following Controller” on page 8-1156 example.

Deploy Target Model

Follow these steps to deploy the model to a real-time machine.

1. Configure the UDP blocks in the host and target models.

The UDP Send and UDP Receive blocks used in the host and target models require valid IP addresses
for the host and target machines. This example ships with the helperSLRTUDPSetup.m file, which
updates these blocks with your specified IP addresses. You can update these blocks manually, or by
using the helperSLRTUDPSetup function as shown:

% Specify host model and IP address of Host machine
hostMdl = "RTHLFControllerHost";
hostIP = "10.1.10.16";

% Specify Target model and IP address of Target machine
targetMdl = "RTHLFControllerTarget";
targetIP = "10.1.10.15";

% Invoke the function to update the blocks
helperSLRTUDPSetup(targetMdl,targetIP,hostMdl,hostIP);

2. Build the target model and create an slrealtime application file,
RTHLFControllerTarget.mldatx.

slbuild(targetMdl);

3. Connect to the target machine.

8 Featured Examples

8-1302

Connect to the target machine by defining an slrealtime object to manage the target computer.

% Create slrealtime object
tg = slrealtime;

% Specify IP address for target machine
setipaddr(tg,'10.1.10.15')

% Connect to target
connect(tg);

The real-time operating system (RTOS) version on the target computer must match with that on the
host computer. Otherwise, you cannot connect to the target computer. Run the update(tg)
command to update the RTOS version on the target computer.

4. Load the real-time application to the target.

Load the generated RTHLFControllerTarget.mldax application to the target machine.

% Load the controller model to the target
load(tg,targetMdl);

5. Execute the real-time application on the target.

% Start the loaded application on the target machine.
start(tg);

Alternatively, you can deploy the target model by using the Simulink graphical user interface.

On the Real-Time tab, in the Connect To Target Computer section, select your target machine
from the list. Use the slrtExplorer (Simulink Real-Time) to configure the target.

 Automate Real-Time Testing for Highway Lane Following Controller

8-1303

To deploy and run the controller model on the target machine, select Run on Target.

Simulate Host Model and Visualize Results

Configure the RTHLFControllerHost model to simulate the
scenario_LFACC_03_Curve_StopnGo scenario. This scenario contains six vehicles, including the
ego vehicle, and defines their trajectories.

helperSLHLFControllerHostSetup(scenarioFcnName="scenario_LFACC_03_Curve_StopnGo");

Simulate the host model.

sim(hostMdl);

Stop and unload the application in the target machine.

stop(tg);

Plot the performance metrics for the lateral controller.

hFigLatResults = helperPlotLFLateralResults(logsout);

8 Featured Examples

8-1304

Examine the results.

• The Detected lane boundary lateral offsets plot shows the lateral offsets of the detected left-
lane and right-lane boundaries from the center of the lane. This signal is input to the controller.

• The Lateral deviation plot shows the lateral deviation of the ego vehicle from the centerline of
the lane. Ideally, lateral deviation is zero meters, which implies that the ego vehicle exactly follows
the centerline. Small deviations occur when the vehicle changes velocity to avoid collision with
another vehicle. This signal is input to the controller.

• The Relative yaw angle plot shows the relative yaw angle between the ego vehicle and the
centerline of the lane. The relative yaw angle is close to zero radians, which implies that the
heading angle of the ego vehicle closely matches the yaw angle of the centerline. This signal is
input to the controller.

 Automate Real-Time Testing for Highway Lane Following Controller

8-1305

• The Steering angle plot shows the steering angle of the ego vehicle. Observe that the plot shows
little deviation, indicating that the steering angle trajectory is smooth. This signal is output by the
controller.

Close the figure.

close(hFigLatResults);

Plot the performance metrics for the longitudinal controller.

hFigLongResults = helperPlotLFLongitudinalResults(logsout,time_gap,default_spacing);

Examine the results.

• The Relative longitudinal distance plot shows the distance between the ego vehicle and the
MIO. In this case, the ego vehicle approaches the MIO and even exceeds the safe distance, in
some cases. This signal is input to the controller.

• The Relative longitudinal velocity plot shows the relative velocity between the ego vehicle and
the MIO. Because this example contains no tracker and tracks data filled using ground truth, the
estimated velocity is almost identical to the ground truth. This signal is input to the controller.

• The Absolute acceleration plot shows that the controller commands the vehicle to decelerate
when it approaches the MIO. This signal is output by the controller.

8 Featured Examples

8-1306

• The Absolute velocity plot shows the ego vehicle initially follows the set velocity, but avoids a
collision by slowing down when the MIO slows down. This signal is input to the controller.

Close the figure.

close(hFigLongResults);

Explore Test Manager File

Simulink Test includes the Test Manager, which you can use to author test cases for Simulink
models. After authoring your test cases, you can group them and execute them individually or in a
batch.

This example reuses the test scenarios from the “Automate Testing for Highway Lane Following
Controller” on page 8-1254 example.

The target model is configured so that you do not have to compile and deploy the controller for every
test case. Once you deploy the controller, and before the next test case, it resets to its initial state.
The example uses these test file callbacks:

• The SETUP callback calls the helperRTTestManagerSetup function to configure the target
model to deploy and run on a real-time machine.

• The CLEANUP callback stops and unloads the application from the target machine.

Open the test file HLFControllerRealTimeTestsAssessment.mldatx in the Test Manager and
explore the configuration.

sltestmgr
sltest.testmanager.load("HLFControllerRealTimeTestsAssessment.mldatx");

You can also run individual test scenarios using these test case callbacks:

 Automate Real-Time Testing for Highway Lane Following Controller

8-1307

• The POST-LOAD callback calls the helperRTTestManagerSetup to configure the target model
to deploy and run on a real-time machine. It also configures the host model for a test scenario.

• The CLEANUP callback contains a script to plot the results of the simulation run.

Automate Testing

Using the created Test Manager file, run a single test case to test the application on a real-time
machine.

Running the test scenarios from test file requires a connection with the target machine. If the target
machine is not already connected, refer to steps 1–3 of the Deploy Target Model section.

Use this code to test the lane following controller model with the
scenario_LFACC_03_Curve_StopnGo test scenario from Simulink Test.

testFile = sltest.testmanager.load("HLFControllerRealTimeTestsAssessment.mldatx");
testSuite = getTestSuiteByName(testFile,"Test Scenarios");
testCase = getTestCaseByName(testSuite,"scenario_LFACC_03_Curve_StopnGo");
resultObj = run(testCase);

To generate a report after the simulation, use this code:

sltest.testmanager.report(resultObj,"Report.pdf", ...
Title="Real-Time Highway Lane Following Controller Test Assessment", ...
IncludeMATLABFigures=true, ...
IncludeErrorMessages=true, ...
IncludeTestResults=false, ...
LaunchReport=true);

Examine Report.pdf. Observe that the Test Environment section shows the platform on which
the test is run and the MATLAB version used for testing. The Summary section shows the outcome of

8 Featured Examples

8-1308

the test and the duration of the simulation in seconds. The Results section shows pass or fail results
based on the assessment criteria. This section also shows the logged plots from the CLEANUP
callback commands.

Run and Explore Results for All Test Scenarios

You can simulate the system for all the tests by using run(testFile). Alternatively, you can
simulate the system by clicking Play in the Test Manager.

When the test simulations are complete, you can view the results for all the tests in the Results and
Artifacts tab of the Test Manager. For each test case, the Check Static Range (Simulink) blocks in
the model are associated with the Test Manager to visualize overall pass or fail results.

You can find the generated report in the current working directory. This report contains a detailed
summary of the pass or fail statuses and plots for each test case.

 Automate Real-Time Testing for Highway Lane Following Controller

8-1309

See Also
Blocks
Scenario Reader | Simulation 3D Scene Configuration | UDP Send | UDP Receive | Byte Unpacking |
Byte Packing

Related Examples
• “Automate Real-Time Testing for Forward Vehicle Sensor Fusion” on page 8-1344
• “Highway Lane Following” on page 8-922
• “Generate Code for Highway Lane Following Controller” on page 8-1156
• “Automate Testing for Highway Lane Following Controller” on page 8-1254
• “Automate Testing for Highway Lane Following Controls and Sensor Fusion” on page 8-1168

8 Featured Examples

8-1310

Generate C++ Message Interfaces for Lane Following Controls
and Sensor Fusion

This example shows how to generate C++ code that supports message-based communication
between components of a highway lane following system. Generating code with message interfaces
enables your application to communicate in a distributed system that uses an external message
protocol service.

Introduction

Next generation autonomous vehicles (AVs) run highly complex algorithms to perform perception,
planning, and control. Service-oriented architecture (SOA) is becoming a prevalent means of dealing
with this increasing complexity. SOA promotes a distributed approach to implementing perception,
planning, and control algorithms using local computing units. These units can exchange information
with each other using message-based communication services such as Robot Operating System
(ROS), Data Distribution Services (DDS), and the AUTOSAR Adaptive Platform.

This example focuses on modeling message-based communication between sensor fusion and controls
components of a highway lane-following application. The example uses the Send (Simulink) and
Receive (Simulink) blocks from the Simulink Messages and Events library to model the message-
passing interface between the components of this system. This example also uses the
HLFControlsWithSensorFusionTestBench model from the “Automate Testing for Highway Lane
Following Controls and Sensor Fusion” on page 8-1168 example. In this example, you:

1 Identify algorithm components for deployment — Review the test bench model with signals and
identify the algorithm components in the test bench model.

2 Add Simulink message interfaces to algorithm components — Review the test bench model with
Simulink messages. Simulate the model and examine the results.

3 Generate C++ code — Configure the algorithm components with Simulink messages to generate
C++ code.

4 Explore generated code — Explore the generated code and observe message interfaces.

In this example, you enable system-level simulation through integration with the Unreal Engine®
from Epic Games®. The 3D simulation environment requires a Windows® 64-bit platform.

if ~ispc
 error(['3D simulation is supported only on Microsoft',char(174),' Windows',char(174),'.'])
end

Identify Algorithm Components for Deployment

This example uses a system-level simulation test bench model to interface with Simulink messages.
To explore the test bench model, open a working copy of the project example files. MATLAB copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot,"toolbox","driving","drivingdemos"))
helperDrivingProjectSetup("HLFControlsSensorFusion.zip",workDir=pwd)

Open the test bench model and highlight the model components for deployment.

open_system("HLFControlsWithSensorFusionTestBench")
hilite_system("HLFControlsWithSensorFusionTestBench/Forward Vehicle Sensor Fusion")
hilite_system("HLFControlsWithSensorFusionTestBench/Lane Following Decision Logic")
hilite_system("HLFControlsWithSensorFusionTestBench/Lane Following Controller")

 Generate C++ Message Interfaces for Lane Following Controls and Sensor Fusion

8-1311

The test bench model contains these subsystems:

• Simulation 3D Scenario — Specifies the road, vehicles, vision detection generator, and radar
sensors used for the simulation.

• Forward Vehicle Sensor Fusion — Fuses the vision and radar sensor detections of vehicles
in front of the ego vehicle.

• Lane Following Decision Logic — Algorithm model that specifies the lateral and
longitudinal decision logic, and provides lane center information and most important object (MIO)
related information to the controller.

• Lane Following Controller — Algorithm model that specifies the controller.
• Vehicle Dynamics — Specifies the dynamic model for the ego vehicle.
• Metrics Assessment — Assesses system-level behavior.

This example configures the Forward Vehicle Sensor Fusion, Lane Following Decision
Logic, and Lane Following Controller components using Simulink messages.

Add Simulink Message Interfaces to Algorithm Components

To model a message passing interface for algorithm components, add Send and Receive blocks at the
output and input ports, respectively, of the algorithm components. Open the test bench model that
contains message interfaces.

open_system("SOAHLFControlsWithSensorFusionTestBench")

8 Featured Examples

8-1312

Observe the message interfaces between the components of the model. To explore the modeling
pattern for the message Send and Receive interfaces, open each component model.

Open the Forward Vehicle Sensor Fusion component.

open_system("SOAForwardVehicleSensorFusion")

Open the Lane Following Decision Logic component.

open_system("SOALaneFollowingDecisionLogic")

 Generate C++ Message Interfaces for Lane Following Controls and Sensor Fusion

8-1313

Open the Lane Following Controller component.

open_system("SOALaneFollowingController")

8 Featured Examples

8-1314

Observe the Simulink message Send and Receive blocks connected to the Lane Following
Controller reference component. Simulate the model and examine the results.

sim("SOAHLFControlsWithSensorFusionTestBench");

 Assuming no disturbance added to measured output channel #3.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #4 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Plot performance metrics for the lateral controller.

hFigLatResults = helperPlotLFLateralResults(logsout);

 Generate C++ Message Interfaces for Lane Following Controls and Sensor Fusion

8-1315

Close the figure.

close(hFigLatResults)

Plot performance metrics for the longitudinal controller. For more information about the lateral and
longitudinal controller metrics, see “Highway Lane Following” on page 8-922.

hFigLongResults = helperPlotLFLongitudinalResults(logsout,time_gap, ...
 default_spacing);

8 Featured Examples

8-1316

Close the figure.

close(hFigLongResults)

Generate C++ Code

Generate C++ code for the Forward Vehicle Sensor Fusion, Lane Following Decision
Logic, and Lane Following Controller algorithm components.

Configure the reference model parameters for code generation support.

helperSetModelParametersForCodeGeneration({'SOAForwardVehicleSensorFusion', ...
 'SOALaneFollowingDecisionLogic', ...
 'SOALaneFollowingController'});
save_system("SOAForwardVehicleSensorFusion");
save_system("SOALaneFollowingDecisionLogic");
save_system("SOALaneFollowingController");

 Generate C++ Message Interfaces for Lane Following Controls and Sensor Fusion

8-1317

 Model configuration parameters:

 Parameter Value Description
 ___________________________________ _______________ __

 {'SystemTargetFile' } {'ert.tlc' } {'Code Generation>System target file' }
 {'TargetLang' } {'C++' } {'Code Generation>Language' }
 {'SolverType' } {'Fixed-step' } {'Solver>Type' }
 {'FixedStep' } {'auto' } {'Solver>Fixed-step size (fundamental sample time)' }
 {'EnableMultiTasking' } {'on' } {'Solver>Treat each discrete rate as a separate task' }
 {'ProdLongLongMode' } {'on' } {'Hardware Implementation>Support long long' }
 {'BlockReduction' } {'on' } {'Simulation Target>Block reduction' }
 {'MATLABDynamicMemAlloc' } {'on' } {'Simulation Target>Simulation Target>Dynamic memory allocation in MATLAB functions' }
 {'OptimizeBlockIOStorage' } {'on' } {'Simulation Target>Signal storage reuse' }
 {'InlineInvariantSignals' } {'on' } {'Simulation Target>Inline invariant signals' }
 {'BuildConfiguration' } {'Faster Runs'} {'Code Generation>Build configuration' }
 {'RTWVerbose' } {'off' } {'Code Generation>Verbose build' }
 {'CombineSignalStateStructs' } {'on' } {'Code Generation>Interface>Combine signal/state structures' }
 {'SupportVariableSizeSignals' } {'on' } {'Code Generation>Interface>Support variable-size signals' }
 {'CodeInterfacePackaging' } {'C++ class' } {'Code Generation>Interface>Code interface packaging' }
 {'GenerateExternalIOAccessMethods'} {'Method' } {'Code Generation>Interface>Data Member Visibility>External I/O access' }
 {'EfficientFloat2IntCast' } {'on' } {'Code Generation>Optimization>Remove code from floating-point to integer conversions that wraps out-of-range values'}
 {'ZeroExternalMemoryAtStartup' } {'off' } {'Code Generation>Optimization>Remove root level I/O zero initialization (inverse logic)' }
 {'CustomSymbolStrGlobalVar' } {'NM' } {'Code Generation>Symbols>Global variables' }
 {'CustomSymbolStrType' } {'NM_T' } {'Code Generation>Symbols>Global types' }
 {'CustomSymbolStrField' } {'NM' } {'Code Generation>Symbols>Field name of global types' }
 {'CustomSymbolStrFcn' } {'APV_NM$F' } {'Code Generation>Symbols>Subsystem methods' }
 {'CustomSymbolStrTmpVar' } {'NM' } {'Code Generation>Symbols>Local temporary variables' }
 {'CustomSymbolStrMacro' } {'NM' } {'Code Generation>Symbols>Constant macros' }

Generate code for the Forward Vehicle Sensor Fusion component.

slbuild("SOAForwardVehicleSensorFusion");

Starting serial model reference code generation build
Starting build procedure for: ForwardVehicleSensorFusion
Successful completion of code generation for: ForwardVehicleSensorFusion
Starting build procedure for: SOAForwardVehicleSensorFusion
Successful completion of code generation for: SOAForwardVehicleSensorFusion

Build Summary

Code generation targets built:

Model Action Rebuild Reason
==
ForwardVehicleSensorFusion Code generated ForwardVehicleSensorFusion.cpp does not exist.

Top model targets built:

Model Action Rebuild Reason
===
SOAForwardVehicleSensorFusion Code generated Code generation information file does not exist.

2 of 2 models built (0 models already up to date)
Build duration: 0h 3m 48.978s

8 Featured Examples

8-1318

Generate code for the Lane Following Decision Logic component.

slbuild("SOALaneFollowingDecisionLogic");

Starting serial model reference code generation build
Starting build procedure for: LaneFollowingDecisionLogic
Successful completion of code generation for: LaneFollowingDecisionLogic
Starting build procedure for: SOALaneFollowingDecisionLogic
Successful completion of code generation for: SOALaneFollowingDecisionLogic

Build Summary

Code generation targets built:

Model Action Rebuild Reason
==
LaneFollowingDecisionLogic Code generated LaneFollowingDecisionLogic.cpp does not exist.

Top model targets built:

Model Action Rebuild Reason
===
SOALaneFollowingDecisionLogic Code generated Code generation information file does not exist.

2 of 2 models built (0 models already up to date)
Build duration: 0h 0m 27.85s

Generate code for the Lane Following Controller component.

slbuild("SOALaneFollowingController");

Starting serial model reference code generation build
Starting build procedure for: LaneFollowingController
 Assuming no disturbance added to measured output channel #3.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->Assuming output disturbance added to measured output channel #4 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
Successful completion of code generation for: LaneFollowingController
Starting build procedure for: SOALaneFollowingController
Successful completion of code generation for: SOALaneFollowingController

Build Summary

Code generation targets built:

Model Action Rebuild Reason
==
LaneFollowingController Code generated LaneFollowingController.cpp does not exist.

Top model targets built:

Model Action Rebuild Reason
==
SOALaneFollowingController Code generated Code generation information file does not exist.

2 of 2 models built (0 models already up to date)
Build duration: 0h 1m 1.832s

 Generate C++ Message Interfaces for Lane Following Controls and Sensor Fusion

8-1319

Explore Generated Code

Explore the generated code for the Forward Vehicle Sensor Fusion component and verify the
message interfaces.

Open the SOAForwardVehicleSensorFusion.cpp file and view these message interfaces:

• TimeRecvData.RecvData — Receives system time from the Simulation 3D Scenario
subsystem.

• VisionRecvData.RecvData — Receives vision detections from the Simulation 3D Scenario
subsystem.

• RadarRecvData.RecvData — Receives radar detections from the Simulation 3D Scenario
subsystem.

• TracksSendData.SendData — Sends confirmed tracks detected by this component to the Lane
Following Decision Logic component.

You can also use this process to verify the message classes for the Lane Following Decision
Logic and Lane Following Controller components from their generated code.

For information about how to integrate the generated code with external message protocols, see
“Generate C++ Messages to Communicate Data Between Simulink and an Operating System or

8 Featured Examples

8-1320

Middleware” (Embedded Coder) and “Use Handwritten Code to Integrate C++ Messages with
POSIX” (Embedded Coder).

See Also

More About
• “Highway Lane Following” on page 8-922
• “Automate Testing for Highway Lane Following Controls and Sensor Fusion” on page 8-1168
• “Generate C++ Messages to Communicate Data Between Simulink and an Operating System or

Middleware” (Embedded Coder)

 Generate C++ Message Interfaces for Lane Following Controls and Sensor Fusion

8-1321

Automate Testing for Autonomous Emergency Braking
This example shows how to assess the functionality of an autonomous emergency braking (AEB)
application by defining scenarios based on requirements and automating testing of components and
the generated code for those components. The components include sensor fusion and tracking,
decision logic, and controls. This example builds on the “Autonomous Emergency Braking with Sensor
Fusion” on page 8-303 example.

Introduction

An AEB system avoids or mitigates collisions, protecting both the ego vehicle and vulnerable road
users, such as pedestrians and cyclists. The system typically includes sensor fusion and tracking,
decision logic, and controls components. You can use system-level simulation to assess the
functionality of the integrated components. In this example, you configure simulations to test
scenarios based on system requirements. Automating these simulations enables regression testing to
verify system-level functionality. For more information about how to design and simulate a system-
level model for AEB, see “Autonomous Emergency Braking with Sensor Fusion” on page 8-303.

This example shows how to automate testing of the AEB model against multiple scenarios using
Simulink® Test™. The scenarios are based on system-level requirements. In this example, you:

1 Review requirements — Explore the test scenarios and review the requirements that describe
the test conditions.

2 Review the test bench model — Review a system-level autonomous emergency braking test
bench model that contains metric assessments. These metric assessments integrate the test
bench model with Simulink Test for automated testing.

3 Automate testing — Configure the Test Manager to simulate each test scenario, assess
success criteria, and report the results. You can explore the results dynamically using the Test
Manager, and export them to a PDF for external review.

4 Automate testing with generated code — Configure the sensor fusion, decision logic, and
controls components to generate C++ code. Run automated tests on the generated code and
verify behavior.

5 Automate testing in parallel — Increase overall execution speed for the tests by using parallel
computing on a multicore computer.

Review Requirements

Requirements Toolbox™ enables you author, analyze, and manage requirements within Simulink. This
example provides 26 test scenarios for evaluating the model. Each test scenario also defines high-
level testing requirements.

To explore the test requirements and test bench model, open a working copy of the project example
files. MATLAB® copies the files to an example folder so that you can edit them. The
TestAutomation folder contains the files for automating testing.

addpath(fullfile(matlabroot,"toolbox","driving","drivingdemos"))
helperDrivingProjectSetup("AutonomousEmergencyBraking.zip",workDir=pwd);
open("AutonomousEmergencyBrakingTestRequirements.slreqx")

Alternatively, you can open the file from the Requirements tab of the Requirements Manager app
in Simulink.

8 Featured Examples

8-1322

The panel displays information about the test scenarios and the test requirements in textual and
graphical formats. To test the AEB system, use these scenarios:

• scenario_01_AEB_Bicyclist_Longitudinal_25width — The ego vehicle collides with the
cyclist in front of it. Before the collision, the cyclist and ego vehicle are traveling in the same
direction along the longitudinal axis. At collision time, the bicycle is 25% of the way across the
width of the ego vehicle.

• scenario_02_AEB_Bicyclist_Longitudinal_50width — The ego vehicle collides with the
cyclist in front of it. Before the collision, the cyclist and ego vehicle are traveling in the same
direction along the longitudinal axis. At collision time, the bicycle is 50% of the way across the
width of the ego vehicle.

• scenario_03_AEB_Bicyclist_Longitudinal_75width — The ego vehicle collides with the
cyclist in front of it. Before the collision, the cyclist and ego vehicle are traveling in the same
direction along the longitudinal axis. At collision time, the bicycle is 75% of the way across the
width of the ego vehicle.

• scenario_04_AEB_CCRb_2_initialGap_12m — A car-to-car rear braking (CCRb) scenario,
where the ego vehicle rear-ends a braking vehicle. The braking vehicle begins to decelerate at a
rate of 2 m/s^2. The initial gap between the ego vehicle and the braking vehicle is 12 m.

• scenario_05_AEB_CCRb_2_initialGap_40m — A car-to-car rear braking (CCRb) scenario,
where the ego vehicle rear-ends a braking vehicle. The braking vehicle begins to decelerate at a
rate of 2 m/s^2. The initial gap between the ego vehicle and the braking vehicle is 40 m.

• scenario_06_AEB_CCRb_6_initialGap_12m — A car-to-car rear braking (CCRb) scenario,
where the ego vehicle rear-ends a braking vehicle. The braking vehicle begins to decelerate at a
rate of 6 m/s^2. The initial gap between the ego vehicle and the braking vehicle is 12 m.

• scenario_07_AEB_CCRb_6_initialGap_40m — A car-to-car rear braking (CCRb) scenario,
where the ego vehicle rear-ends a braking vehicle. The braking vehicle begins to decelerate at a
rate of 6 m/s^2. The initial gap between the ego vehicle and the braking vehicle is 40 m.

 Automate Testing for Autonomous Emergency Braking

8-1323

• scenario_08_AEB_CCRm_50overlap — A car-to-car rear moving (CCRm) scenario, where the
ego vehicle rear-ends a moving vehicle. At collision time, the ego vehicle overlaps with 50% of the
width of the moving vehicle.

• scenario_09_AEB_CCRm__50overlap — A car-to-car rear moving (CCRm) scenario, where the
ego vehicle rear-ends a moving vehicle. At collision time, the ego vehicle overlaps with –50% of
the width of the moving vehicle. When the ego vehicle is to the left of the other vehicle, the
percent overlap is negative.

• scenario_10_AEB_CCRm_75overlap — A car-to-car rear moving (CCRm) scenario, where the
ego vehicle rear-ends a moving vehicle. At collision time, the ego vehicle overlaps with 75% of the
width of the moving vehicle.

• scenario_11_AEB_CCRm__75overlap — A car-to-car rear moving (CCRm) scenario, where the
ego vehicle rear-ends a moving vehicle. At collision time, the ego vehicle overlaps with –75% of
the width of the moving vehicle.

• scenario_12_AEB_CCRm_100overlap — A car-to-car rear moving (CCRm) scenario, where the
ego vehicle rear-ends a moving vehicle. At collision time, the ego vehicle overlaps with 100% of
the width of the moving vehicle.

• scenario_13_AEB_CCRs_50overlap — A car-to-car rear stationary (CCRs) scenario, where the
ego vehicle rear-ends a stationary vehicle. At collision time, the ego vehicle overlaps with 50% of
the width of the stationary vehicle.

• scenario_14_AEB_CCRs__50overlap — A car-to-car rear stationary (CCRs) scenario, where
the ego vehicle rear-ends a stationary vehicle. At collision time, the ego vehicle overlaps with –
50% of the width of the stationary vehicle.

• scenario_15_AEB_CCRs_75overlap — A car-to-car rear stationary (CCRs) scenario, where the
ego vehicle rear-ends a stationary vehicle. At collision time, the ego vehicle overlaps with 75% of
the width of the stationary vehicle.

• scenario_16_AEB_CCRs__75overlap — A car-to-car rear stationary (CCRs) scenario, where
the ego vehicle rear-ends a stationary vehicle. At collision time, the ego vehicle overlaps with –
75% of the width of the stationary vehicle. When the ego vehicle is to the left of the other vehicle,
the percent overlap is negative.

• scenario_17_AEB_CCRs_100overlap — A car-to-car rear stationary (CCRs) scenario, where
the ego vehicle rear-ends a stationary vehicle. At collision time, the ego vehicle overlaps with
100% of the width of the stationary vehicle.

• scenario_18_AEB_Pedestrian_Farside_50width — The ego vehicle collides with a
pedestrian who is traveling from the left side of the road, which Euro NCAP test protocols refer to
as the far side. These protocols assume that vehicles travel on the right side of the road.
Therefore, the left side of the road is the side farthest from the ego vehicle. At collision time, the
pedestrian is 50% of the way across the width of the ego vehicle.

• scenario_19_AEB_Pedestrian_Longitudinal_25width — The ego vehicle collides with a
pedestrian who is traveling in the direction of ego vehicle on the road. At collision time, the
pedestrian is 25% of the way across the width of the ego vehicle.

• scenario_20_AEB_Pedestrian_Longitudinal_50width — The ego vehicle collides with a
pedestrian who is traveling in the direction of ego vehicle on the road. At collision time, the
pedestrian is 50% of the way across the width of the ego vehicle.

• scenario_21_AEB_Pedestrian_Nearside_25width — The ego vehicle collides with a
pedestrian who is traveling from the right side of the road, which Euro NCAP test protocols refer
to as the near side. At collision time, the pedestrian is 25% of the way across the width of the ego
vehicle. These protocols assume that vehicles travel on the right side of the road. Therefore, the
right side of the road is the side nearest to the ego vehicle.

8 Featured Examples

8-1324

• scenario_22_AEB_Pedestrian_Nearside_75width — The ego vehicle collides with a
pedestrian who is traveling from the right side of the road, which Euro NCAP test protocols refer
to as the near side. At collision time, the pedestrian is 75% of the way across the width of the ego
vehicle

• scenario_23_AEB_PedestrianChild_Nearside_50width — The ego vehicle collides with a
pedestrian child who is traveling from the right side of the road, which Euro NCAP test protocols
refer to as the near side. At collision time, the pedestrian child is 50% of the way across the width
of the ego vehicle.

• scenario_24_AEB_PedestrianTurning_Farside_10kph — The ego vehicle turns at an
intersection and collides with a pedestrian who is traveling parallel with the left side, or far side,
of the vehicle at the start of the simulation.

• scenario_25_AEB_PedestrianTurning_Nearside_10kph — The ego vehicle turns at an
intersection and collides with a pedestrian who is traveling parallel with the right side, or near
side, of the vehicle at the start of the simulation.

• scenario_26_AEB_CCFtap_VUT_10kph_GVT_30kph — The ego vehicle, while making a turn at
an intersection, collides with a target vehicle traveling at a constant speed.

These requirements are implemented as test scenarios with the same names as the scenarios used in
the AEBTestBench model.

Review Test Bench Model

This example reuses the AEBTestBench model from the “Autonomous Emergency Braking with
Sensor Fusion” on page 8-303 example. Open the test bench model.

open_system("AEBTestBench");

This test bench model has these components: * Sensors and Environment * Sensor Fusion
and Tracking * AEB Decision Logic * AEB Controller * Vehicle Dynamics

 Automate Testing for Autonomous Emergency Braking

8-1325

To configure the test bench model, use the helperSLAEBSetup function. Specify a test scenario as
input to the setup function by using the scenarioFcnName input argument. The value for
scenarioFcnName must be one of the scenario names specified in the test requirements.

To reduce Command Window output, turn off the MPC update messages.

mpcverbosity("off");

Run the setup function.

helperSLAEBSetup(scenarioFcnName="scenario_25_AEB_PedestrianTurning_Nearside_10kph");

You can now simulate the model and visualize the results. For more details on the analysis of the
simulation results, see the “Autonomous Emergency Braking with Sensor Fusion” on page 8-303
example.

In this example, the focus is automating the simulation runs for this test bench model using Simulink
Test for the different test scenarios. The Metrics Assessment subsystem enables integration of
system-level metric evaluations with Simulink Test. This subsystem uses Check Static Lower Bound
(Simulink) blocks for this integration. Open the Metrics Assessment subsystem.

open_system("AEBTestBench/Metrics Assessment");

This example uses these metrics

• Check Safety — Verifies that the ego vehicle meets the safetyGoal by reducing its velocity to
mitigate the collision risk. Use the helperSLAEBSetup script to specify the safetyGoal
parameter.

• Check Collision — Verifies that the ego vehicle does not collide with the other actors at any
point during the simulation.

8 Featured Examples

8-1326

Automate Testing

The Test Manager has been configured to automate testing of the AEB application. Open the
AutonomousEmergencyBrakingTests.mldatx test file in the Test Manager.

sltestmgr;
testFile = sltest.testmanager.load("AutonomousEmergencyBrakingTests.mldatx");

The test cases in the Test Manager are linked to the test requirements in the Requirements
Editor. Each test case uses the POST-LOAD callback to run the setup function with appropriate
inputs. After simulating the test case, it invokes helperPlotAEBResults from the CLEANUP
callback to generate the plots explained in the “Autonomous Emergency Braking with Sensor Fusion”
on page 8-303 example.

Run and Explore Results for a Single Test Scenario

To test the system-level model with the
scenario_25_AEB_PedestrianTurning_Nearside_10kph test scenario from Simulink Test, use
this code:

testSuite = getTestSuiteByName(testFile,"Test Scenarios");
testCase = getTestCaseByName(testSuite,"scenario_25_AEB_PedestrianTurning_Nearside_10kph");
resultObj = run(testCase);

To generate a report after the simulation, use this code:

sltest.testmanager.report(resultObj,"Report.pdf", ...
 Title="Autonomous Emergency Braking", ...
 IncludeMATLABFigures=true, ...
 IncludeErrorMessages=true, ...

 Automate Testing for Autonomous Emergency Braking

8-1327

 IncludeTestResults=0, ...
 LaunchReport=true);

Examine Report.pdf. Observe that the Test environment section shows the platform on which
the test is run and the MATLAB version used for testing. The Summary section shows the outcome of
the test and duration of the simulation in seconds. The Results section shows pass or fail results
based on the assessment criteria. This section also shows the plots logged from the
helperPlotAEBResults function.

Run and Explore Results for All Test Scenarios

Run a simulation of the system for all the tests by entering run(testFile). Alternatively, you can
simulate the system by clicking Run in the Test Manager app.

View the results in the Results and Artifacts pane of the Test Manager. For each test case, the
Check Static Lower Bound (Simulink) blocks in the model are associated with the Test Manager to
visualize overall pass or fail results.

You can find the generated report in your current working directory. This report contains a detailed
summary of pass or fail statuses and plots for each test case.

8 Featured Examples

8-1328

Verify Test Status in Requirements Editor

Open the Requirements Editor and select Columns. Then, select Verification Status to see a
verification status summary for each requirement. Green and red bars indicate the pass or fail status,
respectively, for each simulation test result.

Automate Testing with Generated Code

The AEBTestBench model enables integrated testing of the Sensor Fusion and Tracking, AEB
Decision Logic, and AEB Controller components. Using this example, you can also perform
regression testing of these components through software-in-the-loop (SIL) verification. If you have
licenses for Embedded Coder™ and Simulink Coder™, then you can generate code for these

 Automate Testing for Autonomous Emergency Braking

8-1329

components. This workflow enables you to verify that the generated code produces expected results
that match the system-level requirements throughout the simulation.

Set Sensor Fusion and Tracking to run in SIL mode.

model = "AEBTestBench/Sensor Fusion and Tracking";
set_param(model,SimulationMode="Software-in-the-loop");

Set AEB Decision Logic to run in SIL mode.

model = "AEBTestBench/AEB Decision Logic";
set_param(model,SimulationMode="Software-in-the-loop");

Set AEB Controller to run in SIL mode.

model = "AEBTestBench/AEB Controller";
set_param(model,SimulationMode="Software-in-the-loop");

Simulate the system for all test scenarios using the run(testFile) command. After completing the
tests, review the plots and results in the generated report.

Enable MPC update messages.

mpcverbosity("on");

Automate Testing in Parallel

If you have a Parallel Computing Toolbox™ license, then you can configure Test Manager to execute
tests in parallel using a parallel pool. Test Manager uses the default Parallel Computing Toolbox
cluster and executes tests on only the local machine. Running tests in parallel can increase execution
speed and decrease the amount of time it takes to get test results. For more information on how to
configure tests in parallel from the Test Manager, see “Run Tests Using Parallel Execution”
(Simulink Test).

See Also
Blocks
Scenario Reader | Driving Radar Data Generator | Vision Detection Generator

Related Examples
• “Autonomous Emergency Braking with Sensor Fusion” on page 8-303
• “Autonomous Emergency Braking with Vehicle Variants” on page 8-1331
• “Forward Collision Warning Using Sensor Fusion” on page 8-218
• “Highway Lane Following” on page 8-922

8 Featured Examples

8-1330

Autonomous Emergency Braking with Vehicle Variants
This example shows how to simulate an autonomous emergency braking application by varying the
fidelity of an ego vehicle using 3DOF and 14DOF variants of a vehicle dynamics model. The example
also shows how to test these variants in a closed-loop environment that includes probabilistic camera
and radar sensor models.

Introduction

Autonomous emergency braking (AEB) is an advanced active safety system that helps drivers avoid or
mitigate collisions with other vehicles. In an AEB system, an AEB controller specifies commands for
required steering and acceleration (or braking) controls. The vehicle dynamics model receives these
commands from the controller. For AEB applications, high-fidelity vehicle dynamics are very
important for matching virtual simulation test results to real-world test results. In this example, you
study the interactions between an AEB controller and two vehicle dynamics models with different
fidelity. You separately integrate each vehicle dynamics model with the AEB system, and analyze the
test behavior for each case. For more details on vehicle dynamics models, see “Passenger Vehicle
Dynamics Models” (Vehicle Dynamics Blockset).

In this example, you:

1 Explore the test bench model — The model contains the sensors and environment, sensor
fusion and tracking, decision logic, controls, and a subsystem for selecting between a 3DOF and
a 14DOF vehicle dynamics model.

2 Visualize test scenario — In the test scenario, a pedestrian is crossing a road at an intersection
when an ego vehicle is taking a left turn through the intersection.

3 Simulate with the 3DOF vehicle dynamics model — Configure the test bench model with
3DOF vehicle dynamics and simulate the test bench model.

4 Simulate with the 14DOF vehicle dynamics model — Configure the test bench model with
14DOF vehicle dynamics and simulate the test bench model.

5 Explore another test scenario — This test scenario contains an ego vehicle, a child pedestrian,
and two obstructing vehicles.

Explore Test Bench Model

In this example, you use a system-level simulation test bench model to explore and analyze the
interactions between the AEB controller and the behavior of the vehicle dynamics model for AEB
system.

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot,"toolbox","driving","drivingdemos"))
helperDrivingProjectSetup("AEBWithVehicleVariants.zip",workDir=pwd);

To reduce Command Window output, turn off MPC update messages.

mpcverbosity("off");

Open the system-level simulation test bench model.

open_system("AEBWithVehicleVariantsTestBench");

 Autonomous Emergency Braking with Vehicle Variants

8-1331

Opening this model runs the helperSLAEBWithVehicleVariantsSetup function that initializes
the scenario using the drivingScenario object in the base workspace. The setup function runs the
default test scenario scenario_02_AEB_PedestrianChild_Nearside, which contains an ego
vehicle and a child pedestrian crossing the road. It also selects the default vehicle dynamics variant
14DOF. This setup function also configures the controller design parameters, vehicle model
parameters, and Simulink® bus signals required for defining the inputs and outputs for the
AEBWithVehicleVariantsTestBench model.

The test bench model contains these subsystems:

• Sensors and Environment — Subsystem that specifies the road, actors, camera, and radar
sensor used for simulation.

• Sensor Fusion and Tracking — Algorithm model to fuse vehicle detections from the camera
and radar sensors.

• AEB Decision Logic — Algorithm model to specify the lateral and longitudinal decision logic
that provides most important object (MIO) related information and ego vehicle reference path
information to the controller.

• AEB Controller — Algorithm model that uses the nonlinear model predictive controller
(NLMPC) to specify the steering angle and acceleration controls.

• Vehicle Dynamics — Variant subsystem that specifies the dynamics model of the ego vehicle.
• Metrics Assessment — Subsystem that assesses system-level behavior.
• MIO Track — Subsystem that prepares the MIO track for display in the Bird's-Eye Scope.

To plot synthetic sensor detections, tracked objects and ground truth data, use the Bird's-Eye Scope.
The Bird's-Eye Scope is a model-level visualization tool that you can open from the Simulink model
toolbar. On the Simulation tab, under Review Results, click Bird's-Eye Scope. After opening the
scope, click Update Signals to set up the signals. The dashboard panel displays these ego vehicle
parameters: velocity, acceleration, AEB status, forward collision warning (FCW) status, and safety
status.

8 Featured Examples

8-1332

The Sensors and Environment and Metrics Assessment subsystems, as well as the Sensor
Fusion and Tracking, AEB Decision Logic, and AEB Controller reference models, are
reused from the “Autonomous Emergency Braking with Sensor Fusion” on page 8-303 example. The
Vehicle Dynamics variant subsystem contains two vehicle variants.

• Vehicle Dynamics 3DOF
• Vehicle Dynamics 14DOF (default)

Each of these variants takes the Steering Angle and Acceleration commands from the AEB
controller as input and outputs the Pose, Longitudinal Velocity, and Lateral Velocity of
the ego vehicle. Open the Vehicle Dynamics variant subsystem.

open_system("AEBWithVehicleVariantsTestBench/Vehicle Dynamics");

You can configure the desired variant using the helperSLAEBWithVehicleVariantsSetup
function. The default variant is Vehicle Dynamics 14DOF.

Explore 3DOF Variant

The Vehicle Dynamics 3DOF variant uses a Bicycle Model - Force Input block that implements a
Bicycle Model single-track, 3DOF, rigid vehicle body to calculate longitudinal, lateral, and yaw
motion. Open the Vehicle Dynamics 3DOF variant.

 Autonomous Emergency Braking with Vehicle Variants

8-1333

helperSLAEBWithVehicleVariantsSetup(...
 scenarioFcnName="scenario_01_AEB_Pedestrian_Intersection", ...
 vehicleVariantName="3DOF");
pause(3)
open_system(...
 "AEBWithVehicleVariantsTestBench/Vehicle Dynamics/Vehicle Dynamics 3DOF");

The Bicycle Model - Force Input block accounts for body mass, aerodynamic drag, and weight
distribution between the axles due to longitudinal acceleration. The block is configured to use the
external longitudinal force to accelerate or brake the vehicle. This block calculates lateral forces
using the tire slip angles and linear cornering stiffness.

Explore 14DOF Variant

The Vehicle Dynamics 14DOF variant implements transmission controls, tires, load transfer,
braking, and powertrain response for a vehicle. Open the Vehicle Dynamics 14DOF variant.

helperSLAEBWithVehicleVariantsSetup(...
 scenarioFcnName="scenario_01_AEB_Pedestrian_Intersection", ...
 vehicleVariantName="14DOF");
pause(3)
open_system(...
 "AEBWithVehicleVariantsTestBench/Vehicle Dynamics/Vehicle Dynamics 14DOF");

8 Featured Examples

8-1334

The Vehicle Dynamics 14DOF variant subsystem contains the VehDyn14DOF reference model,
which has the Input Routing, Driver Commands, Controllers, and Environment subsystems.
Open the VehDyn14DOF reference model.

open_system("VehDyn14DOF");

The VehDyn14DOF reference model has a Passenger Vehicle subsystem that contains the
Engine, Steering and Driveline, Pedal cluster and Cabin, and Chassis and Tires
subsystems. Open the Passenger Vehicle subsystem.

open_system("VehDyn14DOF/Passenger Vehicle");

 Autonomous Emergency Braking with Vehicle Variants

8-1335

8 Featured Examples

8-1336

The Passenger Vehicle subsystem contains these subsystems:

• Engine — The Engine subsystem contains a Mapped SI Engine block to model a spark-ignition
engine by using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission
performance lookup tables. For more details, see Mapped SI Engine (Vehicle Dynamics Blockset).

• Steering and Driveline — The Steering and Driveline subsystem uses a Kinematic
Steering block with the Type parameter set to Ackerman. For more details, see Kinematic
Steering (Vehicle Dynamics Blockset). The transmission is modelled using the Ideal Fixed Gear
Transmission block. For more details on the transmission, see Ideal Fixed Gear Transmission
(Vehicle Dynamics Blockset). The Driveline Model is a variant subsystem that contains four
variants: Rear Wheel Drive, Front Wheel Drive, All Wheel Drive, and the default Rear
Wheel Drive Active Differential. The Brake Hydraulics subsystem converts the brake
command to the actual brake pressure on the pedal.

• Pedal Cluster and Cabin — The Pedal Cluster and Cabin subsystem is a placeholder
for introducing faults, detailed actuator behavior, and interactions of other systems with a human
interface, such as changes in power steering and braking assistance.

• Chassis and Tires — The Chassis and Tires subsystem has the Vehicle subsystem,
Wheels and Tires subsystem, and Suspension variant subsystem. The Vehicle subsystem
has a variant subsystem to select between a 3DOF and a 6DOF vehicle body. The Wheels and
Tires subsystem has a VDBS subsystem containing the variant subsystem Tires, which selects
between the Magic Formula Tires, Fiala Tires, Magic Formula Vector Tires, and
default Fiala Tires Vector variants. The Suspension variant subsystem has six variants of
suspension models: Double Wishbone Suspension that uses Independent Suspension - Double
Wishbone (Vehicle Dynamics Blockset), Independent Mapped Front Suspension Mapped
Solid Axle Rear Suspension that uses Independent Suspension - Mapped (Vehicle Dynamics
Blockset) for front suspension and Solid Axle Suspension - Mapped (Vehicle Dynamics Blockset)
for rear suspension, MacPherson Front Suspension Solid Axle Rear Suspension uses
the Independent Suspension - MacPherson (Vehicle Dynamics Blockset) for front suspension and
solid axle for rear suspension, MacPherson Suspension uses independent MacPherson
suspension, Mapped Suspension uses the independent Mapped suspension, Kinematics and
Compliance Independent Suspension uses the Independent Suspension - K and C (Vehicle
Dynamics Blockset) (default).

Visualize Test Scenario

The scenario_01_AEB_Pedestrian_Intersection scenario generates a cuboid scenario that is
compatible with the AEBWithVehicleVariantsTestBench model. This is an open-loop scenario
containing an ego vehicle and a pedestrian actor. In this scenario, the pedestrian actor crosses the
road at the intersection when the ego vehicle takes a left turn at the intersection.

Plot the open-loop scenario to see the interactions of the ego vehicle and the pedestrian actor.

hFigScenario = helperPlotScenario("scenario_01_AEB_Pedestrian_Intersection");

 Autonomous Emergency Braking with Vehicle Variants

8-1337

The ego vehicle is not under closed-loop control, so a collision occurs with the pedestrian actor that is
crossing the road at the intersection. The goal of the closed-loop simulation is to avoid the collision
with the pedestrian actor. Using this scenario, you can analyze the lateral controls with both the
vehicle variants in a closed loop.

Close the figure.

close(hFigScenario);

Simulate with 3DOF Vehicle Dynamics Model

In this section, you configure and assess the simulation results of the 3DOF vehicle variant using the
scenario_01_AEB_Pedestrian_Intersection test scenario.

Configure the AEBWithVehicleVariantsTestBench model to use the
scenario_01_AEB_Pedestrian_Intersection scenario and 3DOF vehicle model variant.

helperSLAEBWithVehicleVariantsSetup(...
 scenarioFcnName="scenario_01_AEB_Pedestrian_Intersection", ...
 vehicleVariantName="3DOF");

Simulate the test bench model. Use the Bird's-Eye Scope visualization to view the results while the
simulation is running.

Simulate the model and analyze the plots.

8 Featured Examples

8-1338

sim("AEBWithVehicleVariantsTestBench");

helperPlotAEBResults(logsout,scenarioFcnName);

• TTC vs. Stopping Time — Shows a comparison between time-to-collision (TTC) and the stopping
times for the FCW, first stage partial brake, second stage partial brake, and full brake respectively.

• FCW and AEB Status — Shows how the AEB state machine determines the activations for the
FCW and AEB based on the comparison results from the first plot.

• Ego Car Acceleration — Shows the longitudinal and lateral acceleration of the ego vehicle.
• Ego Car Yaw and Yaw Rate — Shows the yaw and yaw rate of the ego vehicle.
• Ego Car Velocity — Shows the longitudinal velocity of the ego vehicle.
• Headway — Shows the headway distance between the ego vehicle and the MIO.

 Autonomous Emergency Braking with Vehicle Variants

8-1339

Simulate with 14DOF Vehicle Dynamics Model

In this section, you configure and assess the simulation results of the 14DOF vehicle variant using the
scenario_01_AEB_Pedestrian_Intersection test scenario. The higher order 14DOF vehicle
model enables you to more realistically reflect nonlinear dynamics and effects including transmission
controls, tires, load transfer, braking, and powertrain response.

Configure the AEBWithVehicleVariantsTestBench model to use the
scenario_01_AEB_Pedestrian_Intersection scenario and 14DOF vehicle model variant.

helperSLAEBWithVehicleVariantsSetup(...
 scenarioFcnName="scenario_01_AEB_Pedestrian_Intersection", ...
 vehicleVariantName="14DOF");

Simulate the test bench model. Use the Bird's-Eye Scope visualization to view the results while the
simulation is running.

Simulate the model and analyze the plots.

sim("AEBWithVehicleVariantsTestBench");

[hFigLongResults,hFigLatResults] = helperPlot14DOFVehicleResults(logsout,scenarioFcnName);

Starting serial model reference simulation build
Successfully updated the model reference simulation target for: VehDyn14DOF

Build Summary

Simulation targets built:

Model Action Rebuild Reason
==
VehDyn14DOF Code generated and compiled

1 of 1 models built (0 models already up to date)
Build duration: 0h 2m 27.545s

8 Featured Examples

8-1340

 Autonomous Emergency Braking with Vehicle Variants

8-1341

• From the Longitudinal Results plots, you can observe the acceleration and deceleration input
commands and corresponding outputs from the high-fidelity vehicle dynamics model, such as the
ego car velocity, longitudinal acceleration, and brake pressures at the four wheels. These plots
enable you to analyze the longitudinal behavior of the vehicle.

• From the Lateral Results plots, you can observe the steering input commands and corresponding
outputs such as yaw rate, lateral acceleration, and gear commands. These plots enable you to
analyze the lateral behavior of the vehicle.

For an ego vehicle traveling at higher speeds, you can also plot tire forces, suspension forces, engine
speed, and tire speeds for a more in-depth analysis.

close(hFigLongResults);
close(hFigLatResults);

This example also provides an additional scenario,
scenario_02_AEB_PedestrianChild_Nearside, which is compatible with the

8 Featured Examples

8-1342

AEBWithVehicleVariantsTestBench model. This scenario has been created using the Driving
Scenario Designer app and exported to a scenario file. You can configure the
AEBWithVehicleVariantsTestBench model and workspace to simulate with this scenario using
the helperSLAEBWithVehicleVariantsSetup function.

To configure the test bench to simulate the scenario_02_AEB_PedestrianChild_Nearside
scenario using the 14DOF vehicle variant, enter this command.

helperSLAEBWithVehicleVariantsSetup(scenarioFcnName="scenario_02_AEB_PedestrianChild_Nearside",vehicleVariantName="14DOF");

To configure the test bench to simulate the scenario_02_AEB_PedestrianChild_Nearside
scenario using the 3DOF vehicle variant, enter this command.

helperSLAEBWithVehicleVariantsSetup(scenarioFcnName="scenario_02_AEB_PedestrianChild_Nearside",vehicleVariantName="3DOF");

This scenario enables you to analyze the longitudinal dynamics of the selected vehicle model. You can
simulate and plot the signals for analysis using the helperPlotAEBResults function for a 3DOF
simulation or the helperPlot14DOFVehicleResults function for a 14DOF simulation.

For new scenarios, you must specify the initial gear value for the transmission controller that
provides inputs to the Passenger Vehicle subsystem. To set the initial gear to 0, enter this
command.

set_param("VehDyn14DOF/Controllers/Transmission Controller/PRNDL Controller/Transmission Controller PRNDL","GearInit","0");

When you are done with this example, enable MPC update messages.

mpcverbosity("on");

See Also
Blocks
Scenario Reader | Driving Radar Data Generator | Vision Detection Generator

Related Examples
• “Autonomous Emergency Braking with Sensor Fusion” on page 8-303
• “Automate Testing for Autonomous Emergency Braking” on page 8-1322
• “Forward Collision Warning Using Sensor Fusion” on page 8-218
• “Highway Lane Following” on page 8-922

 Autonomous Emergency Braking with Vehicle Variants

8-1343

Automate Real-Time Testing for Forward Vehicle Sensor Fusion
This example shows how to automate testing of a forward vehicle sensor fusion algorithm deployed to
a Speedgoat® real-time target machine using Simulink® Test™. In this example, you:

• Deploy the forward vehicle sensor fusion algorithm to a Speedgoat machine using Simulink Real-
Time™.

• Perform automated testing of the deployed application using Simulink Test.

The forward vehicle sensor fusion component performs information fusion from different sensors to
perceive front view of the autonomous vehicle. This component is central to the decision-making
process in various automated driving applications, such as highway lane following and forward
collision warning. This component is commonly deployed to a real-time processor.

This example shows how you can deploy the forward vehicle sensor fusion algorithm to a Speedgoat
real-time machine. It also shows how you can reuse the desktop simulation test cases and automate
regression testing for the deployed algorithm. This example builds on the “Forward Vehicle Sensor
Fusion” on page 8-1121 example.

System Configuration

This example uses a hardware setup that primarily consists of two machines, a host and a target,
connected by ethernet.

This example uses this hardware configuration:

8 Featured Examples

8-1344

1 Target — Speedgoat Performance real-time machine with an Intel® Core™ i7 @ 4.2 GHz,
running Simulink Real-Time. For more information, see the Speedgoat Performance real-time
target machine site.

2 Host — Intel® Xeon® @ 3.60GHz, running Windows® 10, 64-bit operating system.
3 Ethernet cable connecting the target to the host.

The target runs the forward vehicle sensor fusion algorithm. It sends algorithm output to the host
using the User Datagram Protocol (UDP) over the ethernet cable.

The host sets up the simulation environment and configures the test scenarios, sensor models, and
metrics assessment. It sends vision and radar detection data to the target and receives the tracker
output from the target using UDP.

Using this setup, you can deploy a forward vehicle sensor fusion algorithm to the target, run the host
model for a test scenario, and log and visualize simulation results.

In this example, you:

1 Review the simulation test bench model — The simulation test bench model contains the
scenario, sensor models, forward vehicle sensor fusion algorithm, and metrics to assess
functionality. The metric assessments integrate the test bench model with Simulink Test for
automated testing.

2 Partition and explore the host and target models — The simulation test bench model is
partitioned into two models. One runs on the host machine and the other is used for deployment
to the target machine.

3 Deploy the target model — Configure and deploy the forward vehicle sensor fusion algorithm
model to the target machine using Simulink Real-Time.

4 Simulate the host model and visualize the results — Configure the host model with a test
scenario. Simulate the model and visualize the results.

5 Explore the Test Manager file — Explore the configured Test Manager file that enables you
to automate the testing of the deployed forward vehicle sensor fusion algorithm.

6 Automate testing — Run the test suite using the Test Manager and analyze the test report.

Review Simulation Test Bench Model

This example uses the test bench model from the “Forward Vehicle Sensor Fusion” on page 8-1121
example.

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so you can edit them.

addpath(fullfile(matlabroot,"toolbox","driving","drivingdemos"));
helperDrivingProjectSetup("FVSensorFusion.zip",workDir=pwd);

Open the test bench model.

open_system("ForwardVehicleSensorFusionTestBench")

 Automate Real-Time Testing for Forward Vehicle Sensor Fusion

8-1345

https://www.speedgoat.com/products-services/real-time-target-machines/performance
https://www.speedgoat.com/products-services/real-time-target-machines/performance

This simulation test bench model contains these subsystems:

• Sensors and Environment — Specifies the scene, vehicles, and sensors used for simulation.
• Forward Vehicle Sensor Fusion — Implements the radar clustering, detection

concatenation, fusion, and tracking algorithms.
• Evaluate Tracker Metrics — Assesses the tracker performance, using the generalized

optimal subpattern assignment (GOSPA) metric, between a set of tracks and their ground truths.

Partition and Explore Host and Target Models

The test bench model is partitioned into host and target models. Explore these models.

Explore Host Model

The host model contains the Sensors and Environment and Evaluate Tracker Metrics
subsystems of the test bench model. The model also configures the UDP interface using the Send
Sensor Data via UDP and Receive Tracker Data via UDP subsystems. Open the host model.

open_system("RTForwardVehicleSensorFusionHost")

8 Featured Examples

8-1346

The Sensors and Environment subsystem configures the road network, places vehicles, and
synthesizes sensors. For more information, see the “Forward Vehicle Sensor Fusion” on page 8-1121
example. Open the Sensors and Environment subsystem.

open_system("RTForwardVehicleSensorFusionHost/Sensors and Environment")

 Automate Real-Time Testing for Forward Vehicle Sensor Fusion

8-1347

This subsystem also generates the reset flag using a MATLAB Function block. Use this flag to reset
the internal states of the deployed application before you run the simulation.

The Send Sensor Data via UDP subsystem contains Byte Packing (Simulink Real-Time) and UDP
Send (Simulink Real-Time) blocks from the Simulink Real-Time library. Open the Send Sensor Data
via UDP subsystem.

open_system("RTForwardVehicleSensorFusionHost/Send Sensor Data via UDP")

Each Byte Pack subsystem contains a Byte Packing block that converts one or more signals of user-
selectable data types to a single vector of varying data types. Each UDP Send block sends the data
from the corresponding Byte Pack subsystem over a UDP network to the specified IP address and
port. You must configure these UDP Send blocks with the IP address and port number of the target
machine.

This example sets the maximum number of vision detections to 20 and maximum number of radar
detections to 50. You can update these values in the target setup function
helperSLForwardVehicleSensorFusionTargetSetup.

This list defines the specifications of the data signals.

• System Time — 8-byte double
• Vision Detections — 4825-byte Simulink bus structure
• Reset Flag — 8-byte double
• Radar Detections — 12809-byte Simulink bus structure

The Receive Tracker Data via UDP subsystem contains UDP Receive (Simulink Real-Time) and
Byte Unpacking (Simulink Real-Time) blocks from the Simulink Real-Time library. Open the Receive
Tracker Data via UDP subsystem.

open_system("RTForwardVehicleSensorFusionHost/Receive Tracker Data via UDP")

8 Featured Examples

8-1348

This subsystem contains two additional subsystems:

• Receive Tracker Data — Receives tracker output data sent from the target machine.
• Unpack Tracks Data — Unpacks the data and convert it into a bus signal.

The Evaluate Tracker Metrics subsystem computes various metrics to assess the performance
of a tracker. Open the Evaluate Tracker Metrics subsystem.

open_system("RTForwardVehicleSensorFusionHost/Evaluate Tracker Metrics")

This subsystem implements a GOSPA Metric block to assess the performance of the tracker. For more
information, see Generalized Optimal Subpattern Assignment Metric (Sensor Fusion and Tracking
Toolbox).

The Evaluate Tracker Metrics subsystem is based on the subsystem used in the “Forward
Vehicle Sensor Fusion” on page 8-1121 example.

To perform the real-time simulation, the host model runs with simulation pacing set to 0.05. You can
tune simulation pacing value to synchronize the host and target machines and reproduce the
simulation results shown in this example. For more information on tuning simulation pacing value,
see “Simulation Pacing” (Simulink).

Explore Target Model

The target model contains the Forward Vehicle Sensor Fusion subsystem, along with UDP
interfaces. Open the target model.

 Automate Real-Time Testing for Forward Vehicle Sensor Fusion

8-1349

open_system("RTForwardVehicleSensorFusionTarget")

The target model contains these subsystems:

• Receive Sensor Data via UDP — Receives data required for the forward vehicle sensor
fusion algorithm model to run.

• Forward Vehicle Sensor Fusion — Enabled subsystem that contains the forward vehicle
sensor fusion algorithm.

• Send Tracker Data via UDP — Sends the tracker output to the host model, which is required
by Evaluate Tracker Metrics subsystem of the host model.

The Receive Sensor Data via UDP subsystem contains UDP Receive and Byte Unpacking blocks
from the Simulink Real-Time library. Open the Receive Sensor Data via UDP subsystem.

open_system("RTForwardVehicleSensorFusionTarget/Receive Sensor Data via UDP")

This subsystem receives data frames from the host machine, and deconstructs them using the Byte
Unpack subsystems.

The Send Tracker Data via UDP subsystem contains Byte Packing and UDP Send blocks from
the Simulink Real-Time library. Open the Send Tracker Data via UDP subsystem.

open_system("RTForwardVehicleSensorFusionTarget/Send Tracker Data via UDP")

8 Featured Examples

8-1350

This subsystem sends the tracker output to the host machine using a UDP Send block.

The Forward Vehicle Sensor Fusion subsystem is an enabled subsystem that enables execution
of the algorithm upon receiving data from the host machine. Open the Forward Vehicle Sensor
Fusion subsystem.

open_system("RTForwardVehicleSensorFusionTarget/Forward Vehicle Sensor Fusion")

The enabled subsystem contains a resettable subsystem. The resettable subsystem resets the forward
vehicle sensor fusion algorithm to its default state when Reset Flag is enabled. Open the
Resettable Forward Vehicle Sensor Fusion subsystem.

open_system("RTForwardVehicleSensorFusionTarget/Forward Vehicle Sensor Fusion/Resettable Forward Vehicle Sensor Fusion")

 Automate Real-Time Testing for Forward Vehicle Sensor Fusion

8-1351

This subsystem contains the Forward Vehicle Sensor Fusion reference model. This is the same
model used in the “Forward Vehicle Sensor Fusion” on page 8-1121 example.

Deploy Target Model

Follow these steps to deploy the model to a real-time machine.

1. Configure the UDP blocks in the host and target models.

The UDP Send and UDP Receive blocks used in the host and target models require valid IP addresses
for the host and target machines. This example ships with the helperSLRTUDPSetup.m file, which
updates these blocks with your specified IP addresses. You can update these blocks manually, or by
using the helperSLRTUDPSetup function as shown:

% Specify host model and IP address of Host machine
hostMdl = "RTForwardVehicleSensorFusionHost";
hostIP = "10.1.10.16";

% Specify Target model and IP address of Target machine
targetMdl = "RTForwardVehicleSensorFusionTarget";
targetIP = "10.1.10.17";

% Invoke the function to update the blocks
helperSLRTUDPSetup(targetMdl,targetIP,hostMdl,hostIP);

2. Set up real-time configuration to the reference model ForwardVehicleSensorFusion.slx, and
build the target model, which creates an slrealtime application file,
RTForwardVehicleSensorFusionTarget.mldatx.

% Setup real-time configuration to the ForwardVehicleSensorFusion.slx
load_system("ForwardVehicleSensorFusion");
if (isempty(getConfigSet("ForwardVehicleSensorFusion","ConfigRef")))
 configRef = Simulink.ConfigSetRef;
 attachConfigSet("ForwardVehicleSensorFusion",configRef)
 set_param(configRef,SourceName="RTConfig");
 set_param(configRef,Name="ConfigRef");
 setActiveConfigSet("ForwardVehicleSensorFusion","ConfigRef");
end
save_system('ForwardVehicleSensorFusion');

8 Featured Examples

8-1352

% Build the target model
slbuild(targetMdl);

3. Connect to the target machine.

Connect to the target machine by defining an slrealtime object to manage the target computer.

% Create slrealtime object
tg = slrealtime;

% Specify IP address for target machine
setipaddr(tg,targetIP)

% Connect to target
connect(tg);

The real-time operating system (RTOS) version on the target computer must match the version on the
host computer. Otherwise, you cannot connect to the target computer. Run the update(tg)
command to update the RTOS version on the target computer.

4. Load the real-time application to the target.

Load the generated RTForwardVehicleSensorFusionTarget.mldatx application to the target
machine.

% Load the generated application to the target
load(tg,targetMdl);

5. Execute the real-time application on the target.

% Start the loaded application on the target machine.
start(tg);

Alternatively, you can deploy the target model by using the Simulink graphical user interface.

 Automate Real-Time Testing for Forward Vehicle Sensor Fusion

8-1353

On the Real-Time tab, in the Connect To Target Computer section, select your target machine
from the list. Use the Simulink Real-Time Explorer (Simulink Real-Time) to configure the target.

To deploy and run the model on the target machine, select Run on Target.

Simulate Host Model and Visualize Results

Configure the RTForwardVehicleSensorFusionHost model to simulate the
scenario_LFACC_03_Curve_StopnGo scenario. This scenario contains six vehicles, including the
ego vehicle, and defines their trajectories.

helperSLForwardVehicleSensorFusionHostSetup(scenarioFcnName="scenario_LFACC_03_Curve_StopnGo");

Simulate the host model.

sim(hostMdl);

8 Featured Examples

8-1354

Stop and unload the application in the target machine.

stop(tg);

Plot the performance metrics for the target algorithm. For more information about these performance
metrics, see “Forward Vehicle Sensor Fusion” on page 8-1121 example.

 Automate Real-Time Testing for Forward Vehicle Sensor Fusion

8-1355

hFigure = helperPlotForwardVehicleSensorFusionResults(logsout);

The plots show that the localization error is the primary factor in the GOSPA metric. Notice that the
missed target component initially starts from a higher value due to the establishment delay of the
tracker and goes down to zero after some time. The other peaks in the missed target curve occur
because of the same delay, when the yellow and purple target vehicles enter the coverage area of the
sensors.

Close the figure.

close(hFigure);

8 Featured Examples

8-1356

Explore Test Manager File

Simulink Test includes the Test Manager, which you can use to author test cases for Simulink
models. After authoring your test cases, you can group them and execute them individually or in a
batch.

This example reuses the test scenarios from the “Automate Testing for Forward Vehicle Sensor
Fusion” on page 8-1243 example.

The target model is configured so that you do not have to compile and deploy the target model for
every test case. Once you deploy the model, and before the next test case, it resets to its initial state.
The example uses these test file callbacks:

• The SETUP callback calls the helperRTTestManagerSetup function to configure the target
model to deploy and run on a real-time machine.

• The CLEANUP callback stops and unloads the application from the target machine.

Open the test file RTForwardVehicleSensorFusionTests.mldatx in the Test Manager and
explore the configuration.

sltestmgr
sltest.testmanager.load("RTForwardVehicleSensorFusionTests.mldatx");

You can also run individual test scenarios using these test case callbacks:

• The POST-LOAD callback calls the helperRTTestManagerSetup to configure the target model
to deploy and run on a real-time machine. It also configures the host model for a test scenario.

• The CLEANUP callback contains a script to plot the results of the simulation run.

 Automate Real-Time Testing for Forward Vehicle Sensor Fusion

8-1357

Automate Testing

Using the created Test Manager file, run a single test case to test the application on a real-time
machine.

Running the test scenarios from test file requires a connection with the target machine. If the target
machine is not connected, refer to steps 1–3 of the Deploy Target Model section to establish the
connection.

Use this code to test the forward vehicle sensor fusion algorithm model with the
scenario_LFACC_03_Curve_StopnGo test scenario from Simulink Test.

testFile = sltest.testmanager.load("RTForwardVehicleSensorFusionTests.mldatx");
testSuite = getTestSuiteByName(testFile,"Test Scenarios");
testCase = getTestCaseByName(testSuite,"scenario_LFACC_03_Curve_StopnGo");
resultObj = run(testCase);

To generate a report after the simulation, use this code:

sltest.testmanager.report(resultObj,"Report.pdf", ...
Title="Real-Time Forward Vehicle Sensor Fusion", ...
IncludeMATLABFigures=true, ...
IncludeErrorMessages=true, ...
IncludeTestResults=false, ...
LaunchReport=true);

Examine Report.pdf. Observe that the Test Environment section shows the platform on which
the test is run and the MATLAB version used for testing. The Summary section shows the outcome of
the test and the duration of the simulation in seconds. The Results section shows pass or fail results
based on the assessment criteria. This section also shows the logged plots from the CLEANUP
callback commands.

8 Featured Examples

8-1358

Run and Explore Results for All Test Scenarios

You can simulate the system for all the tests by using run(testFile). Alternatively, you can
simulate the system by clicking Run in the Test Manager.

When the test simulations are complete, you can view the results for all the tests in the Results and
Artifacts pane of the Test Manager. For each test case, the Check Static Range (Simulink) blocks in
the model are associated with the Test Manager to visualize overall pass or fail results.

You can find the generated report in the current working directory. This report contains a detailed
summary of the pass or fail statuses and plots for each test case.

 Automate Real-Time Testing for Forward Vehicle Sensor Fusion

8-1359

See Also
Blocks
Scenario Reader | Simulation 3D Scene Configuration | UDP Send | UDP Receive | Byte Unpacking |
Byte Packing

Related Examples
• “Highway Lane Following” on page 8-922
• “Forward Vehicle Sensor Fusion” on page 8-1121
• “Automate Testing for Forward Vehicle Sensor Fusion” on page 8-1243
• “Automate Real-Time Testing for Highway Lane Following Controller” on page 8-1289

8 Featured Examples

8-1360

Highway Lane Change Planner and Controller
This example shows how to simulate an automated lane change maneuver system for highway driving
scenario.

Introduction

An automated lane change maneuver (LCM) system enables the ego vehicle to automatically move
from one lane to another lane. The LCM system models the longitudinal and lateral control dynamics
for automated lane change. An LCM system senses the environment for most important objects
(MIOs) using on-board sensors, identifies an optimal trajectory that avoids these objects, and steers
the ego vehicle along this trajectory.

This example shows how to design and test the planner and controller components of an LCM system.
In this example, the lane change planner uses ground truth information from the scenario to detect
MIOs. It then generates a feasible trajectory to negotiate a lane change that is executed by the lane
change controller. In this example, you:

• Explore the test bench model — The model contains planning, controls, vehicle dynamics,
scenario, and metrics to assess functionality.

• Model the lane change planner — The reference model finds the MIO, samples terminal states
of the ego vehicle, and generates an optimal trajectory.

• Model the lane change controller — This model generates control commands for the ego
vehicle based on the generated trajectory.

• Simulate and visualize system behavior — The test bench model is configured to test the
integration of planning and controls to perform lane change maneuvers on a curved road with
multiple vehicles.

• Explore other scenarios — These scenarios test the system under additional conditions.

You can apply the modeling patterns used in this example to test your own planner and controller
components of an LCM system.

Explore Test Bench Model

In this example, you use a simulation test bench model to explore the behavior of the planner and
controller components for a lane change maneuver system.

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot, 'toolbox', 'driving', 'drivingdemos'));
helperDrivingProjectSetup('HLCPlannerAndController.zip', 'workDir', pwd);

Open the simulation test bench model.

open_system('HLCPlannerAndControllerTestBench');

 Highway Lane Change Planner and Controller

8-1361

Opening this model runs the helperSLHLCPlannerAndControllerSetup script that initializes the
road scenario using the drivingScenario object in the base workspace. It also configures the
planner configuration parameters, controller design parameters, vehicle model parameters, and the
Simulink® bus signals required for defining the inputs and outputs for the
HLCPlannerAndControllerTestBench model.

The test bench model contains the following subsystems.

• Scenario and Environment — Subsystem that specifies the scene, vehicles, and map data used for
simulation.

• Planner Configuration Parameters — Subsystem that specifies the configuration parameters
required for the planner algorithm.

• Highway Lane Change Planner — Subsystem that implements the lane change planner algorithm
for highway.

• Lane Change Controller — Subsystem that specifies the path following controller that generates
control commands to steer the ego vehicle along the generated trajectory.

• Vehicle Dynamics — Subsystem that specifies the dynamic model for the ego vehicle.
• Metrics Assessment — Subsystem that specifies metrics to assess system level behavior.

The Vehicle Dynamics subsystem models the ego vehicle using a Bicycle Model and updates its state
using commands received from the Lane Change Controller. For more details on Vehicle Dynamics
subsystem, see “Highway Lane Following” on page 8-922 example.

The Scenario and Environment subsystem uses the Scenario Reader block to provide road network
and vehicle ground truth positions. This block also outputs map data required for the highway lane
change planner algorithm. Open the Scenario and Environment subsystem.

8 Featured Examples

8-1362

open_system('HLCPlannerAndControllerTestBench/Scenario and Environment')

The Scenario Reader block is configured to read the drivingScenario object from the base
workspace. It uses this object to read the actor data. It takes in ego vehicle information to perform a
closed-loop simulation. This block outputs ground truth information of the lanes and actors in ego
vehicle coordinates. The Vehicle To World block is used to convert target vehicle positions from the
vehicle coordinates to world coordinates. This subsystem reads map data from the base workspace
and outputs information about the lanes and reference path.

The Planner Configuration Parameters subsystem reads base workspace variables using constant
blocks and constructs a bus structure using the Bus Creator block. The bus created by this subsystem
is used by the lane change planner.

The Highway Lane Change Planner reference model uses ground truth actor positions in world
coordinates, map data, and planner configuration parameters to perform trajectory planning for the
automated lane change maneuver.

Model Highway Lane Change Planner

The Highway Lane Change Planner reference model implements the main algorithm for the highway
lane change system. The model finds the MIOs surrounding the ego vehicle using the Fernet
coordinate system. Subsequently, the model samples terminal states for different behaviors, predicts
the motion of target actors, and generates multiple trajectories. Finally, the model evaluates the costs

 Highway Lane Change Planner and Controller

8-1363

of generated trajectories and checks for the possibility of collision and kinematic feasibility to
estimate the optimal trajectory. Open the Highway Lane Change Planner reference model.

open_system('HighwayLaneChangePlanner')

The Highway Lane Change Planner model contains the following blocks:

• The Frenet State Converter block converts the pose of the ego vehicle and other vehicles in the
scenario into the Frenet coordinate system from world coordinates.

• The Find MIOs block identifies the most important objects (MIOs) surrounding the ego vehicle.
• The Terminal State Sampler block samples terminal states for cruise control, lead car following,

and lane change behaviors. The Motion Prediction module predicts the motion of MIOs.
• The Motion Planner reference model generates an optimal trajectory from the sampled

trajectories. This model checks the sampled trajectories for cost, feasibility, and the possibility of
collision to identify the optimal trajectory. This block also computes the appropriate point on the
trajectory for the ego vehicle to follow. For more information on the Highway Lane Change
Planner, see “Generate Code for Highway Lane Change Planner” on page 8-1180.

Model Lane Change Controller

The Lane Change Controller reference model simulates a path following control mechanism that
keeps the ego vehicle traveling along the generated trajectory while tracking a set velocity. To do so,
the controller adjusts both the longitudinal acceleration and front steering angle of the ego vehicle.
The controller computes optimal control actions while satisfying velocity, acceleration, and steering
angle constraints using adaptive model predictive control (MPC). Open the Lane Change Controller
reference model.

open_system('LaneChangeController')

8 Featured Examples

8-1364

• The Virtual Lane Center subsystem creates a virtual lane from the path point. The virtual lane
matches the format required by the Path Following Controller block.

• The Preview Curvature subsystem converts trajectory to curvature input required by Path
Following Controller block.

• The Path Following Controller block uses the Path Following Control System (Model Predictive
Control Toolbox) block from the Model Predictive Control Toolbox™.

The Path Following Controller block keeps the vehicle traveling within a marked lane of a highway
while maintaining a user-set velocity. This controller includes combined longitudinal and lateral
control of the ego vehicle:

• Longitudinal control maintains a user-set velocity of the ego vehicle.
• Lateral control keeps the ego vehicle traveling along the center line of its lane by adjusting the

steering of the ego vehicle.

Explore Metrics Assessment

The Metrics Assessment subsystem assesses system level behavior of the LCM system using the
metrics mentioned below. Open the Metrics Assessment subsystem.

open_system('HLCPlannerAndControllerTestBench/Metrics Assessment')

 Highway Lane Change Planner and Controller

8-1365

• The DetectCollision block detects the collision of the ego vehicle with other vehicles and halts
the simulation if a collision is detected.

• The DetectLeadVehicle block computes the headway between the ego and lead vehicles, which is
used for computing the TimeGap value.

• The TimeGap value is calculated using the distance to the lead vehicle (headway) and the
longitudinal velocity of the ego vehicle, and it is evaluated against prescribed limits.

• The LongitudinalJerk value is calculated using the longitudinal velocity and evaluated against
prescribed limits.

• The LateralJerk value is calculated using the lateral velocity evaluated against prescribed limits.

Simulate and Visualize System Behavior

Set up and run the HLCPlannerAndControllerTestBench simulation model to visualize the
behavior of the system during a lane change. The Visualization block in the model creates a MATLAB
figure that shows the chase view and top view of the scenario and plots the ego vehicle, sampled
trajectories, capsule list, and other vehicles in the scenario. Configure the

8 Featured Examples

8-1366

HLCPlannerAndControllerTestBench model to use the scenario_LC_15_StopnGo_Curved
scenario.

helperSLHLCPlannerAndControllerSetup('scenarioFcnName','scenario_LC_15_StopnGo_Curved')

Simulate the model for 5 seconds. The highway lane change planner reference model generates a
trajectory to navigate the vehicle in the scenario. To reduce command-window output, first turn off
the MPC update messages.

mpcverbosity('off');
sim('HLCPlannerAndControllerTestBench','StopTime','5');

Close the figure.

hLCPlot = findobj('Type', 'Figure', 'Name', 'Lane Change Status Plot');
if ~isempty(hLCPlot)
 close(hLCPlot);
end

Run the simulation for 8 seconds. The highway lane change planner reference model generates a
trajectory to navigate around a slower lead vehicle.

sim('HLCPlannerAndControllerTestBench','StopTime','8');

 Highway Lane Change Planner and Controller

8-1367

Close the figure.

hLCPlot = findobj('Type', 'Figure', 'Name', 'Lane Change Status Plot');
if ~isempty(hLCPlot)
 close(hLCPlot);
end

Run the simulation for 18 seconds. The highway lane change planner reference model generates a
trajectory to navigate the vehicle to the left lane and then to the right lane to avoid collision with the
slow moving lead vehicle. Observe that the ego vehicle performs a lane change twice to avoid
collision while maintaining a set velocity.

simout = sim('HLCPlannerAndControllerTestBench','StopTime','18');

8 Featured Examples

8-1368

Close the figure.

hLCPlot = findobj('Type', 'Figure', 'Name', 'Lane Change Status Plot');
if ~isempty(hLCPlot)
 close(hLCPlot);
end

During the simulation, the model logs signals to base workspace as logsout. You can analyze the
simulation results and debug any failures in the system behavior using the
helperAnalyzeLCSimulationResults function. The function creates a MATLAB figure and plots
chase view of the scenario. The slider in the figure enables you to select a desired simulation step to
analyze different parameters shown in these panes:

• Chase View — Shows chase view of the scenario showing ego vehicle, sampled trajectories,
capsule list, and other vehicles.

• Trajectory Information — Shows different attributes of sampled trajectories. The highlighted
rows show the type of sampled trajectory by using the same color coding as shown in the Chase
View.

• MIO Information — Shows different attributes of identified MIOs. The color of the row matches
with the face color of the corresponding vehicle.

• Mode — Shows the selected behavior for the ego vehicle.
• Ego Velocity — Shows the velocity of ego vehicle. Units are in meters per second.
• Simulation Step — Shows the simulation step number set using the slider.
• Simulation Time — Shows time corresponding to simulation step. Units are in meters.
• Ego State — Shows parameters of the ego vehicle and identified lead vehicle.

 Highway Lane Change Planner and Controller

8-1369

• Planner Parameters — Shows configuration parameters for the planner.

Run the script and explore the plot.

helperAnalyzeLCSimulationResults(simout.logsout);

Explore Other Scenarios

In the previous section, you explored the system behavior for the
scenario_LC_15_StopnGo_Curved scenario. Below is a list of scenarios that are compatible with
the HLCPlannerAndControllerTestBench model.

scenario_LC_01_SlowMoving
scenario_LC_02_SlowMovingWithPassingCar
scenario_LC_03_DisabledCar
scenario_LC_04_CutInWithBrake
scenario_LC_05_SingleLaneChange
scenario_LC_06_DoubleLaneChange
scenario_LC_07_RightLaneChange
scenario_LC_08_SlowmovingCar_Curved
scenario_LC_09_CutInWithBrake_Curved
scenario_LC_10_SingleLaneChange_Curved
scenario_LC_11_MergingCar_HighwayEntry
scenario_LC_12_CutInCar_HighwayEntry
scenario_LC_13_DisabledCar_Ushape
scenario_LC_14_DoubleLaneChange_Ushape
scenario_LC_15_StopnGo_Curved [Default]

These scenarios are created using the Driving Scenario Designer and are exported to a scenario file.
Examine the comments in each file for more details on the road and vehicles in each scenario. You

8 Featured Examples

8-1370

can configure the HLCPlannerAndControllerTestBench and workspace to simulate these
scenarios using the helperSLHLCPlannerAndControllerSetup function. For example, you can
configure the simulation for a curved road scenario.

helperSLHLCPlannerAndControllerSetup('scenarioFcnName','scenario_LC_10_SingleLaneChange_Curved');

Conclusion

This example shows how to simulate a highway lane change maneuver using ground truth vehicle
positions.

Enable the MPC update messages again.

mpcverbosity('on');

See Also
Blocks
Scenario Reader | Vision Detection Generator | Driving Radar Data Generator | INS

Related Examples
• “Highway Lane Following” on page 8-922
• “Highway Lane Change” on page 8-867
• “Automate Testing for Highway Lane Change” on page 8-1267

 Highway Lane Change Planner and Controller

8-1371

Intersection Movement Assist Using Vehicle-to-Vehicle
Communication

This example shows how to model vehicle-to-vehicle (V2V) communication and how to design an
Intersection Movement Assist (IMA) safety application using V2V communication. It also shows the
effect of channel impairments on the application.

Introduction

V2V communication enables vehicles to exchange information about their states over a wireless
network to improve road traffic safety and reduce congestion. By using this technology, each vehicle
can get a 360-degree view of the surrounding vehicles. You can use V2V communication to reduce the
number of crashes at intersections. This example shows how to model V2V communication using
precomputed channel characteristics. It also shows how to design an IMA application using V2V
communication. The IMA application in this example evaluates traffic conditions at an intersection
and warns the driver of any potential collision threats. Using this example, you can test the IMA
application in various test scenarios.

In this example, you:

• Explore the test bench model — The test bench model consists of Scenario, Vehicle To
Vehicle Communications, Object Tracking, IMA Analysis, and Visualization sections, as well
as a Dashboard Panel Display for feedback.

• Review characteristics of the V2V communication channel — Plot the precomputed channel
characteristics like distance vs. signal-to-noise ratio (SNR), SNR vs. throughput, and distance vs.
throughput characteristics of the V2V communication channel for different message transmission
ranges and review their effect on message communication between the V2V transmitter and the
V2V Receiver.

• Model V2V communication — Design a V2V transmitter to generate basic safety message
(BSM) and V2V receiver to receive transmitted BSM using the precomputed channel
characteristics.

• Model the IMA analyzer — Analyze the collision risk for the ego vehicle and generate an IMA
warning based on the received BSM.

• Simulate the test bench model — Simulate the test scenarios and visualize the results of IMA
analysis and the performance of V2V communication for different V2V ranges.

• Explore other scenarios — These scenarios test the system under additional conditions.

Explore Test Bench Model

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot,"toolbox","driving","drivingdemos"));
helperDrivingProjectSetup("IntersectionMovementAssist.zip",workDir=pwd);

Open the test bench model for the Intersection Movement Assist application using V2V
communication.

open_system("IntersectionMovementAssistTestBench")

8 Featured Examples

8-1372

Opening this model runs the helperSLIntersectionMovementAssistSetup function, which
initializes the scenario using the drivingScenario object in the base workspace. It runs the default
test scenario scenario_01_IMA_Target_Emerges_At_SkewedT_Intersection, which contains
an ego vehicle and other vehicles in the Virtual Mcity environment. This function also loads
V2XChannelInfo.mat file provided by this example to save the precomputed channel
characteristics to base workspace for the range specified. This setup function also configures the
analysis parameters and Simulink® bus signals that define the inputs and outputs for the test bench
model.

The test bench model contains these sections:

• Scenario — Specifies the scenario and actors using Scenario Reader block and converts the actor
poses from the ego vehicle coordinates to world coordinates using Vehicle To World block. This
section also provides the scene origin for the simulation. The extractActorInfo MATLAB
function block extracts dimensions and class IDs of actors in the scenario and appends it to the
bus that specifies data for actor poses.

• Vehicle To Vehicle Communication — Models the V2V communication. The V2V Transmitter
generates BSM for each target vehicle using the extracted information for that actor. The V2V
Receiver receives transmitted BSMs using precomputed channel characteristics. The FIFO
queue models a message receive interface that runs on message availability.

• Object Tracking — Processes and converts the received BSMs into detections using the
processBSM MATLAB function block, and tracks each detection using a Multi-Object Tracker.

• IMA Analysis — Assesses collision risk for the ego vehicle using the confirmed tracks and ego
information and generates an IMA warning.

• Visualization — Visualizes the scenario during the simulation and displays IMA analysis results
and V2V communication performance.

• Dashboard Panel Display — Displays the ego vehicle velocity and IMA warning level.

This example focuses on the V2V communication, IMA analysis and visualization.

Review Characteristics of V2V Communication Channel

The V2V communication represents a message-based communication between the actors that are
present in the scenario. The V2V transmitter transmits the messages and the V2V receiver receives

 Intersection Movement Assist Using Vehicle-to-Vehicle Communication

8-1373

the messages. This communication relies on channel characteristics to determine the likelihood of
successful message reception.

This example provides the MAT file V2XChannelInfo.mat, which models the precomputed channel
characteristics. The example loads the channel characteristics into the base workspace using the
helperSLIntersectionMovementAssistSetup function and feeds it to the receiver during
simulation. The MAT file contains data about distance vs. SNR and SNR vs. throughput relations.
Using this data, the model derives the relation between the throughput and distance.

This example enables you to specify a range to get the precomputed distance vs. SNR data. To specify
a range, use the V2VRange name-value argument of the
helperSLIntersectionMovementAssistSetup function. The range refers to the distance
between the target vehicle and ego vehicle at which the probability of packet detection for the ego
vehicle is around 95%.

Plot and compare the channel characteristics for 150 m and 50 m ranges using
helperPlotChannelInfo function.

hFig = helperPlotChannelInfo(150,50);

8 Featured Examples

8-1374

• Distance vs SNR — Shows the relation between distance from transmitter to receiver and the
SNR for varying ranges. Based on the specified range, the example computes the corresponding
distance vs. SNR relation using the offset values provided in the MAT file V2XChannelInfo.mat.

• SNR vs Throughput — Shows the throughput performance in frequency-selective fading and
additive white Gaussian noise (AWGN) channel. For more details, see the “Release 14 V2X
Sidelink PSCCH and PSSCH Throughput” (LTE Toolbox) example.

• Distance vs Throughput — Shows the relation between distance and throughput for the
specified range. The throughput refers to expected probability of packet detection. When the
range is 150 m, the plot shows that the likelihood of packet detection is nearly 100% up to 150 m
and then it gradually decreases until it reaches 0% at around 400 m. Notice that, when the range
is 50 m, the probability of packet detection is only close to 100% within the first 50 m, after which
it starts decreasing. By a distance of 150 m, packet detection probability with a range of 50 m is
already near 0%.

Close the figure.

close(hFig);

Model V2V Communication

This example uses the V2V Transmitter and V2V Receiver subsystems to model the V2V
communication. The V2V Transmitter subsystem transmits the BSMs from all target vehicles to
the ego vehicle. The V2V Receiver subsystem receives the BSMs at the ego vehicle based on the
specified channel characteristics.

Open the V2V Transmitter subsystem.

open_system("IntersectionMovementAssistTestBench/V2V Transmitter")

The V2V Transmitter subsystem implements the transmitters of all the target vehicles in the
scenario using the HelperV2VTransmitter System object™. The subsystem reads the actor
information and passes it through an inertial navigation system (INS) and global navigation satellite
system (GNSS) to apply noise to the actor information. The subsystem also converts the pose
information of target vehicles from Cartesian coordinates to geographic coordinates using the scene
origin information. Then, the subsystem generates the BSMs for all target vehicles.

A generated BSM contains these attributes for each vehicle [1]:

• MsgCount — Sequence number for a stream of messages.
• TemporaryId — Random device identifier.
• DSecond — Time at which the position was determined.
• Latitude — Geographic latitude of the vehicle.

 Intersection Movement Assist Using Vehicle-to-Vehicle Communication

8-1375

• Longitude — Geographic longitude of the vehicle.
• Elevation — Geographic position above or below the reference ellipsoid defined by the World

Geodetic System of 1984 (WGS84).
• PositionalAccuracy — Accuracy of the positional determination.
• TransmissionState — The current state of the vehicle transmission.
• Speed — Speed of the vehicle.
• Heading — Current heading of the vehicle, in degrees clockwise from north.
• SteeringWheelAngle — Angle of the steering wheel of the driver.
• AccelerationSet4Way — Acceleration of the vehicle along three directions, and its yaw rotation

rates.
• BrakeSystemStatus — Current brake and system control status.
• VehicleSize — Length and width of the vehicle.

The Message Send block converts the signal to a Simulink message and delivers to an entity queue.
The queues are organized as first-in-first-out (FIFO) queues.

Open V2V Receiver subsystem

open_system("IntersectionMovementAssistTestBench/V2V Receiver")

The V2V Receiver subsystem implements the behavior of the receiver of the ego vehicle using the
HelperV2VReceiver System object. The receiver takes the precomputed channel characteristics as
a mask parameter and transmitted BSM, scene origin, and the ego information as input. When the
transmitter delivers a message in the entity queue, it triggers the V2V Receiver subsystem. For
each target vehicle, the receiver computes the distance from that target vehicle to the ego vehicle,
and then finds the corresponding throughput using the precomputed channel characteristics. When
the throughput is greater than the generated random number, the receiver receives the BSM and
stores it in the output bus BSMOut.

Model IMA Analyzer

The IMA Analyzer block, in the IMA Analysis subsystem, assesses the collision risk for the ego
vehicle using the tracks that are produced by tracker, and generates an IMA warning.

Open the IMA Analysis subsystem.

open_system("IntersectionMovementAssistTestBench/IMA Analysis")

8 Featured Examples

8-1376

To generate the IMA warning, the paths for the target and ego vehicles are estimated using their
current positions, speeds, and heading angles. The estimated path of each vehicle is a straight line
connecting the initial position of the vehicle and its estimated position after 20 seconds. You can
adjust the time required for path estimation using the tahead parameter. To assess a collision risk,
the IMA Analyzer checks whether the estimated path of the ego vehicle intersects with the
estimated paths of the target vehicles. If the estimated ego path intersects with the estimated path of
any target vehicle, the IMA Analyzer computes these parameters:

• Ego arrival time — Specifies the time required for the ego vehicle to reach the path intersection
point.

• Time gap — Specifies the absolute difference between the arrival times of the ego vehicle and the
target vehicle at the path intersection point.

The IMA Analyzer then compares the ego arrival time and time gap values with their respective
predefined thresholds. Based on the results of comparison, the analyzer sets an appropriate level of
warning, as shown in this table.

• High — Both the ego arrival time and time gap are less than their minimum thresholds. High level
of warning specifies higher probability of collision at an intersection. As such, the driver of the ego
vehicle must take action to avoid collision.

• Moderate — The ego arrival time is less than its minimum threshold, but the time gap is greater
than or equal to its minimum threshold. This level of warning specifies that the probability of
collision is less if the ego vehicle continues moving in the same direction with the same velocity.
Hence, the ego vehicle should pass through the intersection with caution, but no immediate action
is required.

• Low — The ego arrival time is greater than or equal to its minimum threshold, regardless of the
relationship of the time gap to its minimum threshold. This level of warning specifies very low
probability of collision. As such, the ego vehicle does not require any immediate action.

 Intersection Movement Assist Using Vehicle-to-Vehicle Communication

8-1377

Simulate Test Bench Model

Set up and run the IntersectionMovementAssistTestBench simulation model to visualize the
IMA analysis results and the performance of the V2V communication.

Configure the IntersectionMovementAssistTestBench model to use the
scenario_01_IMA_Target_Emerges_At_SkewedT_Intersection scenario and set the V2V
communication range to 150 m.

helperSLIntersectionMovementAssistSetup(scenarioFcnName="scenario_01_IMA_Target_Emerges_At_SkewedT_Intersection",V2VRange=150);

Simulate the model for 1 second and visualize the results.

sim("IntersectionMovementAssistTestBench",StopTime="1");

8 Featured Examples

8-1378

The Visualization subsystem generates a MATLAB figure that displays this information:

• Scene View — Displays a bird's-eye-view plot of the scenario that shows the estimated paths of
the ego and target vehicles and their intersecting points.

• Chase View — Displays a chase view of the scenario, showing the ego vehicle and other target
vehicles within the field of view.

• IMA Warning — Displays the IMA warning, the ego vehicle arrival time to the intersection point,
and the distance between the ego vehicle and the intersection point for the upcoming path
intersection point.

• Intersection Points — Displays, for each target, a path intersection point, time to arrive at the
intersection point, distance from the intersection point, and time gap between that target and the
ego vehicle arriving at the intersection point.

• Message Transmitted vs Received — Plots the number of transmitted and received messages at
each time step.

• V2V Communication Data — Displays information about the transmission and reception of BSM
and SNR details for each received message.

• Received BSM Message — Displays the latitude, longitude, speed, heading, length, and width
for each target whose BSM messages are received.

The dashboard displays the IMA warning during the simulation. The color of the IMA warning
indicator corresponds to the severity of the collision risk.

• Green — No collision risk
• Yellow — Low collision risk
• Orange — Moderate collision risk
• Red — High collision risk

Set the range to 50 m, and run the simulation again to visualize the effects of channel impairments on
IMA performance.

helperSLIntersectionMovementAssistSetup(scenarioFcnName="scenario_01_IMA_Target_Emerges_At_SkewedT_Intersection",V2VRange=50);
sim("IntersectionMovementAssistTestBench",StopTime="1");

 Intersection Movement Assist Using Vehicle-to-Vehicle Communication

8-1379

Notice that when you reduce the range to 50 m, the number of received BSM messages also declines.
At the 50 m range, the receiver receives a message for only one target vehicle. In contrast, the
receiver received the messages for most of the target vehicles at the 150 m range.

Simulate the complete scenario with a range of 150 m.

helperSLIntersectionMovementAssistSetup(scenarioFcnName="scenario_01_IMA_Target_Emerges_At_SkewedT_Intersection",V2VRange=150);
simout = sim("IntersectionMovementAssistTestBench");

8 Featured Examples

8-1380

Plot the results.

hFigResults=helperPlotIMAAnalysisResults(simout);

 Intersection Movement Assist Using Vehicle-to-Vehicle Communication

8-1381

• The Ego Arrival Time To Intersection plot shows the arrival time of ego vehicle to the
upcoming intersection. If the ego arrival time is greater than the minimum arrival time, then the
IMA warning is low. If the ego arrival time is less than the minimum arrival time, then the IMA
warning is moderate or high, depending on the time gap.

• The Target Arrival Time To Intersection plot shows the arrival time of the target vehicle whose
path intersects with the path of the ego vehicle in the upcoming intersection.

• The Time Gap plot shows the absolute difference between the arrival times of the ego and target
vehicles to the intersection. If the time gap is less than the minimum time gap and ego arrival time
is also less than minimum arrival time, then the state of the IMA warning is high.

• The IMA Warning plot displays the state of IMA warning at each time step.

Close the figure.

close(hFigResults);

Explore Other Scenarios

In this example, you explored the system behavior for the
scenario_01_IMA_Target_Emerges_At_SkewedT_Intersection scenario. This example
provides additional scenarios that are compatible with the
IntersectionMovementAssistTestBench model.

• scenario_01_IMA_Target_Emerges_At_SkewedT_Intersection
• scenario_02_IMA_Target_Emerges_At_Oblique_Intersection

8 Featured Examples

8-1382

• scenario_03_IMA_Ego_Emerges_At_T_Intersection
• scenario_04_IMA_Ego_Emerges_At_Oblique_Intersection
• scenario_05_IMA_Ego_Emerges_At_NarrowT_Intersection

These scenarios have been created using the Driving Scenario Designer app and then exported to
scenario files. Examine the comments in each file for more details on the road and vehicles in each
scenario. You can configure the IntersectionMovementAssistTestBench and workspace to
simulate these scenarios using the helperSLIntersectionMovementAssistSetup function. For
example, to configure the simulation for the
scenario_02_IMA_Target_Emerges_At_Oblique_Intersection scenario, enter this command.

helperSLIntersectionMovementAssistSetup(scenarioFcnName="scenario_02_IMA_Target_Emerges_At_Oblique_Intersection");

References

[1] SAE International. Dedicated Short Range Communications (DSRC) Message Set Dictionary.
J2735_201603. SAE International, issued September 2015; revised March 2016. https://www.sae.org/
standards/content/j2735_201603/.

See Also
Blocks
Scenario Reader

Related Examples
• “Traffic Light Negotiation Using Vehicle-to-Everything Communication” on page 8-1384
• “Forward Collision Warning Using Sensor Fusion” on page 8-218
• “Autonomous Emergency Braking with Sensor Fusion” on page 8-303
• “Highway Lane Change” on page 8-867
• “Highway Lane Following” on page 8-922
• “Release 14 V2X Sidelink PSCCH and PSSCH Throughput” (LTE Toolbox)

 Intersection Movement Assist Using Vehicle-to-Vehicle Communication

8-1383

https://www.sae.org/standards/content/j2735_201603/.
https://www.sae.org/standards/content/j2735_201603/.

Traffic Light Negotiation Using Vehicle-to-Everything
Communication

This example shows how to model and simulate a traffic light negotiation application using vehicle-to-
everything (V2X) communication. This example uses the vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) modes of V2X communication.

Introduction

A traffic light negotiation system makes an appropriate decision at an intersection based on the
current state of the traffic light and the status of other surrounding vehicles. V2V and V2I are
wireless communication technologies that transmit essential information about the states of other
vehicles and the state of a traffic light signal to an ego vehicle. The V2V and V2I technologies improve
the perceptual ability of vehicles, enabling them to effectively manage traffic light negotiation. The
information received through the V2V and V2I systems is used by the decision logic component of an
automated driving application. The decision logic component reacts to this information regarding the
state of the traffic light and surrounding vehicles and provides necessary inputs to the controller to
guide the vehicle safely.

This example builds on the “Traffic Light Negotiation” on page 8-948 example. The traffic light
negotiation example shows how to design and test decision logic for negotiating a traffic light at an
intersection using probabilistic vision and radar sensors. This example shows how to design and test
decision logic, using V2V and V2I communication, for negotiating a traffic light while preventing
collisions at intersections.

In this example, you:

• Explore the test bench model — The model contains components for the traffic light sensors
and environment, V2V communication, V2I communication, tracker, decision logic, controls, and
vehicle dynamics.

• Model V2V and V2I communication — The model uses V2V mode to communicate basic safety
messages (BSMs) from non-ego vehicles to the ego vehicle. V2I mode communicates signal phase
and timing (SPAT) messages from the traffic signal to the ego vehicle. For more details on V2V
communication, see “Intersection Movement Assist Using Vehicle-to-Vehicle Communication” on
page 8-1372.

• Model the decision logic — The decision logic identifies the most important object (MIO) and
the state of the traffic signal of interest and arbitrates between them. It provides a reference path
for the ego vehicle to follow at an intersection in the absence of lane markings. The decision logic
subsystem also differentiates between a lead vehicle and a crossover vehicle, to provide crossover
vehicle alert.

• Simulate interactions with traffic light — Configure the model to test the interactions between
the decision logic and controls of the ego vehicle while approaching a signalized intersection in
the presence of a lead vehicle.

• Simulate the interactions with a crossover vehicle and traffic light — Configure the model
to test the interactions between the traffic light decision logic and controls of the ego vehicle
when there is cross traffic at the intersection.

• Explore other scenarios — These scenarios test the system under additional conditions.

8 Featured Examples

8-1384

Explore Test Bench Model

To explore the test bench model, open a working copy of the project example files. MATLAB® copies
the files to an example folder so that you can edit them.

addpath(fullfile(matlabroot,"toolbox","driving","drivingdemos"));
helperDrivingProjectSetup("TrafficLightNegotiationWithV2X.zip",workDir=pwd);

To explore the behavior of the traffic light negotiation system, open the simulation test bench model
for the system.

open_system("TrafficLightNegotiationWithV2XTestBench");

Opening this model runs the helperSLTrafficLightNegotiationWithV2XSetup function that
initializes the scenario using the drivingScenario object in the base workspace. The function runs
the default scenario, scenario_03_TLNWithV2X_Straight_With_Lead_and_CrossOver, which
contains an ego vehicle with a lead vehicle and crossover vehicle. This function also loads the
V2XChannelInfo.mat file, provided by this example, to save the precomputed channel
characteristics to the base workspace for the range specified. The setup function configures the
controller design parameters, vehicle model parameters, and Simulink® bus signals required for
defining the inputs and outputs for the TrafficLightNegotiationWithV2XTestBench model.

The test bench model contains these subsystems:

• Sensors and Environment — Models the traffic light sensors, road network, vehicles, and the
camera and radar sensors used for simulation.

• V2V Simulator — Models the vehicle-to-vehicle (V2V) communication system.
• V2I Simulator — Models the vehicle-to-infrastructure (V2I) communication system.
• Tracker — Converts received BSMs into detections, and tracks each detection using a Multi-

Object Tracker.
• Decision Logic — Arbitrates between the traffic light and other lead vehicles or crossover

vehicles at the intersection.

 Traffic Light Negotiation Using Vehicle-to-Everything Communication

8-1385

• Lane Following Controller — Generates longitudinal and lateral controls.
• Vehicle Dynamics — Models the ego vehicle using a Bicycle Model block, and updates its state

using commands received from the Lane Following Controller reference model.
• Visualization — Plots the world coordinate view of the road network, vehicles, and the traffic

light state during simulation.

This example reuses the Lane Following Controller reference model and the Vehicle
Dynamics subsystem from the “Highway Lane Following” on page 8-922 example. This example
focuses on the V2V Simulator and V2I Simulator subsystems and Decision Logic reference
model.

The Sensors and Environment subsystem configures the road network, defines target vehicle
trajectories, and provides scenario-related information. Open the Sensors and Environment
subsystem.

open_system("TrafficLightNegotiationWithV2XTestBench/Sensors and Environment");

The Sensors and Environment subsystem consists of these sections:

• Scenario and Actors — Configures the scenario and actors. The Scenario Reader block takes
the ego vehicle information as input to perform closed-loop simulation. It outputs ground truth
information for the lanes and actors in ego vehicle coordinates. This block reads the
drivingScenario object, scenario, which contains a road network compatible with the

8 Featured Examples

8-1386

TrafficLightNegotiationWithV2XTestBench model, from the base workspace. This section
also converts the actor poses from the coordinates of the ego vehicle to world coordinates using a
Vehicle To World block.

• Traffic Light Sensor Simulation — Simulates the traffic lights using four traffic light
sensors at an intersection. For more information, see the “Traffic Light Negotiation” on page 8-
948 example.

• Scenario Information — Provides scenario-related information such as reference path, scene
origin, approaching intersection, signal name, set velocity for the ego vehicle, and intersection
center information.

Model V2V and V2I Communication

The V2V Simulator represents the message-based communication between vehicles present in the
scenario. Each vehicle transmits essential information about its state in the form of BSMs. The V2I
Simulator represents the message-based communication between the ego vehicle and
infrastructure. In this example, the infrastructure is a traffic light sensor that transmits SPAT
messages.

V2V Simulator

The V2V Simulator subsystem consists of the V2V Transmitter and V2V Receiver subsystems.

Open the V2V Simulator subsystem.

open_system("TrafficLightNegotiationWithV2XTestBench/V2V Simulator")

The V2V Transmitter subsystem implements the transmitters of all target vehicles in the scenario
using the HelperV2VTransmitter object and uses the actor information and the scene origin
information to generate BSMs. First, the subsystem passes the input actor information through an
inertial navigation system (INS) and global navigation satellite system (GNSS) to apply noise to the
input data. Then, it converts the target vehicle poses from Cartesian coordinates to geographic
coordinates to generate the BSMs. To convert the generated BSMs to Simulink messages, the
subsystem uses a Send block.

A generated BSM contains these attributes for each vehicle:

 Traffic Light Negotiation Using Vehicle-to-Everything Communication

8-1387

• MsgCount — Sequence number for a stream of messages.
• TemporaryId — Random device identifier.
• DSecond — Time at which the position was determined.
• Latitude — Geographic latitude of the vehicle.
• Longitude — Geographic longitude of the vehicle.
• Elevation — Geographic position of the vehicle above or below the reference ellipsoid.
• PositionalAccuracy — Accuracy of the positional determination.
• TransmissionState — The current state of the vehicle transmission.
• Speed — Speed of the vehicle.
• Heading — Current heading of the vehicle, in degrees clockwise from north.
• SteeringWheelAngle — Angle of the steering wheel of the vehicle.
• AccelerationSet4Way — Acceleration of the vehicle along three directions, and the yaw

rotation rate.
• BrakeSystemStatus — Current brake and system control status.
• VehicleSize — Length and width of the vehicle.

In the V2V Receiver subsystem, a Receive block converts the BSMs back to a signal. The V2V
Receiver subsystem implements the receiver behavior for the ego vehicle using the
HelperV2VReceiver object, and takes the BSM, ego information, and scene origin as input. The
V2V Receiver uses precomputed channel characteristics to receive the message. The channel
characteristics provide the throughput percentage for a given distance between the transmitter and
receiver. If the throughput percentage is greater than the generated random number, then the
subsystem receives the BSM and appends it to the output bus BSMOut. For more details on channel
characteristics, see “Intersection Movement Assist Using Vehicle-to-Vehicle Communication” on page
8-1372.

V2I Simulator

The V2I Simulator subsystem consists of the V2I Transmitter and V2I Receiver subsystems.

Open the V2I Simulator subsystem.

open_system("TrafficLightNegotiationWithV2XTestBench/V2I Simulator")

8 Featured Examples

8-1388

The V2I Transmitter subsystem implements the transmitter of a traffic light sensor using the
HelperV2ITransmitter object, and generates the SPAT message for the traffic light sensor. The
SPAT message conveys the current status of one or more signalized intersections in a region. To
convert the generated SPATs to a Simulink messages, the subsystem uses a Send block.

A generated SPAT contains these attributes:

• TimeStamp — Minute of the year.
• Name — Region name.
• Intersection — Traffic signal information for each intersection in a region.

In the V2I Receiver subsystem, a Receive block converts the SPAT messages back to a signal. The
V2I Receiver subsystem implements the receiver behavior for the ego vehicle using the
HelperV2IReceiver object. The V2I Receiver uses precomputed channel characteristics. For a
specified distance between the transmitter and receiver, if the throughput is greater than the preset
threshold, the receiver receives the SPAT message sent by the transmitter.

Model Decision Logic

The Decision Logic reference model arbitrates between the lead vehicle, a crossover vehicle, and
the traffic light. It also calculates the lane center information using either lanes from the scenario
reader or a predefined path.

Open the Decision Logic reference model.

open_system("DecisionLogic");

 Traffic Light Negotiation Using Vehicle-to-Everything Communication

8-1389

The Find MIO MATLAB Function block finds the MIO from the input object tracks. The MIO can be a
lead car in the current lane, or it can be a crossover vehicle that can possibly collide with the ego
vehicle. The block provides the relative distance and relative velocity of the ego vehicle, with respect
to the MIO. For crossover vehicles, the relative distance is the distance between the ego vehicle and
the estimated collision point. The relative velocity is the ego velocity towards the estimated collision
point. When no MIO is present, this block sets both the relative velocity and relative distance to
infinity.

The Arbitration Logic block, which arbitrates between the MIO and the traffic light, and the
Lane Center Decision Logic block, which computes lane center, are reused from the Traffic
Light Decision Logic reference model in the “Traffic Light Negotiation” on page 8-948 example.

Simulate Interactions with Traffic Light

Configure the model to use the scenario_01_TLNWithV2X_LeftTurn_With_Lead scenario.

helperSLTrafficLightNegotiationWithV2XSetup(ScenarioFcnName="scenario_01_TLNWithV2X_LeftTurn_With_Lead");

To reduce Command Window output, turn off the model predictive control (MPC) update messages.

mpcverbosity("off");

In this test scenario, a lead vehicle travels in the ego lane and crosses the intersection while the
traffic light is green. Then, the traffic light turns red forcing the ego vehicle to wait. The ego vehicle
is expected to follow the lead vehicle, negotiate the traffic light, and make a left turn.

8 Featured Examples

8-1390

Simulate the test bench model.

sim("TrafficLightNegotiationWithV2XTestBench");

You can plot the results using the helperTLNWithV2XResults function.

helperTLNWithV2XResults(logsout)

 Traffic Light Negotiation Using Vehicle-to-Everything Communication

8-1391

• The Traffic light state - TL Sensor 1 plot shows the traffic light sensor states of TL
Sensor 1. It changes from green to yellow, then from yellow to red, and then repeats this
behavior.

• The Number of V2V Detections plots shows the number of vehicles detected using V2V
communication. Observe that the only non-ego vehicle present in the scenario is detected most of
the time.

• The MIO plot shows the type of MIO at each time instant. Notice that the MIO is initially the lead
vehicle, and after the ego vehicle takes the left turn, there is no MIO as there is no lead vehicle or
crossover vehicle.

• The Ego acceleration plot shows the acceleration profile from the Lane Following
Controller. Notice that the ego vehicle decelerates slightly more than 4 seconds into the
simulation, to react to the red state of the traffic light. When the traffic light turns green, slightly
more than 9 seconds into the simulation, the ego vehicle accelerates.

8 Featured Examples

8-1392

• The Ego yaw angle plot shows the yaw angle profile of the ego vehicle. Notice that the yaw
angle is close to 0 degrees up to 12 seconds into the simulation because the ego vehicle travels
straight while approaching the intersection. When the ego vehicle takes a left turn through the
intersection, slightly more than 12 seconds into the simulation, the ego yaw angle shows
significant variation.

Simulate Interactions with Crossover Vehicle and Traffic Light

Configure the model to use the
scenario_03_TLNWithV2X_Straight_With_Lead_and_CrossOver scenario.

helperSLTrafficLightNegotiationWithV2XSetup(ScenarioFcnName="scenario_03_TLNWithV2X_Straight_With_Lead_and_CrossOver");

This test scenario configures the model to test the interactions between the decision logic and
controls of the ego vehicle when both a lead vehicle and a cross-traffic vehicle are present at the
intersection. The ego vehicle is expected to follow the lead vehicle, wait for the crossover vehicle to
clear the intersection, and negotiate the traffic light.

Simulate the test bench model.

sim("TrafficLightNegotiationWithV2XTestBench");

Plot the results.

helperTLNWithV2XResults(logsout)

 Traffic Light Negotiation Using Vehicle-to-Everything Communication

8-1393

The ego begins to decelerate slightly more than 4 seconds into the simulation, in response to
detecting the red traffic light. The ego vehicle halts at the intersection. While waiting at the
intersection, the crossover vehicle approaches the intersection and becomes the MIO, as shown in the
MIO plot, slightly more than 6 seconds into the simulation. Though the light turns green slightly more
than 9 seconds into the simulation, the ego vehicle does not accelerate until the crossover vehicle
moves out of the intersection. After 10 seconds, the ego vehicle starts accelerating and moves
through the intersection. Because the ego vehicle drives straight throughout the simulation, the ego
yaw angle does not change.

Explore Other Scenarios

The example provides these additional scenarios that are compatible with the
TrafficLightNegotiationWithV2XTestBench model.

• scenario_01_TLNWithV2X_LeftTurn_With_Lead

8 Featured Examples

8-1394

• scenario_02_TLNWithV2X_LeftTurn_With_CrossOver
• scenario_03_TLNWithV2X_Straight_With_Lead_and_CrossOver (default)
• scenario_04_TLNWithV2X_Straight_With_SequenceOfCrossOver
• scenario_05_TLNWithV2X_Straight_With_CrossOver_SlowingToStop

For more details on each scenario, view the comments in its file. You can configure the Simulink
model and workspace to simulate these scenarios using the
helperSLTrafficLightNegotiationWithV2XSetup function.

 helperSLTrafficLightNegotiationWithV2XSetup(ScenarioFcnName="scenario_03_TLNWithV2X_Straight_With_Lead_and_CrossOver");

Enable the MPC update messages once again.

mpcverbosity("on");

References

[1] SAE International. Dedicated Short Range Communications (DSRC) Message Set Dictionary .
J2735_201603. SAE International, issued September 2015; revised March 2016. https://www.sae.org/
standards/content/j2735_201603/.

See Also
Blocks
Scenario Reader | Bicycle Model

Related Examples
• “Autonomous Emergency Braking with Sensor Fusion” on page 8-303
• “Intersection Movement Assist Using Vehicle-to-Vehicle Communication” on page 8-1372
• “Forward Collision Warning Using Sensor Fusion” on page 8-218
• “Highway Lane Following” on page 8-922
• “Highway Lane Change” on page 8-867

 Traffic Light Negotiation Using Vehicle-to-Everything Communication

8-1395

https://www.sae.org/standards/content/j2735_201603/
https://www.sae.org/standards/content/j2735_201603/

Trajectory Follower with RoadRunner Scenario
This example shows how to design a trajectory follower in Simulink® and cosimulate it with
RoadRunner Scenario. The trajectory follower includes controls and vehicle dynamics.

Introduction

RoadRunner Scenario is an interactive editor that enables you to design scenarios for simulating and
testing automated driving systems. You can place vehicles, define their paths and interactions in the
scenario, and then simulate the scenario in the editor. RoadRunner Scenario supports in-editor
playback for scenario visualization and connecting to other simulators such as MATLAB® and
Simulink for cosimulation.

This example shows the steps for cosimulation of RoadRunner Scenario and Simulink. It shows how to
design a trajectory follower in Simulink. It also shows how to visualize simulation data using
MATLAB. This diagram shows an overview of the information exchanged between RoadRunner
Scenario and the trajectory follower:

RoadRunner Scenario communicates with the Simulink trajectory follower using message-based
communication. The trajectory follower gets the ego path from the path action message, uses the
speed action messages to update the current speed of the ego vehicle, and reads the runtime
information of all the actors in the scenario to support relative target speed. To navigate the ego
vehicle along the specified trajectory, the trajectory follower implements a controller and vehicle
dynamics subsystem and updates the ego pose using the self vehicle runtime message.

In this example, you:

1 Set up MATLAB — Configure MATLAB settings to interact with RoadRunner Scenario.

8 Featured Examples

8-1396

2 Set up RoadRunner Scenario — Open a RoadRunner Scenario project and copy the required
files to the project folder.

3 Explore scenario — Explore how the scenario defines actions for an actor.
4 Simulate scenario with built-in behavior — Simulate the scenario with the ego vehicle using

the RoadRunner Scenario built-in behavior. Inspect the velocity profile using the Simulation Data
Inspector (SDI).

5 Design trajectory follower using Simulink — Design a trajectory follower using Simulink.
6 Simulate scenario with trajectory follower — Associate the trajectory following behavior to

the ego vehicle in RoadRunner Scenario. Simulate the scenario and inspect the ego velocity
profile using the SDI.

Set Up MATLAB

This section shows how to set up the environment to cosimulate MATLAB with RoadRunner Scenario.

Specify the path to your local RoadRunner installation folder. This code shows the path for the default
installation location on Windows®.

rrAppPath = "C:\Program Files\RoadRunner R2022a\bin\win64";

To update the path for the RoadRunner installation folder, get the root object within the settings
hierarchical tree. For more information, see SettingsGroup.

s = settings;
s.roadrunner.application.InstallationFolder.TemporaryValue = rrAppPath;

Set Up RoadRunner Scenario

Specify the path to your RoadRunner project. This code shows the path to a sample project folder on
Windows.

rrProjectPath = "C:\RR\MyProjects";

Open RoadRunner using the specified path to your project.

rrApp = roadrunner(rrProjectPath);

The rrApp RoadRunner object enables you to interact with RoadRunner from the MATLAB
workspace. You can open the scenario and update scenario variables using this object. For more
information on variables, see “Generate Scenario Variations Using gRPC API” (RoadRunner
Scenario).

This example uses two files that you must add to the RoadRunner project.

• scenario_TF_EgoFollowsSpeed.rrscenario — Scenario file based on the
ScenarioBasic.rrscene scene that ships with RoadRunner.

• TrajectoryFollower.rrbehavior.rrmeta — Behavior file that associates the trajectory
follower behavior implemented using the Simulink model to the ego vehicle in RoadRunner
Scenario.

Copy these files to the RoadRunner project. To learn more about the RoadRunner environment, see
“RoadRunner Project and Scene System” (RoadRunner).

copyfile("scenario_TF_EgoFollowsSpeed.rrscenario",fullfile(rrProjectPath,"Scenarios"));
copyfile("TrajectoryFollower.rrbehavior.rrmeta",fullfile(rrProjectPath,"Assets","Behaviors"));

 Trajectory Follower with RoadRunner Scenario

8-1397

Explore Scenario

Open the scenario scenario_TF_EgoFollowsSpeed.rrscenario.

openScenario(rrApp,"scenario_TF_EgoFollowsSpeed.rrscenario");

The scenario contains a white ego vehicle that travels on the specified path. In this example, you
must specify a path for the ego vehicle. The ego vehicle initially travels at a speed of 5 m/s, and then
increases its speed to 15 m/s over a period of 10 seconds.

Visualize the scenario logic in the Logic editor pane. For more information, see “Define Scenario
Logic” (RoadRunner Scenario).

In this example, you implement trajectory following behavior for the ego vehicle using a Simulink
model. Select the TrajectoryFollower.rrbehavior.rrmeta file in the Library Browser. The
Attributes pane shows that the behavior file points to a Simulink model,
TrajectoryFollowerRRTestBench.slx.

Specify the behavior for the ego vehicle using the egoBehavior variable.

8 Featured Examples

8-1398

Connect to the RoadRunner Scenario server for cosimulation by using the createSimulation
function, and enable data logging.

rrSim = rrApp.createSimulation;
rrSim.set('Logging','on');

Connection status: 1
Connected to RoadRunner Scenario server on localhost:51086, with client id {c6665cf2-6156-4881-93a9-67a306f3a6f6}

rrSim is the Simulink.ScenarioSimulation object. Use this object to set variables and to read
scenario-related information.

Simulate RoadRunner Scenario

When egoBehavior is unspecified, the ego vehicle uses the built-in behavior of the RoadRunner
scenario. Clear the egoBehavior variable to use the built-in behavior.

rrApp.setScenarioVariable("egoBehavior"," ");

Run the simulation and wait for the simulation to complete.

 Trajectory Follower with RoadRunner Scenario

8-1399

rrSim.set("SimulationCommand","Start");
while strcmp(rrSim.get("SimulationStatus"),"Running")
 pause(1);
end

Use the helperVisualizeVelocityProfile function to visualize the velocity profile using the
SDI. The helperVisualizeVelocityProfile function also plots lane centers and the ego vehicle
trajectory. The helperVisualizeVelocityProfile function takes rrSim, the ego actor ID, and
the signal name for SDI as inputs.

helperVisualizeVelocityProfile(rrSim,1,"Built-in")
hFigSDI = Simulink.sdi.snapshot;

8 Featured Examples

8-1400

The velocity profile shows the change in velocity over time. Notice that the ego vehicle follows the
Change Speed action specified in the scenario logic.

Close the figure.

close(hFigSDI)

Design Trajectory Follower Using Simulink

This example uses the TrajectoryFollowerRRTestBench model to define the custom behavior of
the ego vehicle. This model uses a Stanley controller and 3DOF vehicle dynamics to control the ego
speed. Open the test bench model.

open_system("TrajectoryFollowerRRTestBench");

 Trajectory Follower with RoadRunner Scenario

8-1401

The test bench model performs these tasks:

• Reads data from RoadRunner Scenario.
• Processes the input data.
• Writes the processed data to RoadRunner Scenario.

Read Data from RoadRunner Scenario

The test bench model reads the data from RoadRunner Scenario using these modules:

The model uses RoadRunner Scenario Reader blocks to read messages from RoadRunner Scenario.

This example uses these RoadRunner Scenario Reader blocks:

• Path Actions — Reads the specified path of the ego vehicle.
• Self Vehicle Spec — Reads the ego vehicle specification information.
• Self Vehicle Runtime — Reads the ego vehicle runtime information.
• Speed Actions — Reads the Change Speed actions of the ego vehicle.
• All Actor Runtime — Reads the actor runtime information of all vehicles.

The Path Action Adapter block extracts the trajectory and number of waypoints from the vehicle
path.

The ENU to NWD subsystem converts the RoadRunner Scenario coordinate system to the cuboid
coordinate system. For more information on these coordinate systems, see “Coordinate Space and
Georeferencing” (RoadRunner) and “Coordinate Systems in Automated Driving Toolbox” on page 1-2.
Open the ENU to NWD subsystem.

open_system("TrajectoryFollowerRRTestBench/ENU to NWD");

8 Featured Examples

8-1402

The Speed Action Adapter block processes the speed action commands specified in RoadRunner
Scenario and calculates the reference speed of the ego vehicle.

The Initialize State subsystem calculates the initial state of the ego vehicle for vehicle
dynamics.

Process Input Data

The test bench model processes the RoadRunner Scenario data using these modules:

The Reference Pose on Path subsystem calculates the reference pose of the ego vehicle on the
path using the previous pose of the ego vehicle. The subsystem also calculates the reference
curvature of the trajectory using the smoothPathSpline function.

The Stanley Controller subsystem uses a Lateral Controller Stanley block for steering angle
control and Longitudinal Controller Stanley block for acceleration control. Open the Stanley
Controller subsystem.

open_system("TrajectoryFollowerRRTestBench/Stanley Controller");

 Trajectory Follower with RoadRunner Scenario

8-1403

To compute the steering angle command, the Lateral Controller Stanley block minimizes the position
error and the angle error of the current pose with respect to the reference pose.

In this example, the Lateral Controller Stanley block uses the dynamic bicycle model as a vehicle
model for the steering angle control. The dynamic bicycle model is suitable for trajectory following in
high-speed environments such as highways, where inertial effects are more pronounced. For more
details, see Lateral Controller Stanley.

The Lateral Controller Stanley block in this example supports a maximum steering angle of 30
degrees. Due to this, the ego vehicle may not be able to take some sharp turns.

To compute the acceleration and deceleration commands, the Longitudinal Controller Stanley block
implements a discrete proportional-integral (PI) controller. For more details, see Longitudinal
Controller Stanley.

The Longitudinal Controller Stanley block in this example supports a maximum acceleration of 2 m/
s^2. To get the desired behavior, you must specify a Change Speed action in RoadRunner Scenario
with a required acceleration that does not exceed 2 m/s^2.

The Vehicle Dynamics subsystem uses a 3DOF Bicycle Model block to model the ego vehicle. Open
the Vehicle Dynamics subsystem.

open_system("TrajectoryFollowerRRTestBench/Vehicle Dynamics");

The Bicycle Model block implements a rigid, two-axle, single-track vehicle body model to calculate
longitudinal, lateral, and yaw motion. The block accounts for body mass, aerodynamic drag, and
weight distribution between the axles due to acceleration and steering. For more details, see Vehicle
Body 3DOF Three Axles (Vehicle Dynamics Blockset).

The Lateral Metrics subsystem calculates position error and relative heading to check the
performance of the controller and the vehicle dynamics. Position error is the deviation of the ego
vehicle from the reference pose. Relative heading is the ego vehicle heading angle relative to
reference path.

Write Processed Data to RoadRunner Scenario

The test bench model writes the processed data to RoadRunner Scenario using these modules:

The NWD to ENU subsystem transforms the pose that you get from the cuboid coordinate system to
the RoadRunner Scenario coordinate system. Open the NWD to ENU subsystem.

open_system("TrajectoryFollowerRRTestBench/NWD to ENU");

8 Featured Examples

8-1404

The Pack Actor Pose subsystem converts the pose into a 4-by-4 position matrix using the current
pose of the ego vehicle and calculates the velocity components of the vehicle. Open the Pack Actor
Pose subsystem.

open_system("TrajectoryFollowerRRTestBench/Pack Actor Pose");

The subsystem writes the vehicle pose to RoadRunner Scenario using the RoadRunner Scenario
Writer block.

Simulate Scenario with Trajectory Follower

Set the scenario variable egoBehavior to use the Simulink model.

rrApp.setScenarioVariable("egoBehavior","<PROJECT>/Assets/Behaviors/TrajectoryFollower.rrbehavior");

 Trajectory Follower with RoadRunner Scenario

8-1405

Set the step size of RoadRunner Scenario to match the step size of the
TrajectoryFollowerRRTestBench model.

rrSim.set("StepSize",timeStep);

Run the simulation and wait for it to complete.

rrSim.set("SimulationCommand","Start");
while strcmp(rrSim.get("SimulationStatus"),"Running")
 pause(1);
end

Plot the simulation results.

helperVisualizeVelocityProfile(rrSim,1,"SimulinkBehavior");
Simulink.sdi.snapshot;

8 Featured Examples

8-1406

 Trajectory Follower with RoadRunner Scenario

8-1407

The first subplot compares the velocity profile of the built-in behavior with that of the trajectory
follower. Notice the overshoot in the trajectory follower profile that increases when the ego vehicle
travels on a turning road segment. You can adjust the controller parameters to reduce the overshoot.
The second subplot plots the position error of the ego vehicle due to controller and vehicle dynamics.

See Also
Blocks
RoadRunner Scenario | RoadRunner Scenario Writer | RoadRunner Scenario Reader

Objects
Simulink.ScenarioSimulation

8 Featured Examples

8-1408

Related Examples
• “Speed Action Follower with RoadRunner Scenario” on page 8-1410
• “Highway Lane Change Planner with RoadRunner Scenario” on page 8-1421
• “Generate Scenario Variations Using gRPC API” (RoadRunner Scenario)

 Trajectory Follower with RoadRunner Scenario

8-1409

Speed Action Follower with RoadRunner Scenario
This example shows how to design and implement a speed action follower in MATLAB® and
cosimulate with RoadRunner Scenario.

Introduction

RoadRunner Scenario is an interactive editor that enables you to design scenarios for simulating and
testing automated driving systems. You can place vehicles, define their paths and interactions in the
scenario, and then simulate the scenario in the editor. RoadRunner Scenario supports in-editor
playback for scenario visualization and connecting to other simulators such as MATLAB and
Simulink® for cosimulation.

This example shows the steps for cosimulation of RoadRunner Scenario and MATLAB. It shows how to
design a speed action follower using a MATLAB System object™. It also shows how to visualize
simulation data using MATLAB. This diagram shows an overview of the information exchanged
between RoadRunner Scenario and the speed action follower:

The speed action follower reads the vehicle runtime, path, and speed action of the ego vehicle, and all
actor runtimes from RoadRunner Scenario. It then uses this information to process the speed action
and updates the ego vehicle runtime in the scenario.

In this example, you:

1 Set up MATLAB — Configure MATLAB settings to interact with RoadRunner Scenario.
2 Set up RoadRunner Scenario — Open RoadRunner and copy required files to the RoadRunner

project folder.

8 Featured Examples

8-1410

3 Explore the scenario — Associate speed action following behavior to the ego vehicle in
RoadRunner Scenario.

4 Design a speed action follower — Design a speed action follower in MATLAB using a System
object.

5 Simulate following an absolute speed action — Simulate a scenario in which the ego vehicle
follows an absolute speed that results in collision with the lead vehicle.

6 Simulate following a relative speed action — Simulate a scenario in which the ego vehicle
follows the speed of a lead vehicle to avoid collision.

Set Up MATLAB

This section shows how to set up the environment to cosimulate MATLAB with RoadRunner Scenario.

Specify the path to your local RoadRunner installation folder. This code shows the path for the default
installation location in Windows®.

rrAppPath = "C:\Program Files\RoadRunner R2022a\bin\win64";

To update the path for the RoadRunner installation folder, get the root object within the settings
hierarchical tree. For more information, see SettingsGroup.

s = settings;
s.roadrunner.application.InstallationFolder.TemporaryValue = rrAppPath;

Set Up RoadRunner Scenario

Specify the path to your RoadRunner project. This code shows the path for a sample project folder
location in Windows.

rrProjectPath = "C:\RR\MyProjects";

Open RoadRunner using the specified path to your project.

rrApp = roadrunner(rrProjectPath);

The rrApp RoadRunner object enables you to interact with RoadRunner from the MATLAB
workspace. You can open the scenario and update scenario variables using this object. For more
information on variables, see “Generate Scenario Variations Using gRPC API” (RoadRunner
Scenario).

This example uses two files that you must add to the RoadRunner project.

1 scenario_SAF_OneLeadCar.rrscenario — Scenario file based on the
ScenarioBasic.rrscene scene that ships with RoadRunner.

2 SpeedActionFollower.rrbehavior.rrmeta — Behavior file that associates the speed action
following behavior implemented using a MATLAB System object to the ego vehicle in
RoadRunner Scenario.

Copy these files to the RoadRunner project. To learn more about the RoadRunner environment, see
“RoadRunner Project and Scene System” (RoadRunner).

copyfile("scenario_SAF_OneLeadCar.rrscenario",fullfile(rrProjectPath,"Scenarios"));
copyfile("SpeedActionFollower.rrbehavior.rrmeta",fullfile(rrProjectPath,"Assets","Behaviors"));

 Speed Action Follower with RoadRunner Scenario

8-1411

Explore Scenario

Open the scenario scenario_SAF_OneLeadCar.rrscenario.

openScenario(rrApp,"scenario_SAF_OneLeadCar.rrscenario");

The scenario contains two vehicles. The blue lead car follows the lane-following built-in behavior. The
white ego vehicle travels on the specified path. In this example, you must specify a path for the ego
vehicle. The lead car initially travels at a speed of 20 m/s, and then decelerates to a speed of 5 m/s
over the next 10 seconds. The ego vehicle initially travels at a speed of 20 m/s. When the ego vehicle
is 30 m away from the lead car, it starts decelerating to attain an absolute target speed of 15 m/s.

You can visualize the assigned speed command in the Logic editor pane and the Attributes pane. For
more information, see “Define Scenario Logic” (RoadRunner Scenario).

In this example, you implement a speed action following behavior for the ego vehicle using MATLAB a
System object. Select the SpeedActionFollower.rrbehavior file in the Library Browser. The
Attributes pane shows that the behavior file points to a MATLAB System object,
SpeedActionFollower.m.

8 Featured Examples

8-1412

Specify the custom SpeedActionFollower.rrbehavior behavior for the ego vehicle. For more
information on assigning behaviors, see “Specify and Assign Actor Behaviors” (RoadRunner
Scenario).

This example uses the changeSpeedType scenario variable to programmatically vary the Relative
To attribute of the Change Speed action of the ego vehicle. Using this variable, you can specify an
absolute target speed or a relative target speed.

 Speed Action Follower with RoadRunner Scenario

8-1413

Connect to the RoadRunner Scenario server for cosimulation using the createSimulation function.

rrSim = rrApp.createSimulation;

Connection status: 1
Connected to RoadRunner Scenario server on localhost:55542, with client id {e98c6f5d-434c-4d27-81a8-ea049271b004}

rrSim is the Simulink.ScenarioSimulation object. Use this object to set variables and to read
scenario-related information.

Enable data logging.

rrSim.set('Logging','On');

Design Speed Action Follower

The speed action follower reads path and speed actions from RoadRunner Scenario and updates the
runtime pose of the ego vehicle. This diagram shows the key functionality implemented in the speed
action follower.

8 Featured Examples

8-1414

The speed action follower defines a custom behavior for the ego vehicle in RoadRunner Scenario. This
custom behavior, SpeedActionFollower.m, is implemented using a MATLAB System object.

The SpeedActionFollower MATLAB program file calls the setupImpl function method during
initialization. The path action adapter reads the Follow Path action from RoadRunner Scenario and
gets the waypoints of the specified path.

SpeedActionFollower then calls the stepImpl function at each simulation step. The speed action
adapter reads the Change Speed action from RoadRunner Scenario and calculates the current speed
of the ego vehicle. The polyline evaluator reads the waypoints and the current speed to calculate the
current pose of the ego vehicle.

Speed Action Adapter

The speed action adapter processes Change Speed action messages and updates the current speed
of the vehicle. It supports absolute and relative types of target speed. The
HelperSpeedActionAdapter.m script implements the speed action adapter with this primary
interface:

[currentSpeed] =
stepImpl(obj,timestep,stopVehicle,vehicleRuntime,msgSpeedAction,msgAllVehicle
Runtime)

• timestep — Step size for simulation time.
• stopVehicle — Flag that shows whether the ego vehicle finished traveling on its route.
• vehicleRuntime — Runtime data of the ego vehicle.
• msgSpeedAction — Message about the Change Speed action from RoadRunner Scenario.

 Speed Action Follower with RoadRunner Scenario

8-1415

• msgAllVehicleRuntime — Message about runtime data for all vehicles in RoadRunner
Scenario.

• currentSpeed — Current speed of the ego vehicle.

Path Action Adapter

The path action adapter reads the Follow Path action from RoadRunner Scenario and returns the
waypoints of the specified path. The HelperPathActionAdapter.m script implements the path
action adapter with this primary interface:

[path,numPoints] = stepImpl(obj,pathAction)

• pathAction — Follow Path action from RoadRunner Scenario.
• path — 2-D matrix representing the waypoints on the path. Each row contains three elements,

representing the x-, y-, and z-coordinates of the corresponding waypoint, respectively.
• numPoints — Number of waypoints in the path.

Polyline Evaluator

The polyline evaluator calculates the next ego position based on the current position and the current
speed. The HelperPolylineEvaluator.m script implements the polyline evaluator with this
primary interface:

[posX,posY,posZ,yaw,routeDistance,routeFinished] =
stepImpl(obj,polyline,polylineLength,timestep,speed)

• polyline — 2-D matrix representing the waypoints on the path. Each row contains three
elements, representing the x-, y-, and z-coordinates of the corresponding waypoint, respectively.

• polylineLength — Number of waypoints in the path.
• timestep — Step size for simulation time.
• speed — Current speed of the ego vehicle.
• posX, posY, posZ — Updated x-, y-, and z-positions of the ego vehicle, respectively.
• yaw — Updated yaw of the ego vehicle.
• routeDistance — Distance traveled by the ego vehicle.
• routeFinished — Flag that shows whether the ego vehicle finished traveling on its route.

Simulate Following Absolute Speed Action

This example assigns the changeSpeedType variable to the Relative To attribute of the Change
Speed action of the ego vehicle in RoadRunner Scenario. Set changeSpeedType to Absolute.

rrApp.setScenarioVariable('changeSpeedType','Absolute');

8 Featured Examples

8-1416

Start the simulation and wait for the simulation to complete.

rrSim.set('SimulationCommand','Start');
while strcmp(rrSim.get('SimulationStatus'),'Running')
 pause(1);
end

Use the helperVisualizeSpeedFollowerVelocityProfile function to plot the simulation
results. The helperVisualizeSpeedFollowerVelocityProfile helper function takes rrSim,
the ego actor ID, and the lead vehicle actor ID as inputs.

helperPlotSpeedFollowerVelocityProfile(rrSim,1,2);

 Speed Action Follower with RoadRunner Scenario

8-1417

Examine the simulation results.

• The Relative distance plot shows the relative longitudinal distance between the ego vehicle and
lead vehicle. When the relative distance reaches 30 m, the ego vehicle slows down to 15 m/s. At
the end of the simulation, the ego vehicle collides with the lead vehicle.

• The Relative velocity plot shows the relative longitudinal velocity between the ego and lead
vehicles. Initially, relative velocity is 0 m/s because both the ego and lead vehicle starts traveling
at the same speed. When the ego vehicle slows down, the relative velocity first decreases, and
then increases because the ego vehicle maintains a velocity of 15 m/s and the lead car continues
to slow down to attain a velocity of 5 m/s.

• The Longitudinal velocity plot shows the absolute longitudinal velocities of both the ego and the
lead vehicle. When the Change Speed action is triggered, the ego vehicle slows down to 15 m/s
and maintains that speed.

Simulate Following Relative Speed Action

Set changeSpeedType to Relative.

rrApp.setScenarioVariable('changeSpeedType','Relative');

The second action phase of the ego vehicle now defines a relative speed action. When the ego vehicle
is 30 m away from the lead car, the ego vehicle starts decelerating to match the speed of the lead car.

Start the scenario and wait for the simulation to complete.

rrSim.set('SimulationCommand','Start');
while strcmp(rrSim.get('SimulationStatus'),'Running')
 pause(1);
end

Use the helperVisualizeSpeedFollowerVelocityProfile function to plot the simulation
results.

helperPlotSpeedFollowerVelocityProfile(rrSim,1,2);

8 Featured Examples

8-1418

Examine the simulation results.

• The Relative distance plot shows the relative longitudinal distance between the ego and lead
vehicle. When the relative distance reaches 30m, the ego vehicle slows down to match the speed
of the lead vehicle. At the end of the simulation, the ego vehicle maintains a constant distance
from the lead vehicle and avoids collision.

• The Relative velocity plot shows the relative longitudinal velocity between the ego and lead
vehicles. When the ego vehicle slows down, the relative velocity decreases until it reaches 0 m/s.

• The Longitudinal velocity plot shows the absolute longitudinal velocity of both the ego and the
lead vehicle. When the Change Speed action is triggered, the ego vehicle slows down to match
the speed of the lead vehicle, and continues to follow the speed of the lead vehicle.

Conclusion

This example showed how to design a speed action follower in MATLAB by reading a Change Speed
action and Follow Path action from RoadRunner Scenario. It also showed how to use a scenario
variable to parameterize the scenario and simulate the updated scenario.

See Also
Blocks
RoadRunner Scenario | RoadRunner Scenario Reader | RoadRunner Scenario Writer

Objects
Simulink.ScenarioSimulation

 Speed Action Follower with RoadRunner Scenario

8-1419

Related Examples
• “Trajectory Follower with RoadRunner Scenario” on page 8-1396
• “Highway Lane Change Planner with RoadRunner Scenario” on page 8-1421
• “Generate Scenario Variations Using gRPC API” (RoadRunner Scenario)

8 Featured Examples

8-1420

Highway Lane Change Planner with RoadRunner Scenario
This example shows how to simulate a highway lane change planner, designed in Simulink®, with
RoadRunner Scenario.

Introduction

RoadRunner Scenario is an interactive editor that enables you to design scenarios for simulating and
testing automated driving systems. You can place vehicles, define their paths and interactions in the
scenario, and then simulate the scenario in the editor. RoadRunner Scenario supports in-editor
playback for scenario visualization and connecting to other simulators, such as MATLAB® and
Simulink, for cosimulation.

The lane change planner is a fundamental component of a highway lane change system that enables
an ego vehicle to move from one lane to another. The lane change planner is expected to handle
different driving behaviors to safely navigate the ego vehicle from one point to another point. This
example shows how to use RoadRunner Scenario to simulate the highway lane change planner
reference model used in the “Generate Code for Highway Lane Change Planner” on page 8-1180
example.

This figure shows an overview of the information exchanged between RoadRunner Scenario and the
highway lane change planner. The lane change planner reads path action, map data, and all actor
runtime from RoadRunner Scenario. The planner uses this information to sample trajectories, and
then finds an optimal collision-free trajectory to navigate the ego vehicle in the scenario.

In this example, you:

• Set up the environment — Configure MATLAB settings to interact with RoadRunner Scenario.
• Explore RoadRunner scenario — Explore the RoadRunner scene and scenario required for

simulating the highway lane change planner.
• Explore the highway lane change planner test bench — The test bench model has interfaces

for RoadRunner Scenario, the highway lane change planner, metrics assessment, and
visualization.

• Simulate the lane change scenario — Cosimulate the lane change planner with RoadRunner
Scenario and assess performance.

 Highway Lane Change Planner with RoadRunner Scenario

8-1421

• Explore additional scenarios — These scenarios test the system under additional conditions.

Set Up Environment

This section shows how to set up the environment to cosimulate the highway lane change planner
with RoadRunner Scenario.

Specify the path to your local RoadRunner installation folder. This code shows the path for the default
installation location on Windows®.

rrAppPath = "C:\Program Files\RoadRunner R2022a\bin\win64";

Specify the path to your RoadRunner project. This code shows the path to a sample project folder on
Windows.

rrProjectPath = "C:\RR\MyProjects";

To update the path for the RoadRunner installation folder, get the root object within the settings
hierarchical tree. For more information, see SettingsGroup.

s = settings;
s.roadrunner.application.InstallationFolder.TemporaryValue = rrAppPath;

Open RoadRunner using the specified path to your project.

rrApp = roadrunner(rrProjectPath);

The rrApp RoadRunner object enables you to interact with RoadRunner from the MATLAB
workspace. You can open the scenario and update scenario variables using this object. For more
information on variables, see “Generate Scenario Variations Using gRPC API” (RoadRunner
Scenario).

Open a working copy of the highway lane change planner project example files. MATLAB copies the
files to an example folder so that you can edit them.

addpath(fullfile(matlabroot,"toolbox","driving","drivingdemos"));
helperDrivingProjectSetup("HLCPlannerWithRRScenario.zip",workDir=pwd);

Copy the RoadRunner scene, scenario, and behavior files to the RoadRunner project. To learn more
about the RoadRunner environment, see “RoadRunner Project and Scene System” (RoadRunner).

copyfile("HLCPlannerWithRRScenario/HLCTestScenarios/RoadRunner/Scenes",fullfile(rrProjectPath,"Scenes"));
copyfile("HLCPlannerWithRRScenario/HLCTestScenarios/RoadRunner/Scenarios",fullfile(rrProjectPath,"Scenarios"));
copyfile("HLCPlannerWithRRScenario/HLCPlannerWithRRScenario/TestBench/HLCPlanner.rrbehavior.rrmeta",fullfile(rrProjectPath,"Assets","Behaviors"));

Explore RoadRunner scenario

This example reuses the highway lane change planner from the “Generate Code for Highway Lane
Change Planner” on page 8-1180 example. This planner supports specific road types and needs a
reference path for planning its trajectories. As it requires time input for re-planning, you must
synchronize the step size of the lane change planner model with RoadRunner scenario.

Road Design

Highway lane change planner supports only flat roads (elevation = 0) with uniform lane width and no
intersections. This example uses CurvedRoad.rrscene to simulate the highway lane change
planner. The scene contains a two-way, four-lane, curved highway road. Open the scene.

8 Featured Examples

8-1422

openScene(rrApp,"CurvedRoad.rrscene")

Notice that the road in the scene has uniform lane width. The road does not contain any intersections
and has an elevation of zero.

Ego Reference Path

To navigate the ego vehicle, the lane change planner requires a predefined global reference path
within a single lane. You can specify the path for the vehicle using RoadRunner Scenario editor. For
more information on how to specify a path, see “Path Editing” (RoadRunner Scenario).

This example uses the scenario_HLCRR_04_DenseTraffic.rrscenario scenario. Open the
scenario.

openScenario(rrApp,"scenario_HLCRR_04_DenseTraffic.rrscenario");

 Highway Lane Change Planner with RoadRunner Scenario

8-1423

The scenario consists of four vehicles. The blue sedan is named Ego. An explicit driving path is
specified for Ego. The planner uses this path as the global reference path. The other three vehicles
are configured to use the built-in behavior of RoadRunner Scenario. In this example, these vehicles
are the target actors. To simulate lane change behavior for the ego vehicle Ego, specify custom
behavior for it using the HLCPlanner.rrbehavior.rrmeta file. For more information on custom
behavior, see “Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink” on page 7-
2.

Connect to the RoadRunner Scenario server for cosimulation using the createSimulation function,
and enable data logging.

rrSim = rrApp.createSimulation;
rrSim.set('Logging','on');

Connection status: 1
Connected to RoadRunner Scenario server on localhost:63045, with client id {1fe473e0-4f75-4b32-80f2-3568ca103d8b}

rrSim is the Simulink.ScenarioSimulation object. Use this object to set variables and to read
scenario and map-related information.

Simulation Step Size

The lane change planner is designed to run at a step size of 0.1 seconds. Set the simulation step size
of RoadRunner Scenario to 0.1 seconds.

Ts = 0.1;
rrSim.set('StepSize',Ts);

Explore Highway Lane Change Planner Test Bench

In this example, you use a system level test bench model to simulate and test the behavior of a lane
change planner with RoadRunner Scenario. Open the test bench model.

8 Featured Examples

8-1424

open_system("HLCPlannerRRTestBench");

The test bench model contains RoadRunner Scenario blocks, which configure, read from, and write to
RoadRunner Scenario, as well as these modules:

• Highway Lane Change Planner — Reference model that implements the lane change planner
algorithm.

• Planner Configuration Parameters — Subsystem that specifies the configuration
parameters required for the highway lane change planner algorithm.

• Reference Path Lane Info — System object™ that reads the reference path and populates
the required lane information for the lane change planner.

• Target Actors — Subsystem that converts the runtime information of all the target vehicles to
the required bus format for the lane change planner.

• Metrics Assessment — Subsystem that specifies metrics to assess the highway lane change
planner behavior.

• Pack Ego Pose — Subsystem that updates the actor bus using the current state of the ego
vehicle from the lane change planner.

• Visualization — System object that visualizes the status of the ego vehicle and other vehicles
defined in the scenario.

The Highway Lane Change Planner model and Planner Configuration Parameters,
Metrics Assessment, and Pack Ego Pose subsystems are based on the subsystems used in the
“Generate Code for Highway Lane Change Planner” on page 8-1180 example. This example focuses
on the RoadRunner Scenario blocks and the Reference Path Lane Info, Pack Ego Pose, and
Visualization subsystems.

 Highway Lane Change Planner with RoadRunner Scenario

8-1425

RoadRunner Scenario Blocks

The RoadRunner Scenario blocks consist of:

• RoadRunner Scenario — Defines the interface for an actor model.
• Path Action — RoadRunner Scenario Reader block that reads the reference path of the ego

vehicle.
• All Actor Runtime — RoadRunner Scenario Reader block that reads runtime information of all

the vehicles.
• Self Actor Runtime Reader — RoadRunner Scenario Reader block that reads ego actor

runtime information.
• Self Actor Runtime Writer — RoadRunner Scenario Writer block that writes the ego vehicle

runtime to RoadRunner Scenario.

Reference Path Lane Info

The Reference Path Lane Info System object is implemented as
HelperReferencePathLaneInfo.m. The System object reads the reference path of the ego vehicle
from the RoadRunner scenario to calculate the related lane information RefPathLaneInfo, required
by the highway lane change planner. The System object reads the Follow Path Action message
from RoadRunner Scenario, then constructs lane information for the reference path used by the
planner. The primary interface of the subsystem is:

RefPathLaneInfo = stepImpl(obj,PathAction)

• PathAction — Path action message from RoadRunner Scenario.
• RefPathLaneInfo — Bus with lane and path information required for highway lane change

planner.

RefPathLaneInfo contains this information:

• NumLanes — Number of lanes in the scenario.
• LaneWidth — Width of each lane.
• LaneCenters — Lane center offsets from the reference path.
• NumGlobalPlanPoints — Number of points in the reference path.
• GlobalPlanPoints — Reference path points.

HelperReferencePathLaneInfo uses the helperGetLaneInfo function to read lane and lane
boundary information from RoadRunner.

[lanes,laneBoundaries] = helperGetLaneInfo(rrSim);

The lanes output argument is a structure that contains these fields:

• ID — ID of the lane.
• TravelDir — Travel direction of the lane.
• LaneType — Type of lane.
• LeftLaneBoundary — Left lane boundary information.
• RightLaneBoundary — Right lane boundary information.
• SuccessorLanes — Successor of the current lane.

8 Featured Examples

8-1426

• PredecessorLanes — Predecessor of the current lane.
• Geometry — Lane center coordinates.

The laneBoundaries output argument is a structure with these fields:

• ID — ID of the lane boundary.
• Geometry — Lane boundary coordinates.

Pack Ego Pose

The Pack Ego Pose subsystem packs the planner output into the actor runtime message and actor
pose. The Self Actor Runtime Writer blocks writes the actor runtime message to RoadRunner
Scenario. The actor pose is used as input for the Metrics Assessment subsystem.

open_system("HLCPlannerRRTestBench/Pack Ego Pose");

Visualization

Visualization System object creates a MATLAB plot of the capsule list of all vehicles and candidate
trajectories of the ego vehicle. The HelperPlotHLCPlannerWithRRScenario script implements
the visualization using this primary interface:

stepImpl(obj,VisualizationInfo,TargetActorsWorld,EgoActor)

• VisualizationInfo — Trajectory information obtained from the planner.
• TargetActorsWorld — Target actor runtime information.
• EgoActor — Ego vehicle runtime information.

 Highway Lane Change Planner with RoadRunner Scenario

8-1427

Simulate Lane Change Scenario

This example uses the helperSLHLCPlannerRRSetup function to initialize the ego and target actor
profiles based on the selected scenario.

helperSLHLCPlannerRRSetup(rrApp,rrSim,scenarioFileName="scenario_HLCRR_04_DenseTraffic");

This model may take a couple of minutes to update the diagram when you are compiling for the first
time. Update the model before running the simulation.

set_param("HLCPlannerRRTestBench",SimulationCommand="update");

Simulate the scenario and observe the lane changes made by the ego vehicle to avoid collisions with
the target actors.

rrSim.set('SimulationCommand','Start');

Notice that the ego vehicle changes lanes twice to avoid collision. Visualize the top view of the
scenario using a MATLAB figure that plots the ego vehicle, sampled trajectories, capsule list, and
other vehicles in the scenario. The visualization also shows the optimal, colliding, infeasible, and non-
evaluated trajectories of the ego vehicle, in the MATLAB figure.

Explore Other Scenarios

In this example, you have explored the system behavior for the
scenario_HLCRR_04_DenseTraffic scenario, which used CurvedRoad.rrscene. You can use the
same test bench model to explore other scenarios. This example provides these additional scenarios
that are compatible with the HLCPlannerRRTestBench model.

• scenario_HLCRR_01_SlowMoving

8 Featured Examples

8-1428

• scenario_HLCRR_02_SlowMoving_PassingCar
• scenario_HLCRR_03_DisabledCar
• scenario_HLCRR_05_ALKS_CutIn_NoCollision
• scenario_HLCRR_06_ALKS_Cutout_DisabledCar
• scenario_HLCRR_07_Cutin_DisabledCar

Each of these scenarios uses WindingRoad.rrscene scene, which consists of a winding highway
scene with eight lanes. You can configure the HLCPlannerRRTestBench model to simulate these
scenarios using the helperSLHLCPlannerRRSetup function. For example, to configure, the test
bench to simulate the scenario_HLCRR_01_SlowMoving scenario, enter this command.

helperSLHLCPlannerRRSetup(rrApp,rrSim,scenarioFileName="scenario_HLCRR_01_SlowMoving")

See Also
Blocks
RoadRunner Scenario | RoadRunner Scenario Reader | RoadRunner Scenario Writer

Objects
Simulink.ScenarioSimulation

Related Examples
• “Speed Action Follower with RoadRunner Scenario” on page 8-1410
• “Trajectory Follower with RoadRunner Scenario” on page 8-1396
• “Generate Scenario Variations Using gRPC API” (RoadRunner Scenario)
• “Generate Code for Highway Lane Change Planner” on page 8-1180
• “Highway Lane Change Planner and Controller” on page 8-1361

 Highway Lane Change Planner with RoadRunner Scenario

8-1429

	Sensor Configuration and Coordinate System Transformations
	Coordinate Systems in Automated Driving Toolbox
	World Coordinate System
	Vehicle Coordinate System
	Sensor Coordinate System
	Spatial Coordinate System
	Pattern Coordinate System

	Calibrate a Monocular Camera
	Estimate Intrinsic Parameters
	Place Checkerboard for Extrinsic Parameter Estimation
	Estimate Extrinsic Parameters
	Configure Camera Using Intrinsic and Extrinsic Parameters

	Ground Truth Labeling and Verification
	Get Started with the Ground Truth Labeler
	Load Ground Truth Signals to Label
	Load Timestamps
	Open Ground Truth Labeler App
	Load Signals from Data Sources
	Configure Signal Display

	Label Ground Truth for Multiple Signals
	Create Label Definitions
	Label Video Using Automation
	Label Point Cloud Sequence Using Automation
	Label with Sublabels and Attributes Manually
	Label Scene Manually
	View Label Summary
	Save App Session

	Export and Explore Ground Truth Labels for Multiple Signals
	Sources vs. Signals in Ground Truth Labeling
	Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler
	Label Definitions
	Frame Navigation and Time Interval Settings
	Labeling Window
	Cuboid Resizing and Moving
	Polyline Drawing
	Polygon Drawing
	Zooming, Panning, and Rotating
	App Sessions

	Control Playback of Signal Frames for Labeling
	Signal Frames
	Main Signal
	Change Main Signal
	Display All Timestamps
	Specify Timestamps
	Frame Display and Automation

	Label Lidar Point Clouds for Object Detection
	Set Up Lidar Point Cloud Labeling
	Zoom, Pan, and Rotate Frame
	Hide Ground
	Label Cuboid
	Modify Cuboid Label
	Apply Cuboids to Multiple Frames
	Configure Display

	Create Class for Loading Custom Ground Truth Data Sources
	Custom Class Folder
	Class Definition
	Class Properties
	Method to Customize Load Panel
	Methods to Get Load Panel Data and Load Data Source
	Method to Read Frames
	Use Predefined Data Source Classes

	Tracking and Sensor Fusion
	Visualize Sensor Data and Tracks in Bird's-Eye Scope
	Open Model and Scope
	Find Signals
	Run Simulation
	Organize Signal Groups (Optional)
	Update Model and Rerun Simulation
	Save and Close Model

	Linear Kalman Filters
	Motion Model
	Measurement Models
	Filter Loop
	Built-In Motion Models in trackingKF
	Example: Estimate 2-D Target States Using trackingKF

	Extended Kalman Filters
	State Update Model
	Measurement Model
	Extended Kalman Filter Loop
	Predefined Extended Kalman Filter Functions
	Example: Estimate 2-D Target States with Angle and Range Measurements Using trackingEKF

	Planning, Mapping, and Control
	Display Data on OpenStreetMap Basemap
	Read and Visualize HERE HD Live Map Data
	Enter Credentials
	Configure Reader to Search Specific Catalog
	Create Reader for Specific Map Tiles
	Read Map Layer Data
	Visualize Map Layer Data

	HERE HD Live Map Layers
	Road Centerline Model
	HD Lane Model
	HD Localization Model

	Rotations, Orientations, and Quaternions for Automated Driving
	Quaternion Format
	Quaternion Creation
	Quaternion Math
	Extract Quaternions from Transformation Matrix

	Control Vehicle Velocity
	Velocity Profile of Straight Path
	Velocity Profile of Path with Curve and Direction Change
	Plan Path Using A-Star Path Planners

	Cuboid Driving Scenario Simulation
	Create Driving Scenario Interactively and Generate Synthetic Sensor Data
	Create Driving Scenario
	Add a Road
	Add Lanes
	Add Barriers
	Add Vehicles
	Add a Pedestrian
	Add Sensors
	Generate Synthetic Sensor Data
	Save Scenario

	Keyboard Shortcuts and Mouse Actions for Driving Scenario Designer
	Canvas Operations
	Road Operations
	Actor Operations
	Preview Actor Times of Arrival
	Barrier Placement Operations
	Sensor Operations
	File Operations

	Prebuilt Driving Scenarios in Driving Scenario Designer
	Choose a Prebuilt Scenario
	Modify Scenario
	Generate Synthetic Sensor Data
	Save Scenario

	Euro NCAP Driving Scenarios in Driving Scenario Designer
	Choose a Euro NCAP Scenario
	Modify Scenario
	Generate Synthetic Detections
	Save Scenario

	Cuboid Versions of 3D Simulation Scenes in Driving Scenario Designer
	Choose 3D Simulation Scenario
	Modify Scenario
	Save Scenario
	Recreate Scenario in Simulink for 3D Environment

	Create Reverse Motion Driving Scenarios Interactively
	Three-Point Turn Scenario
	Add Road
	Add Vehicle
	Add Trajectory
	Run Simulation
	Adjust Trajectory Using Specified Yaw Values

	Generate INS Sensor Measurements from Interactive Driving Scenario
	Import Road Network
	Add Actor and Trajectory
	Smooth the Trajectory
	Add INS Sensor
	Simulate Scenario
	Export to MATLAB and Explore Sensor Data
	Export Scenario and Sensor to a Simulink Model

	Import ASAM OpenDRIVE Roads into Driving Scenario
	Import ASAM OpenDRIVE File
	Inspect Roads
	Add Actors and Sensors to Scenario
	Generate Synthetic Detections
	Save Scenario

	Export Driving Scenario to ASAM OpenDRIVE File
	Load Scenario File
	Export to ASAM OpenDRIVE
	Inspect Exported Scenario
	Limitations

	Import HERE HD Live Map Roads into Driving Scenario
	Set Up HERE HDLM Credentials
	Specify Geographic Coordinates
	Select Region Containing Roads
	Select Roads to Import
	Import Roads
	Compare Imported Roads Against Map Data
	Save Scenario

	Import OpenStreetMap Data into Driving Scenario
	Select OpenStreetMap File
	Select Roads to Import
	Import Roads
	Compare Imported Roads Against Map Data
	Save Scenario

	Import Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) into Driving Scenario
	Set Up Zenrin Japan Map API 3.0 (Itsumo NAVI API 3.0) Credentials
	Specify Geographic Coordinates
	Select Region Containing Roads
	Select Roads to Import
	Import Roads
	Compare Imported Roads Against Map Data
	Save Scenario

	Create Driving Scenario Variations Programmatically
	Generate Sensor Blocks Using Driving Scenario Designer
	Test Open-Loop ADAS Algorithm Using Driving Scenario
	Test Closed-Loop ADAS Algorithm Using Driving Scenario
	Automate Control of Intelligent Vehicles by Using Stateflow Charts
	Simulate INS Block
	Generate INS Measurements from Driving Scenario in Simulink
	Create Roads with Multiple Lane Specifications Using Driving Scenario Designer
	Open Driving Scenario Designer
	Add Road
	Define Multiple Lane Specifications
	Next Steps

	Export Driving Scenario to ASAM OpenSCENARIO File
	Load Scenario File
	Export to ASAM OpenSCENARIO
	ASAM OpenSCENARIO Representations
	Limitations

	3D Simulation – User's Guide
	Unreal Engine Simulation for Automated Driving
	Unreal Engine Simulation Blocks
	Algorithm Testing and Visualization

	Unreal Engine Simulation Environment Requirements and Limitations
	Software Requirements
	Minimum Hardware Requirements
	Limitations

	How Unreal Engine Simulation for Automated Driving Works
	Communication with 3D Simulation Environment
	Block Execution Order

	Coordinate Systems for Unreal Engine Simulation in Automated Driving Toolbox
	World Coordinate System
	Vehicle Coordinate System

	Choose a Sensor for Unreal Engine Simulation
	Simulate Simple Driving Scenario and Sensor in Unreal Engine Environment
	Depth and Semantic Segmentation Visualization Using Unreal Engine Simulation
	Visualize Sensor Data from Unreal Engine Simulation Environment
	Customize Unreal Engine Scenes for Automated Driving
	Install Support Package for Customizing Scenes
	Verify Software and Hardware Requirements
	Install Support Package
	Set Up Scene Customization Using Support Package

	Migrate Projects Developed Using Prior Support Packages
	Customize Scenes Using Simulink and Unreal Editor
	Open Unreal Editor from Simulink
	Reparent Actor Blueprint
	Create or Modify Scenes in Unreal Editor
	Run Simulation

	Package Custom Scenes into Executable
	Package Scene into Executable Using Unreal Editor
	Simulate Scene from Executable in Simulink

	Apply Labels to Unreal Scene Elements for Semantic Segmentation and Object Detection
	Create Top-Down Map of Unreal Engine Scene
	Capture Screenshot
	Convert Screenshot to Map

	Place Cameras on Actors in the Unreal Editor
	Place Camera on Static Actor
	Place Camera on Vehicle in Custom Project

	Build Light in Unreal Editor
	Use AutoVrtlEnv Project Lighting in Custom Scene

	Create Empty Project in Unreal Engine
	Prepare Custom Vehicle Mesh for the Unreal Editor
	Step 1: Setup Bone Hierarchy
	Step 2: Assign Materials
	Step 3: Export Mesh and Armature
	Step 4: Import Mesh to Unreal Editor
	Step 5: Set Block Parameters

	RoadRunner Scenario Scenario Simulation
	Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink
	Author RoadRunner Actor Using Simulink or MATLAB System Objects
	Associate Actor Behavior in RoadRunner Scenario
	Publish Actor Behavior
	Tune Actor Parameters
	Simulate Scenario in RoadRunner
	Control Scenario Simulation Using MATLAB
	Inspect Simulation Results Using Data Logging

	Simulate RoadRunner Scenarios with Actors Modeled in Simulink
	Author RoadRunner Actor Using Simulink
	Associate Actor Behavior in RoadRunner and Simulate Scenario

	Simulate RoadRunner Scenarios with Actors Modeled in MATLAB
	Build Custom MATLAB System Object Behavior
	Associate Actor Behavior in RoadRunner

	Publish Actor Behavior as Proto File or Package
	Generate Behavior Proto File for Simulink or MATLAB System Object Behavior
	Generate Package from Simulink Model or MATLAB System Object

	Featured Examples
	Configure Monocular Fisheye Camera
	Annotate Video Using Detections in Vehicle Coordinates
	Read Data From ADTF DAT Files
	Read Sensor Messages from IDC file
	Automate Ground Truth Labeling Across Multiple Signals
	Automate Ground Truth Labeling of Lane Boundaries
	Automate Ground Truth Labeling for Semantic Segmentation
	Automate Attributes of Labeled Objects
	Evaluate Lane Boundary Detections Against Ground Truth Data
	Evaluate and Visualize Lane Boundary Detections Against Ground Truth
	Visual Perception Using Monocular Camera
	Create 360° Bird's-Eye-View Image Around a Vehicle
	Perception-Based Parking Spot Detection Using Unreal Engine Simulation
	Train a Deep Learning Vehicle Detector
	Ground Plane and Obstacle Detection Using Lidar
	Build Map and Localize Using Segment Matching
	Build a Map with Lidar Odometry and Mapping (LOAM) Using Unreal Engine Simulation
	Code Generation for Tracking and Sensor Fusion
	Forward Collision Warning Using Sensor Fusion
	Adaptive Cruise Control with Sensor Fusion
	Forward Collision Warning Application with CAN FD and TCP/IP
	Multiple Object Tracking Tutorial
	Track Multiple Vehicles Using a Camera
	Track Vehicles Using Lidar: From Point Cloud to Track List
	Sensor Fusion Using Synthetic Radar and Vision Data
	Sensor Fusion Using Synthetic Radar and Vision Data in Simulink
	Autonomous Emergency Braking with Sensor Fusion
	Visualize Sensor Coverage, Detections, and Tracks
	Extended Object Tracking of Highway Vehicles with Radar and Camera
	Track-to-Track Fusion for Automotive Safety Applications
	Track-to-Track Fusion for Automotive Safety Applications in Simulink
	Visual-Inertial Odometry Using Synthetic Data
	Lane Following Control with Sensor Fusion and Lane Detection
	Track-Level Fusion of Radar and Lidar Data
	Track-Level Fusion of Radar and Lidar Data in Simulink
	Track Vehicles Using Lidar Data in Simulink
	Grid-Based Tracking in Urban Environments Using Multiple Lidars
	Track Multiple Lane Boundaries with a Global Nearest Neighbor Tracker
	Generate Code for a Track Fuser with Heterogeneous Source Tracks
	Highway Vehicle Tracking with Multipath Radar Reflections
	Extended Object Tracking of Highway Vehicles with Radar and Camera in Simulink
	Grid-based Tracking in Urban Environments Using Multiple Lidars in Simulink
	Object Tracking and Motion Planning Using Frenet Reference Path
	Asynchronous Sensor Fusion and Tracking with Retrodiction
	Extended Target Tracking with Multipath Radar Reflections in Simulink
	Processor-in-the-Loop Verification of JPDA Tracker for Automotive Applications
	Scenario Generation from Recorded Vehicle Data
	Generate Lane Information from Recorded Data
	Improve Ego Vehicle Localization
	Lane Keeping Assist with Lane Detection
	Model Radar Sensor Detections
	Model Vision Sensor Detections
	Radar Signal Simulation and Processing for Automated Driving
	Simulate Radar Ghosts Due to Multipath Return
	Create Driving Scenario Programmatically
	Create Actor and Vehicle Trajectories Programmatically
	Define Road Layouts Programmatically
	Simulate Vehicle Parking Maneuver in Driving Scenario
	Automated Parking Valet
	Automated Parking Valet in Simulink
	Visualize Automated Parking Valet Using Cuboid Simulation
	Highway Trajectory Planning Using Frenet Reference Path
	Motion Planning in Urban Environments Using Dynamic Occupancy Grid Map
	Code Generation for Path Planning and Vehicle Control
	Use HERE HD Live Map Data to Verify Lane Configurations
	Localization Correction Using Traffic Sign Data from HERE HD Maps
	Build a Map from Lidar Data
	Build a Map from Lidar Data Using SLAM
	Create Occupancy Grid Using Monocular Camera and Semantic Segmentation
	Lateral Control Tutorial
	Highway Lane Change
	Visual Localization in a Parking Lot
	Design Lane Marker Detector Using Unreal Engine Simulation Environment
	Select Waypoints for Unreal Engine Simulation
	Visualize Automated Parking Valet Using Unreal Engine Simulation
	Simulate Vision and Radar Sensors in Unreal Engine Environment
	Highway Lane Following
	Automate Testing for Highway Lane Following
	Traffic Light Negotiation
	Design Lidar SLAM Algorithm Using Unreal Engine Simulation Environment
	Lidar Localization with Unreal Engine Simulation
	Develop Visual SLAM Algorithm Using Unreal Engine Simulation
	Automatic Scenario Generation
	Automatic Scenario Variant Generation for Testing AEB Systems
	Generate Scenario from Recorded GPS and Lidar Data
	Highway Lane Following with RoadRunner Scene
	Export Multiple Scenes Using MATLAB
	Convert Scenes Between Formats Using MATLAB Functions
	Simulate a RoadRunner Scenario Using MATLAB Functions
	Traffic Light Negotiation with Unreal Engine Visualization
	Generate Code for Lane Marker Detector
	Highway Lane Following with Intelligent Vehicles
	Forward Vehicle Sensor Fusion
	Generate Code for Vision Vehicle Detector
	Automate Testing for Lane Marker Detector
	Generate Code for Highway Lane Following Controller
	Automate Testing for Highway Lane Following Controls and Sensor Fusion
	Generate Code for Highway Lane Change Planner
	Surround Vehicle Sensor Fusion
	Build Occupancy Map from 3-D Lidar Data using SLAM
	Automate Testing for Vision Vehicle Detector
	Automate Testing for Forward Vehicle Sensor Fusion
	Automate Testing for Highway Lane Following Controller
	Automate Testing for Highway Lane Change
	Visualize Logged Data from Unreal Engine Simulation
	Automate Real-Time Testing for Highway Lane Following Controller
	Generate C++ Message Interfaces for Lane Following Controls and Sensor Fusion
	Automate Testing for Autonomous Emergency Braking
	Autonomous Emergency Braking with Vehicle Variants
	Automate Real-Time Testing for Forward Vehicle Sensor Fusion
	Highway Lane Change Planner and Controller
	Intersection Movement Assist Using Vehicle-to-Vehicle Communication
	Traffic Light Negotiation Using Vehicle-to-Everything Communication
	Trajectory Follower with RoadRunner Scenario
	Speed Action Follower with RoadRunner Scenario
	Highway Lane Change Planner with RoadRunner Scenario

